Skip to main content

Glutamate Receptors and Their Association with Other Neurochemical Parameters in Excitotoxicity

  • Chapter
Neurochemical Aspects of Excitotoxicity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acarin L., Paris J., Gonzàlez B., and Castellano B. (2002). Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain. Glia 38:1–14.

    PubMed  Google Scholar 

  • Akbar M. T., Wells D. J., Latchman D. S., and De Belleroche J. (2001). Heat shock protein 27 shows a distinctive widespread spatial and temporal pattern of induction in CNS glial and neuronal cells compared to heat shock protein 70 and caspase 3 following kainate administration. Brain Res. Mol. Brain Res. 93: 148–163.

    PubMed  CAS  Google Scholar 

  • Al Noori S. and Swann J. W. (2000). A role for sodium and chloride in kainic acid-induced beading of inhibitory interneuron dendrites. Neuroscience 101:337–348.

    PubMed  CAS  Google Scholar 

  • Almeida A., Heales S. J., Bolanos J. P., and Medina J. M. (1998). Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res. 790:209–216.

    PubMed  CAS  Google Scholar 

  • Atlante A., Gagliardi S., Minervini G. M., Ciotti M. T., Marra E., and Calissano P. (1997). Glutamate neurotoxicity in rat cerebellar granule cells: A major role for xanthine oxidase in oxygen radical formation. J. Neurochem. 68:2038–2045.

    PubMed  CAS  Google Scholar 

  • Atlante A., Calissano P., Bobba A., Azzariti A., Marra E., and Passarella S. (2000). Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem. 275:37159–37166.

    PubMed  CAS  Google Scholar 

  • Beckman J. S., Ischiropoulos H., Zhu L., van der Woerd M., Smith C., Chen J., Harrison J., Martin J. C., and Tsai M. (1992). Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298:438–445.

    PubMed  CAS  Google Scholar 

  • Blanc E. M., Kelly J. F., Mark R. J., Wäg G., and Mattson M. P. (1997). 4-hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: Possible action on Gαq/11. J. Neurochem. 69:570–580.

    PubMed  CAS  Google Scholar 

  • Bolanos J. P., Almeida A., Stewart V., Peuchen S., Land J. M., Clark J. B., and Heales S. J. (1997). Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68:2227–2240.

    PubMed  CAS  Google Scholar 

  • Boonplueang R., Akopian G., Stevenson F. F., Kuhlenkamp J. F., Lu S. C., Walsh J. P., and Andersen J. K. (2005). Increased susceptibility of glutathione peroxidase-1 transgenic mice to kainic acid-related seizure activity and hippocampal neuronal cell death. Exp. Neurol. 192:203–214.

    PubMed  CAS  Google Scholar 

  • Boschert U., Merlo-Pich E., Higgins G., Roses A. D., and Catsicas S. (1999). Apolipoprotein E expression by neurons surviving excitotoxic stress. Neurobiol. Dis. 6:508–514.

    PubMed  CAS  Google Scholar 

  • Brorson J. R., Manzolillo P. A., and Miller R. J. (1994). Ca2+ entry via AMPA/KA receptor and excitotoxicity in cultured cerebellar Purkinje cells. J. Neurosci. 14:187–197.

    PubMed  CAS  Google Scholar 

  • Burdo J. R., Martin J., Menzies S. L., Dolan K. G., Romano M. A., Fletcher R. J., Garrick M. D., Garrick L. M., and Connor J. R. (1999). Cellular distribution of iron in the brain of the Belgrade rat. Neuroscience 93:1189–1196.

    PubMed  CAS  Google Scholar 

  • Camandola S., Poli G., and Mattson M. P. (2000). The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons. J. Neurochem. 74:159–168.

    PubMed  CAS  Google Scholar 

  • Castagne V., Gautschi M., Lefevre K., Posada A., and Clarke P. G. H. (1999). Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system. Prog. Neurobiol. 59:397–423.

    PubMed  CAS  Google Scholar 

  • Chau L. Y. and Tai H. H. (1981). Release of arachidonate from diglyceride in human platelet requires the sequential action of a diacylglycerol lipase and a monoglyceride lipase. Biochem. Biophys. Res. Commun. 100:1688–1695.

    PubMed  CAS  Google Scholar 

  • Ciani E. and Contestabile A. (1993). Ornithine decarboxylase is differentially induced by kainic acid during brain development in the rat. Brain Res. Dev. Brain Res. 71:258–260.

