Skip to main content

Caspase-Independent Cell Death Mechanisms in Simple Animal Models

  • Chapter
  • First Online:
Acute Neuronal Injury

Abstract

Caspase proteases are key mediators of apoptotic cell death, playing both regulatory and executioner roles. Traditionally, the requirement for caspase activity has been one of the defining features of classical apoptosis and has been used to discriminate between different types of cell death. However, it is becoming increasingly apparent that a wide spectrum of cell death paradigms does not involve caspase proteases. It is now established that mostly in cases of pathological and accidental cell death and also in certain situations of developmentally programmed cell death, cellular destruction proceeds without activation of caspases. Instead, alternative, caspase-independent mechanisms are brought to bear. In this chapter, we survey caspase-independent cell death mechanisms in two invertebrate animal models, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We highlight common elements among different instances of cell demise, which point to evolutionarily conserved death mechanisms. Such mechanisms are likely to be relevant to pathological cell death in humans also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham MC, Lu Y, Shaham S (2007) A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev Cell 12:73–86

    PubMed  CAS  Google Scholar 

  • Antignani A, Youle RJ (2006) How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 18:685–689

    PubMed  CAS  Google Scholar 

  • Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22:4385–4399

    PubMed  CAS  Google Scholar 

  • Artal-Sanz M, Tavernarakis N (2005) Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett 579:3287–3296

    PubMed  CAS  Google Scholar 

  • Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N (2006) Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol 173:231–239

    PubMed  CAS  Google Scholar 

  • Baehrecke EH (2003) Autophagic programmed cell death in Drosophila. Cell Death Differ 10:940–945

    PubMed  CAS  Google Scholar 

  • Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510

    PubMed  CAS  Google Scholar 

  • Bargmann CI, Avery L (1995) Laser killing of cells in Caenorhabditis elegans. Methods Cell Biol 48:225–250

    PubMed  CAS  Google Scholar 

  • Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    PubMed  CAS  Google Scholar 

  • Berger AJ, Hart AC, Kaplan JM (1998) G alphas-induced neurodegeneration in Caenorhabditis elegans. J Neurosci 18:2871–2880

    PubMed  CAS  Google Scholar 

  • Berger J, Suzuki T, Senti KA, Stubbs J, Schaffner G, Dickson BJ (2001) Genetic mapping with SNP markers in Drosophila. Nat Genet 29:475–481

    PubMed  CAS  Google Scholar 

  • Blumenthal T, Evans D, Link CD, Guffanti A, Lawson D, Thierry-Mieg J, Thierry-Mieg D, Chiu WL, Duke K, Kiraly M, Kim SK (2002) A global analysis of Caenorhabditis elegans operons. Nature 417:851–854

    PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162

    PubMed  Google Scholar 

  • Carthew RW (2007) Pattern formation in the Drosophila eye. Curr Opin Genet Dev 17:309–313

    PubMed  CAS  Google Scholar 

  • Cauchi RJ, van den Heuvel M (2006) The fly as a model for neurodegenerative diseases: is it worth the jump? Neurodegener Dis 3:338–356

    PubMed  Google Scholar 

  • Celotto AM, Palladino MJ (2005) Drosophila: a “model” model system to study neurodegeneration. Mol Interv 5:292–303

    PubMed  CAS  Google Scholar 

  • Chalfie M, Wolinsky E (1990) The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345:410–416

    PubMed  CAS  Google Scholar 

  • Challa M, Malladi S, Pellock BJ, Dresnek D, Varadarajan S, Yin YW, White K, Bratton SB (2007) Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO J 26:3144–3156

    PubMed  CAS  Google Scholar 

  • Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    CAS  Google Scholar 

  • Cote J, Ruiz-Carrillo A (1993) Primers for mitochondrial DNA replication generated by endonuclease G. Science 261:765–769

    PubMed  CAS  Google Scholar 

  • Coulson A, Waterston R, Kiff J, Sulston J, Kohara Y (1988) Genome linking with yeast artificial chromosomes. Nature 335:184–186

    PubMed  CAS  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    PubMed  CAS  Google Scholar 

  • del Peso L, Gonzalez VM, Inohara N, Ellis RE, Nunez G (2000) Disruption of the CED-9.CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J Biol Chem 275:27205–27211

    PubMed  Google Scholar 

  • Driscoll M, Gerstbrein B (2003) Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat Rev Genet 4:181–194

    PubMed  CAS  Google Scholar 

  • Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    PubMed  CAS  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    PubMed  CAS  Google Scholar 

  • Estaquier J, Arnoult D (2006) CED-9 and EGL-1: a duo also regulating mitochondrial network morphology. Mol Cell 21:730–732

    PubMed  CAS  Google Scholar 

  • Faber PW, Voisine C, King DC, Bates EA, Hart AC (2002) Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci USA 99:17131–17136

    PubMed  CAS  Google Scholar 

  • Furuya N, Yu J, Byfield M, Pattingre S, Levine B (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1:46–52

    PubMed  CAS  Google Scholar 

  • Golic KG (1991) Site-specific recombination between homologous chromosomes in Drosophila. Science 252:958–961

    PubMed  CAS  Google Scholar 

  • Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA (2003) A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 13:358–363

    PubMed  CAS  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    PubMed  CAS  Google Scholar 

  • Greenspan RJ (1997) Fly pushing. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Hall DH, Russell RL (1991) The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci 11:1–22

    PubMed  CAS  Google Scholar 

  • Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16:875–884

    PubMed  CAS  Google Scholar 

  • Hartl DL, Ajioka JW, Cai H, Lohe AR, Lozovskaya ER, Smoller DA, Duncan IW (1992) Towards a Drosophila genome map. Trends Genet 8:70–75

    PubMed  CAS  Google Scholar 

  • Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650

    PubMed  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    PubMed  CAS  Google Scholar 

  • Hersh BM, Hartwieg E, Horvitz HR (2002) The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci USA 99:4355–4360

    PubMed  CAS  Google Scholar 

  • Igaki T, Miura M (2004) Role of Bcl-2 family members in invertebrates. Biochim Biophys Acta 1644:73–81

    PubMed  CAS  Google Scholar 

  • Igaki T, Suzuki Y, Tokushige N, Aonuma H, Takahashi R, Miura M (2007) Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila. Biochem Biophys Res Commun 356:993–997

    PubMed  CAS  Google Scholar 

  • Jakubowski J, Kornfeld K (1999) A local, high-density, single-nucleotide polymorphism map used to clone Caenorhabditis elegans cdf-1. Genetics 153:743–752

    PubMed  CAS  Google Scholar 

  • Jin Y (2005) C. elegans – a practical approach. Oxford University press, Oxford

    Google Scholar 

  • Juhasz G, Sass M (2005) Hid can induce, but is not required for autophagy in polyploid larval Drosophila tissues. Eur J Cell Biol 84:491–502

    PubMed  CAS  Google Scholar 

  • Juhasz G, Erdi B, Sass M, Neufeld TP (2007a) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21:3061–3066

    PubMed  CAS  Google Scholar 

  • Juhasz G, Puskas LG, Komonyi O, Erdi B, Maroy P, Neufeld TP, Sass M (2007b) Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 14:1181–1190

    PubMed  CAS  Google Scholar 

  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    PubMed  CAS  Google Scholar 

  • Kang C, You YJ, Avery L (2007) Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 21:2161–2171

    PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553

    PubMed  CAS  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    PubMed  CAS  Google Scholar 

  • Klionsky DJ (2004) Cell biology: regulated self-cannibalism. Nature 431:31–32

    PubMed  CAS  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18

    PubMed  CAS  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    PubMed  CAS  Google Scholar 

  • Kornberg TB, Krasnow MA (2000) The Drosophila genome sequence: implications for biology and medicine. Science 287:2218–2220

    PubMed  CAS  Google Scholar 

  • Korswagen HC, van der Linden AM, Plasterk RH (1998) G protein hyperactivation of the Caenorhabditis elegans adenylyl cyclase SGS-1 induces neuronal degeneration. EMBO J 17:5059–5065

    PubMed  CAS  Google Scholar 

  • Kourtis N, Tavernarakis N (2007) Non-developmentally programmed cell death in Caenorhabditis elegans. Semin Cancer Biol 17:122–133

    PubMed  CAS  Google Scholar 

  • Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 81:179–196

    PubMed  CAS  Google Scholar 

  • Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    PubMed  Google Scholar 

  • Kumar A, Rothman JH (2007) Cell death: hook, line and linker. Curr Biol 17:R286–R289

    PubMed  CAS  Google Scholar 

  • Lakovaara S (1969) Malt as a culture medium for Drosophila species. Drosoph Inf Serv 44:128

    Google Scholar 

  • Lawrence PA (1992) The making of a fly. The genetics of animal design, 1st edn. Blackwell, Oxford