    PubMed  CAS  Google Scholar 

  • Codazzi F., Di Cesare A., Chiulli N., Albanese A., Meyer T., Zacchetti D., and Grohovaz F. (2006). Synergistic control of protein kinase Cγ activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons. J. Neurosci. 26:3404–3411.

    PubMed  CAS  Google Scholar 

  • Cohen M. R., Ramchand C. N., Sailer V., Fernandez M., McAmis W., Sridhara N., and Alston C. (1987). Detoxification enzymes following intrastriatal kainic acid. Neurochem. Res. 12:425–429.

    PubMed  CAS  Google Scholar 

  • Coyle J. T. (1983). Neurotoxic action of kainic acid. J. Neurochem. 41:1–11.

    PubMed  CAS  Google Scholar 

  • Cruise L., Ho L. K., Veitch K., Fuller G., and Morris B. J. (2000). Kainate receptors activate NF-κB via MAP kinase in striatal neurones. NeuroReport 11:395–398.

    PubMed  CAS  Google Scholar 

  • Davis K. E., Straff D. J., Weinstein E. A., Bannerman P. G., Correale D. M., Rothstein J. D., and Robinson M. B. (1998). Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J. Neurosci. 18:2475–2485.

    PubMed  CAS  Google Scholar 

  • de Vera N., Artigas F., Serratosa J., and Martìnez E. (1991). Changes in polyamine levels in rat brain after systemic kainic acid administration: relationship to convulsant activity and brain damage. J. Neurochem. 57:1–8.

    PubMed  Google Scholar 

  • Dell’Acqua M. L., Smith K. E., Gorski J. A., Horne E. A., Gibson E. S., and Gomez L. L. (2006). Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur. J. Cell Biol. 85:627–633.

    PubMed  CAS  Google Scholar 

  • Dietschy J. M. and Turley S. D. (2001). Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12:105–112.

    PubMed  Google Scholar 

  • Djebaili M., Rondouin G., Baille V., and Bockaert J. (2000). p53 and Bax implication in NMDA induced-apoptosis in mouse hippocampus. NeuroReport 11:2973–2976.

    PubMed  CAS  Google Scholar 

  • Djebaili M., De Bock F., Baille V., Bockaert J., and Rondouin G. (2002). Implication of p53 and caspase-3 in kainic acid but not in N-methyl-d-aspartic acid-induced apoptosis in organotypic hippocampal mouse cultures. Neurosci. Lett. 327:1–4.

    PubMed  CAS  Google Scholar 

  • Dobrowsky R. T. and Carter B. D. (1998). Coupling of the p75 neurotrophin receptor to sphingolipid signaling. Ann. N.Y Acad. Sci. 845:32–45.

    PubMed  CAS  Google Scholar 

  • Enslen H., Tokumitsu H., Stork P. J., Davis R. J., and Soderling T. R. (1996). Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc. Natl. Acad. Sci. USA 93:10803–10808.

    PubMed  CAS  Google Scholar 

  • Eriksson C., Winblad B., and Schultzberg M. (1998). Kainic acid-induced expression of interleukin-1 receptor antagonist mRNA in the rat brain. Brain Res. Mol. Brain Res. 58:195–208.

    PubMed  CAS  Google Scholar 

  • Fage D., Voltz C., Scatton B., and Carter C. (1992). Selective release of spermine and spermidine from the rat striatum by N-methyl-D-aspartate receptor activation in vivo. J. Neurochem. 58:2170–2175.

    PubMed  CAS  Google Scholar 

  • Faherty C. J., Xanthoudakis S., and Smeyne R. J. (1999). Caspase-3-dependent neuronal death in the hippocampus following kainic acid treatment. Brain Res. Mol. Brain Res. 70:159–163.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993). Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604:180–184.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    PubMed  CAS  Google Scholar 

  • Furukawa K. and Mattson M. P. (1998). The transcription factor NF-κB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-α in hippocampal neurons. J. Neurochem. 70:1876–1886.

    PubMed  CAS  Google Scholar 

  • Gall C. (1988). Seizures induce dramatic and distinctly different changes in enkephalin, dynorphin, and CCK immunoreactivities in mouse hippocampal mossy fibers. J. Neurosci. 8:1852–1862.

    PubMed  CAS  Google Scholar 

  • González M. I., Susarla B. T. S., and Robinson M. B. (2005). Evidence that protein kinase Cα interacts with and regulates the glial glutamate transporter GLT-1. J. Neurochem. 94:1180–1188.

    PubMed  Google Scholar 

  • Grilli M., Pizzi M., Memo M., and Spano P. (1996). Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science 274:1383–1385.

    PubMed  CAS  Google Scholar 

  • Guan X. L., He X., Ong W. Y., Yeo W. K., Shui G. H., and Wenk M. R. (2006). Non-targeted profiling of lipids during kainate-induced neuronal injury. FASEB J. 20:1152–1161.

    PubMed  CAS  Google Scholar 

  • Guglielmetti F., Rattray M., Baldessari S., Butelli E., Samanin R., and Bendotti C. (1997). Selective up-regulation of protein kinase C epsilon in granule cells after kainic acid-induced seizures in rat. Brain Res. Mol. Brain Res. 49:188–196.

    PubMed  CAS  Google Scholar 

  • Gulbins E. and Li P. L. (2006). Physiological and pathophysiological aspects of ceramide. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R11–R26.

    PubMed  CAS  Google Scholar 

  • Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., and Hediger M. A. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488.

    PubMed  CAS  Google Scholar 

  • Hanada K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632:16–30.

    PubMed  CAS  Google Scholar 

  • Hashimoto K., Watanabe K., Nishimura T., Iyo M., Shirayama Y., and Minabe Y. (1998). Behavioral changes and expression of heat shock protein hsp-70 mRNA, brain-derived neurotrophic factor mRNA, and cyclooxygenase-2 mRNA in rat brain following seizures induced by systemic administration of kainic acid. Brain Res. 804:212–223.

    PubMed  CAS  Google Scholar 

  • He X., Jenner A. M., Ong W. Y., Farooqui A. A., and Patel S. C. (2006). Lovastatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury. J. Neuropathol. Exp. Neurol. 65:652–663.

    PubMed  CAS  Google Scholar 

  • He X., Guan X. L., Ong W. Y., Farooqui A. A., and Wenk M. R. (2007). Expression, activity, and role of serine palmitoyltransferase in the rat hippocampus after kainate injury. J. Neurosci. Res. 85:423–432.

    PubMed  CAS  Google Scholar 

  • Hjelle O. P., Chaudhry F. A., and Ottersen O. P. (1994). Antisera to glutathione: characterization and immunocytochemical application to the rat cerebellum. Eur. J. Neurosci. 6:793–804.

    PubMed  CAS  Google Scholar 

  • Huang J. and Philbert M. A. (1995). Distribution of glutathione and glutathione-related enzyme systems in mitochondria and cytosol of cultured cerebellar astrocytes and granule cells. Brain Res. 680:16–22.

    PubMed  CAS  Google Scholar 

  • Huang E., Ong W. Y., and Connor J. R. (2004). Distribution of divalent metal transporter-1 in the monkey basal ganglia. Neuroscience 128:487–496.

    PubMed  CAS  Google Scholar 

  • Huang E., Ong W. Y., Go M. L., and Garey L. J. (2005). Heme oxygenase-1 activity after excitotoxic injury: immunohistochemical localization of bilirubin in neurons and astrocytes and deleterious effects of heme oxygenase inhibition on neuronal survival after kainate treatment. J. Neurosci. Res. 80:268–278.

    PubMed  CAS  Google Scholar 

  • Humpel C., Lippoldt A., Chadi G., Ganten D., Olson L., and Fuxe K. (1993). Fast and widespread increase of basic fibroblast growth factor messenger RNA and protein in the forebrain after kainate-induced seizures. Neuroscience 57:913–922.

    PubMed  CAS  Google Scholar 

  • Janaky R., Ogita K., Pasqualotto B. A., Bains J. S., Oja S. S., Yoneda Y., and Shaw C. A. (1999). Glutathione and signal transduction in the mammalian CNS. J. Neurochem. 73:889–902.

    PubMed  CAS  Google Scholar 

  • Jenkinson A. M., Collins A. R., Duthie S. J., Wahle K. W. J., and Duthie G. G. (1999). The effect of increased intakes of polyunsaturated fatty acids and vitamin E on DNA damage in human lymphocytes. FASEB J. 13:2138–2142.