    Google Scholar 

  • Lee ST, Kim M (2006) Aging and neurodegeneration. Molecular mechanisms of neuronal loss in Huntington’s disease. Mech Ageing Dev 127:432–435

    PubMed  CAS  Google Scholar 

  • Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH (2003) Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 13:350–357

    PubMed  CAS  Google Scholar 

  • Lee J, Nam S, Hwang SB, Hong M, Kwon JY, Joeng KS, Im SH, Shim J, Park MC (2004) Functional genomic approaches using the nematode Caenorhabditis elegans as a model system. J Biochem Mol Biol 37:107–113

    PubMed  CAS  Google Scholar 

  • Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    PubMed  CAS  Google Scholar 

  • Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7:97–108

    PubMed  CAS  Google Scholar 

  • Leyssen M, Hassan BA (2007) A fruitfly’s guide to keeping the brain wired. EMBO Rep 8:46–50

    PubMed  CAS  Google Scholar 

  • Li W, Baker NE (2007) Engulfment is required for cell competition. Cell 129:1215–1225

    PubMed  CAS  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    PubMed  CAS  Google Scholar 

  • Lim HY, Bodmer R, Perrin L (2006) Drosophila aging 2005/06. Exp Gerontol 41:1213–1216

    PubMed  CAS  Google Scholar 

  • Lin CY, Chen SH, Cho CS, Chen CL, Lin FK, Lin CH, Chen PY, Lo CZ, Hsiung CA (2006) Fly-DPI: database of protein interactomes for D. melanogaster in the approach of systems biology. BMC Bioinformatics 7(Suppl 5):S18

    PubMed  Google Scholar 

  • Lindmo K, Stenmark H (2006) How a RING finger protein and a steroid hormone control autophagy. Autophagy 2:321–322

    PubMed  CAS  Google Scholar 

  • Lindmo K, Simonsen A, Brech A, Finley K, Rusten TE, Stenmark H (2006) A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body. Exp Cell Res 312:2018–2027

    PubMed  CAS  Google Scholar 

  • Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557:14–20

    PubMed  CAS  Google Scholar 

  • Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444

    PubMed  CAS  Google Scholar 

  • Martin DN, Baehrecke EH (2004) Caspases function in autophagic programmed cell death in Drosophila. Development 131:275–284

    PubMed  CAS  Google Scholar 

  • Martin DN, Balgley B, Dutta S, Chen J, Rudnick P, Cranford J, Kantartzis S, DeVoe DL, Lee C, Baehrecke EH (2007) Proteomic analysis of steroid-triggered autophagic programmed cell death during Drosophila development. Cell Death Differ 14:916–923

    PubMed  CAS  Google Scholar 

  • Mazzalupo S, Cooley L (2006) Illuminating the role of caspases during Drosophila oogenesis. Cell Death Differ 13:1950–1959

    PubMed  CAS  Google Scholar 

  • McCall K (2004) Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274:3–14

    PubMed  CAS  Google Scholar 

  • Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    PubMed  CAS  Google Scholar 

  • Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431:338–342

    PubMed  CAS  Google Scholar 

  • Mello C, Fire A (1995) Methods in cell biology: Caenorhabditis elegans: modern biological analysis of an organism. Academic, San Diego, p 451

    Google Scholar 

  • Mergliano J, Minden JS (2003) Caspase-independent cell engulfment mirrors cell death pattern in Drosophila embryos. Development 130:5779–5789

    PubMed  CAS  Google Scholar 

  • Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, Susin SA (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398

    PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272

    PubMed  CAS  Google Scholar 

  • Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR (2006) Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 103:11573–11578

    PubMed  CAS  Google Scholar 

  • Murakami S (2007) Caenorhabditis elegans as a model system to study aging of learning and memory. Mol Neurobiol 35:85–94

    PubMed  CAS  Google Scholar 

  • Nakano Y, Fujitani K, Kurihara J, Ragan J, Usui-Aoki K, Shimoda L, Lukacsovich T, Suzuki K, Sezaki M, Sano Y, Ueda R, Awano W, Kaneda M, Umeda M, Yamamoto D (2001) Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol 21:3775–3788

    PubMed  CAS  Google Scholar 

  • Nass R, Hall DH, Miller DM 3rd, Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 99:3264–3269

    PubMed  CAS  Google Scholar 

  • Neufeld TP (2007) Contribution of Atg1-dependent autophagy to TOR-mediated cell growth and survival. Autophagy 3:477–479

    PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Manzo L (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci 20:46–51

    PubMed  CAS  Google Scholar 

  • Ohiro Y, Garkavtsev I, Kobayashi S, Sreekumar KR, Nantz R, Higashikubo BT, Duffy SL, Higashikubo R, Usheva A, Gius D, Kley N, Horikoshi N (2002) A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 524:163–171

    PubMed  CAS  Google Scholar 

  • O’Keefe LV, Liu Y, Perkins A, Dayan S, Saint R, Richards RI (2005) FRA16D common chromosomal fragile site oxido-reductase (FOR/WWOX) protects against the effects of ionizing radiation in Drosophila. Oncogene 24:6590–6596

    PubMed  Google Scholar 

  • Olney JW (1994) Excitatory transmitter neurotoxicity. Neurobiol Aging 15:259–260

    PubMed  CAS  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    PubMed  CAS  Google Scholar 

  • Parrish JZ, Xue D (2003) Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol Cell 11:987–996

    PubMed  CAS  Google Scholar 

  • Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D (2001) Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412:90–94

    PubMed  CAS  Google Scholar 

  • Parrish JZ, Yang C, Shen B, Xue D (2003) CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J 22:3451–3460

    PubMed  CAS  Google Scholar 

  • Porter AG, Urbano AG (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays 28:834–843

    PubMed  CAS  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    PubMed  CAS  Google Scholar 

  • Riddle D (1988) The nematode C. elegans. Cold Spring Harbor Laboratory Press, New York, pp 393–412

    Google Scholar 

  • Riddle DL, Gorski SM (2003) Shaping and stretching life by autophagy. Dev Cell 5:364–365

    PubMed  CAS  Google Scholar 

  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) C. elegans II. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Rieckher M, Kourtis N, Pasparaki A, Tavernarakis N (2009) Transgenesis in Caenorhabditis elegans. Method Mol Biol 561:21–39

    CAS  Google Scholar 

  • Rival T, Soustelle L, Strambi C, Besson MT, Iche M, Birman S (2004) Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol 14:599–605

    PubMed  CAS  Google Scholar 

  • Roudier N, Lefebvre C, Legouis R (2005) CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 6:695–705

    PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312

    PubMed  CAS  Google Scholar 

  • Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7:179–192

    PubMed  CAS  Google Scholar 

  • Samara C, Tavernarakis N (2008) Autophagy and cell death in Caenorhabditis elegans. Curr Pharm Des 14:1–19

    Google Scholar 

  • Samara C, Syntichaki P, Tavernarakis N (2008) Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ 15(1):105–112

    PubMed  CAS  Google Scholar 

  • Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O’Kane CJ, Schreiber SL, Rubinsztein DC (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338

    PubMed  CAS  Google Scholar 

  • Schmitz C, Kinge P, Hutter H (2007) Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proc Natl Acad Sci USA 104:834–839

    PubMed  CAS  Google Scholar 

  • Scott BA, Avidan MS, Crowder CM (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296:2388–2391

    PubMed  CAS  Google Scholar 

  • Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7:167–178

    PubMed  CAS  Google Scholar 

  • Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11

    PubMed  CAS  Google Scholar 

  • Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1:E12

    PubMed  Google Scholar 

  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4(2):176–184

    PubMed  CAS  Google Scholar 

  • Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci USA 92:10824–10830

    PubMed  CAS  Google Scholar 

  • Stefanis L (2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11:50–62

    PubMed  CAS  Google Scholar 

  • Sulston JE, Albertson DG, Thomson JN (1980) The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol 78:542–576

    PubMed  CAS  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    PubMed  CAS  Google Scholar 

  • Syntichaki P, Tavernarakis N (2002) Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep 3:604–609

    PubMed  CAS  Google Scholar 

  • Syntichaki P, Tavernarakis N (2003) The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 4:672–684

    PubMed  CAS  Google Scholar 

  • Syntichaki P, Tavernarakis N (2004) Genetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol Rev 84:1097–1153

    PubMed  CAS  Google Scholar 

  • Syntichaki P, Xu K, Driscoll M, Tavernarakis N (2002) Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419:939–944

    PubMed  CAS  Google Scholar 

  • Syntichaki P, Samara C, Tavernarakis N (2005) The vacuolar H+ -ATPase mediates intracellular acidification required for neurodegeneration in C. elegans. Curr Biol 15:1249–1254