    PubMed  CAS  Google Scholar 

  • Kim H., Bing G., Jhoo W., Ko K. H., Kim W. K., Suh J. H., Kim S. J., Kato K., and Hong J. S. (2000a). Changes of hippocampal Cu/Zn-superoxide dismutase after kainate treatment in the rat. Brain Res. 853:215–226.

    CAS  Google Scholar 

  • Kim H. C., Jhoo W. K., Kim W. K., Suh J. H., Shin E. J., Kato K., and Ho K. K. (2000b). An immunocytochemical study of mitochondrial manganese-superoxide dismutase in the rat hippocampus after kainate administration. Neurosci. Lett. 281:65–68.

    CAS  Google Scholar 

  • Kim H. C., Bing G., Kim S. J., Jhoo W. K., Shin E. J., Bok W. M., Ko K. H., Kim W. K., Flanders K. C., Choi S. G., and Hong J. S. (2002). Kainate treatment alters TGF-β3 gene expression in the rat hippocampus. Brain Res. Mol. Brain Res. 108:60–70.

    PubMed  CAS  Google Scholar 

  • Kim D., Kim E. H., Kim C., Sun W., Kim H. J., Uhm C. S., Park S. H., and Kim H. (2003). Differential regulation of metallothionein-I, II, and III mRNA expression in the rat brain following kainic acid treatment. NeuroReport 14:679–682.

    PubMed  CAS  Google Scholar 

  • Kim S. Y., Min D. S., Choi J. S., Choi Y. S., Park H. J., Sung K. W., Kim J., and Lee M. Y. (2004). Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures. J. Neuropathol. Exp. Neurol. 63:812–820.

    PubMed  CAS  Google Scholar 

  • Kim W. H., Choi C. H., Kang S. K., Kwon C. H., and Kim Y. K. (2005). Ceramide induces non-apoptotic cell death in human glioma cells. Neurochem. Res. 30:969–979.

    PubMed  CAS  Google Scholar 

  • Ko H. W., Park K. Y., Kim H., Han P. L., Kim Y. U., Gwag B. J., and Choi E. J. (1998). Ca2+ -mediated activation of c-Jun N-terminal kinase and nuclear factor κB by NMDA in cortical cell cultures. J. Neurochem. 71:1390–1395.

    PubMed  CAS  Google Scholar 

  • Kondo T., Kakegawa W., and Yuzaki M. (2005). Induction of long-term depression and phosphorylation of the δ2 glutamate receptor by protein kinase C in cerebellar slices. Eur. J. Neurosci. 22:1817–1820.

    PubMed  Google Scholar 

  • Kordas K. and Stoltzfus R. J. (2004). New evidence of iron and zinc interplay at the enterocyte and neural tissues. J. Nutr. 134:1295–1298.

    PubMed  CAS  Google Scholar 

  • Kotecha S. A. and MacDonald J. F. (2003). Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. In: Bradley R. J., Harris R. A., and Jenner P. (eds.), International Review of Neurobiology, Vol 54. International Review of Neurobiology Academic Press Inc, San Diego, pp. 53–108.

    Google Scholar 

  • Lauderback C. M., Hackett J. M., Huang F. F., Keller J. N., Szweda L. I., Markesbery W. R., and Butterfield D. A. (2001). The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1-42. J. Neurochem. 78:413–416.

    PubMed  CAS  Google Scholar 

  • Lee M. C., Ban S. S., Woo Y. J., and Kim S. U. (2001a). Calcium/calmodulin kinase II activity of hippocampus in kainate-induced epilepsy. J. Korean Med. Sci. 16:643–648.

    CAS  Google Scholar 

  • Lee M. C., Rho J. L., Kim M. K., Woo Y. J., Kim J. H., Nam S. C., Suh J. J., Chung W. K., Moon J. D., and Kim H. I. (2001b). c-JUN expression and apoptotic cell death in kainate-induced temporal lobe epilepsy. J. Korean Med. Sci. 16:649–656.

    CAS  Google Scholar 

  • Lerea L. S., Carlson N. G., and McNamara J. O. (1995). N-methyl-D-aspartate receptors activate transcription of c-fos and NGFI-A by distinct phospholipase A2-requiring intracellular signaling pathways. Molec. Pharmacol. 47:1119–1125.

    CAS  Google Scholar 

  • Leslie S. W., Brown L. M., Trent R. D., Lee Y. H., Morris J. L., Jones T. W., Randall P. K., Lau S. S., and Monks T. J. (1992). Stimulation of N-methyl-D-aspartate receptor-mediated calcium entry into dissociated neurons by reduced and oxidized glutathione. Mol. Pharmacol. 41:308–314.

    PubMed  CAS  Google Scholar 

  • Liang L. P., Ho Y. S., and Patel M. (2000). Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570.

    PubMed  CAS  Google Scholar 

  • Liu H. N., Larocca J. N., and Almazan G. (1999). Molecular pathways mediating activation by kainate of mitogen-activated protein kinase in oligodendrocyte progenitors. Brain Res. Mol. Brain Res. 66:50–61.

    PubMed  CAS  Google Scholar 

  • Liu W., Liu R., Schreiber S. S., and Baudry M. (2001). Role of polyamine metabolism in kainic acid excitotoxicity in organotypic hippocampal slice cultures. J. Neurochem. 79:976–984.

    PubMed  CAS  Google Scholar 

  • Lombardi G., Szekely A. M., Bristol L. A., Guidotti A., and Manev H. (1993). Induction of ornithine decarboxylase by N-methyl-D-aspartate receptor activation is unrelated to potentiation of glutamate excitotoxicity by polyamines in cerebellar granule neurons. J. Neurochem. 60:1317–1324.

    PubMed  CAS  Google Scholar 

  • Lu C., Chan S. L., Haughey N., Lee W. T., and Mattson M. P. (2001a). Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J. Neurochem. 78:577–589.

    CAS  Google Scholar 

  • Lu X. R., Ong W. Y., Halliwell B., Horrocks L. A., and Farooqui A. A. (2001b). Differential effects of calcium-dependent and calcium-independent phospholipase A2 inhibitors on kainate-induced neuronal injury in rat hippocampal slices. Free Radical Biol. Med. 30:1263–1273.

    CAS  Google Scholar 

  • Mahley R. W. (1988). Apoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630.

    PubMed  CAS  Google Scholar 

  • Manev H., Uz T., and Qu T. Y. (2000). 5-Lipoxygenase and cyclooxygenase mRNA expression in rat hippocampus: early response to glutamate receptor activation by kainate. Exp. Gerontol. 35:1201–1209.

    PubMed  CAS  Google Scholar 

  • Marchesini N. and Hannun Y. A. (2004). Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem. Cell Biol. 82:27–44.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem. 68:255–264.

    PubMed  CAS  Google Scholar 

  • Martins R. A., Silveira M. S., Curado M. R., Police A. I., and Linden R. (2005). NMDA receptor activation modulates programmed cell death during early post-natal retinal development: a BDNF-dependent mechanism. J. Neurochem. 95:244–253.

    PubMed  CAS  Google Scholar 

  • Matute C., Domercq M., and Sánchez-Gómez M. V. (2006). Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 53:212–224.

    PubMed  Google Scholar 

  • Maybodi L., Pow D. V., Kharazia V. N., and Weinberg R. J. (1999). Immunocytochemical demonstration of reduced glutathione in neurons of rat forebrain. Brain Res. 817:199–205.

    PubMed  CAS  Google Scholar 

  • McCusker R. H., McCrea K., Zunich S., Dantzer R., Broussard S. R., Johnson R. W., and Kelley K. W. (2006). Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons. J. Neuroimmunol. 179:186–190.

    PubMed  CAS  Google Scholar 

  • McInnis J., Wang C., Anastasio N., Hultman M., Ye Y., Salvemini D., and Johnson K. M. (2002). The role of superoxide and nuclear factor-κB signaling in N-methyl-D-aspartate-induced necrosis and apoptosis. J. Pharmacol. Exp. Ther. 301:478–487.

    PubMed  CAS  Google Scholar 

  • McNamara R. K. and Lenox R. H. (2000). Differential regulation of primary protein kinase C substrate (MARCKS, MLP, GAP-43, RC3) mRNAs in the hippocampus during kainic acid-induced seizures and synaptic reorganization. J. Neurosci. Res. 62:416–426.

    PubMed  CAS  Google Scholar 

  • McNamara R. K., Wees E. A., and Lenox R. H. (1999). Differential subcellular redistribution of protein kinase C isozymes in the rat hippocampus induced by kainic acid. J. Neurochem. 72:1735–1743.