    PubMed  CAS  Google Scholar 

  • Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131:703–712

    PubMed  CAS  Google Scholar 

  • Takacs-Vellai K, Vellai T, Puoti A, Passannante M, Wicky C, Streit A, Kovacs AL, Muller F (2005) Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol 15:1513–1517

    PubMed  CAS  Google Scholar 

  • Tavernarakis N, Driscoll M (2001) Degenerins. At the core of the metazoan mechanotransducer? Ann N Y Acad Sci 940:28–41

    PubMed  CAS  Google Scholar 

  • Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet 24:180–183

    PubMed  CAS  Google Scholar 

  • Thomas JH, Lockery S (2005) C. elegans – a practical approach: neurobiology. Oxford University press, Oxford

    Google Scholar 

  • Thumm M, Kadowaki T (2001) The loss of Drosophila APG4/AUT2 function modifies the phenotypes of cut and Notch signaling pathway mutants. Mol Genet Genomics 266:657–663

    PubMed  CAS  Google Scholar 

  • Toth ML, Simon P, Kovacs AL, Vellai T (2007) Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci 120:1134–1141

    PubMed  CAS  Google Scholar 

  • Varkey J, Chen P, Jemmerson R, Abrams JM (1999) Altered cytochrome c display precedes apoptotic cell death in Drosophila. J Cell Biol 144:701–710

    PubMed  CAS  Google Scholar 

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    PubMed  CAS  Google Scholar 

  • Venken KJ, Bellen HJ (2005) Emerging technologies for gene manipulation in Drosophila melanogaster. Nat Rev Genet 6:167–178

    PubMed  CAS  Google Scholar 

  • Walhout AJ, Sordella R, Lu X, Hartley JL, Temple GF, Brasch MA, Thierry-Mieg N, Vidal M (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287:116–122

    PubMed  CAS  Google Scholar 

  • Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9:65–76

    PubMed  Google Scholar 

  • Wang X, Yang C, Chai J, Shi Y, Xue D (2002) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298:1587–1592

    PubMed  CAS  Google Scholar 

  • Wang X, Wang J, Gengyo-Ando K, Gu L, Sun CL, Yang C, Shi Y, Kobayashi T, Shi Y, Mitani S, Xie XS, Xue D (2007) C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat Cell Biol 9:541–549

    PubMed  CAS  Google Scholar 

  • Wang X, Yang C, Xue D (unpublished results)

    Google Scholar 

  • Waterston R, Sulston J (1995) The genome of Caenorhabditis elegans. Proc Natl Acad Sci USA 92:10836–10840

    PubMed  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1983) Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 48(Pt 2):633–640

    PubMed  Google Scholar 

  • Wu M, Xu LG, Li X, Zhai Z, Shu HB (2002) AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623

    PubMed  CAS  Google Scholar 

  • Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS (1996) Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765

    PubMed  CAS  Google Scholar 

  • Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 31:957–971

    PubMed  CAS  Google Scholar 

  • Yamashima T (2000) Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 62:273–295

    PubMed  CAS  Google Scholar 

  • Yamashima T (2004) Ca2+-dependent proteases in ischemic neuronal death: a conserved ‘calpain-cathepsin cascade’ from nematodes to primates. Cell Calcium 36:285–293

    PubMed  CAS  Google Scholar 

  • Yanagisawa H, Miyashita T, Nakano Y, Yamamoto D (2003) HSpin1, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ 10:798–807

    PubMed  CAS  Google Scholar 

  • Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, Daugas E, Garrido C, Kroemer G, Wu H (2002) DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 9:680–684

    PubMed  CAS  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2007) Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 17:279–285

    PubMed  CAS  Google Scholar 

  • Yuste VJ, Moubarak RS, Delettre C, Bras M, Sancho P, Robert N, D’Alayer J, Susin SA (2005) Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ 12:1445–1448

    PubMed  CAS  Google Scholar 

  • Zhou Z, Mangahas PM, Yu X (2004) The genetics of hiding the corpse: engulfment and degradation of apoptotic cells in C. elegans and D. melanogaster. Curr Top Dev Biol 63:91–143

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contributions of numerous investigators, whom we did not include in this review. Work in the authors’ laboratory is funded by grants from EMBO and the EU 6th Framework Programme to N.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios Tavernarakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rieckher, M., Tavernarakis, N. (2010). Caspase-Independent Cell Death Mechanisms in Simple Animal Models. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73226-8_2

Download citation

Publish with us

Policies and ethics