    PubMed  CAS  Google Scholar 

  • Milatovic D., Gupta R. C., and Dettbarn W. D. (2002). Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 957:330–337.

    PubMed  CAS  Google Scholar 

  • Minami M., Kuraishi Y., and Satoh M. (1991). Effects of kainic acid on messenger RNA levels of IL-1β, IL-6, TNF-α and LIF in the rat brain. Biochem. Biophys. Res. Commun. 176:593–598.

    PubMed  CAS  Google Scholar 

  • Morais Cabral J. H., Atkins G. L., Sánchez L. M., López-Baodo Y. S., López-Oton C., and Sawyer L. (1995). Arachidonic acid binds to apolipoprotein D: Implications for the protein’s function. FEBS Lett. 366:53–56.

    PubMed  CAS  Google Scholar 

  • Moreno J. J. and Pryor W. A. (1992). Inactivation of alpha 1-proteinase inhibitor by peroxynitrite. Chem. Res. Toxicol. 5:425–431.

    PubMed  CAS  Google Scholar 

  • Moriguchi S., Han F., Nakagawasai O., Tadano T., and Fukunaga K. (2006). Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J. Neurochem. 97:22–29.

    PubMed  CAS  Google Scholar 

  • Morrison R. S., Wenzel H. J., Kinoshita Y., Robbins C. A., Donehower L. A., and Schwartzkroin P. A. (1996). Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J. Neurosci. 16:1337–1345.

    PubMed  CAS  Google Scholar 

  • Nadkarni D. V. and Sayre L. M. (1995). Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal. Chem. Res. Toxicol. 8:284–291.

    PubMed  CAS  Google Scholar 

  • Najm I., el-Skaf G., Massicotte G., Vanderklish P., Lynch G., and Baudry M. (1992). Changes in polyamine levels and spectrin degradation following kainate-induced seizure activity: effect of difluoromethylornithine. Exp. Neurol. 116:345–354.

    PubMed  CAS  Google Scholar 

  • Nakamura H., Hirabayashi T., Shimizu M., and Murayama T. (2006). Ceramide-1-phosphate activates cytosolic phospholipase A2α directly and by PKC pathway. Biochem. Pharmacol. 71:850–857.

    PubMed  CAS  Google Scholar 

  • Ong W. Y., Hu C. Y., Hjelle O. P., Ottersen O. P., and Halliwell B. (2000a). Changes in glutathione in the hippocampus of rats injected with kainate: depletion in neurons and upregulation in glia. Exp. Brain Res. 132:510–516.

    CAS  Google Scholar 

  • Ong W. Y., Lu X. R., Hu C. Y., and Halliwell B. (2000b). Distribution of hydroxynonenal-modified proteins in the kainate-lesioned rat hippocampus: evidence that hydroxynonenal formation precedes neuronal cell death. Free Radic. Biol. Med. 28:1214–1221.

    CAS  Google Scholar 

  • Ong W. Y., Goh E. W. S., Lu X. R., Farooqui A. A., Patel S. C., and Halliwell B. (2003). Increase in cholesterol and cholesterol oxidation products, and role of cholesterol oxidation products in kainate-induced neuronal injury. Brain Path. 13:250–262.

    CAS  Google Scholar 

  • Ong W. Y., He X., Chua L. H., and Ong C. N. (2006). Increased uptake of divalent metals lead and cadmium into the brain after kainite-induced neuronal injury. Exp. Brain Res. 173:468–474.

    PubMed  CAS  Google Scholar 

  • Oyama Y., Sadakata C., Chikahisa L., Nagano T., and Okazaki E. (1997). Flow-cytometric analysis on kainate-induced decrease in the cellular content of non-protein thiols in dissociated rat brain neurons. Brain Res. 760:277–280.

    PubMed  CAS  Google Scholar 

  • Paradis É., Clavel S., Julien P., Murthy M. R. V., de Bilbao F., Arsenijevic D., Giannakopoulos P., Vallet P., and Richard D. (2004). Lipoprotein lipase and endothelial lipase expression in mouse brain: regional distribution and selective induction following kainic acid-induced lesion and focal cerebral ischemia. Neurobiol. Dis. 15:312–325.

    PubMed  CAS  Google Scholar 

  • Parihar M. S. and Hemnani T. (2003). Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J. Biosci. 28:121–128.

    PubMed  CAS  Google Scholar 

  • Parihar M. S. and Hemnani T. (2004). Experimental excitotoxicity provokes oxidative damage in mice brain and attenuation by extract of Asparagus racemosus. J. Neural Transm. 111:1–12.

    PubMed  CAS  Google Scholar 

  • Park D. S., Obeidat A., Giovanni A., and Greene L. A. (2000). Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiol. Aging 21:771–781.

    PubMed  CAS  Google Scholar 

  • Patel S. C., Asotra K., Patel Y. C., McConathy W. J., Patel R. C., and Suresh S. (1995). Astrocytes synthesize and secrete the lipophilic ligand carrier apolipoprotein D. NeuroReport 6:653–657.

    PubMed  CAS  Google Scholar 

  • Pepicelli O., Fedele E., Bonanno G., Raiteri M., Ajmone-Cat M. A., Greco A., Levi G., and Minghetti L. (2002). In vivo activation of N-methyl-D-aspartate receptors in the rat hippocampus increases prostaglandin E2 extracellular levels and triggers lipid peroxidation through cyclooxygenase-mediated mechanisms. J. Neurochem. 81:1028–1034.

    PubMed  CAS  Google Scholar 

  • Perez Y., Morin F., Beaulieu C., and Lacaille J. C. (1996). Axonal sprouting of CA1 pyramidal cells in hyperexcitable hippocampal slices of kainate-treated rats. Eur. J. Neurosci. 8:736–748.

    PubMed  CAS  Google Scholar 

  • Pfrieger F. W. (2003). Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? BioEssays 25:72–78.

    PubMed  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    PubMed  CAS  Google Scholar 

  • Popovici T., Represa A., Crepel V., Barbin G., Beaudoin M., and Ben Ari Y. (1990). Effects of kainic acid-induced seizures and ischemia on c-fos-like proteins in rat brain. Brain Res. 536:183–194.

    PubMed  CAS  Google Scholar 

  • Pryor W. A. and Squadrito G. L. (1995). The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol 268:L699–L722.

    PubMed  CAS  Google Scholar 

  • Qi W., Reiter R. J., Tan D. X., Manchester L. C., Siu A. W., and Garcia J. J. (2000). Increased levels of oxidatively damaged DNA induced by chromium(III) and H2O2: protection by melatonin and related molecules. J. Pineal Res. 29:54–61.

    PubMed  CAS  Google Scholar 

  • Qin Z. H., Chen R. W., Wang Y., Nakai M., Chuang D. M., and Chase T. N. (1999). Nuclear factor kB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J. Neurosci. 19:4023–4033.

    PubMed  CAS  Google Scholar 

  • Radi R., Beckman J. S., Bush K. M., and Freeman B. A. (1991a). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266:4244–4250.

    CAS  Google Scholar 

  • Radi R., Beckman J. S., Bush K. M., and Freeman B. A. (1991b). Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:481–487.

    CAS  Google Scholar 

  • Reed L. J. and De Belleroche J. (1990). Induction of ornithine decarboxylase in cerebral cortex by excitotoxin lesion of nucleus basalis: association with postsynaptic responsiveness and N-methyl-D-aspartate receptor activation. J. Neurochem. 55:780–787.

    PubMed  CAS  Google Scholar 

  • Retz K. C. and Coyle J. T. (1982). Effects of kainic acid on high-energy metabolites in the mouse striatum. J. Neurochem. 38:196–203.

    PubMed  CAS  Google Scholar 

  • Rodríguez-Moreno A. and Lerma J. (1998). Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20:1211–1218.

    PubMed  Google Scholar 

  • Rossler O. G., Bauer I., Chung H. Y., and Thiel G. (2004). Glutamate-induced cell death of immortalized murine hippocampal neurons: neuroprotective activity of heme oxygenase-1, heat shock protein 70, and sodium selenite. Neurosci. Lett. 362:253–257.

    PubMed  CAS  Google Scholar 

  • Rothstein J. D. and Kuncl R. W. (1995). Neuroprotective strategies in a model of chronic glutamate-mediated motor neuron toxicity. J. Neurochem. 65:643–651.

    PubMed  CAS  Google Scholar 

  • Rusanescu G., Qi H., Thomas S. M., Brugge J. S., and Halegoua S. (1995). Calcium influx induces neurite growth through a Src-Ras signaling cassette. Neuron 15:1415–1425.

    PubMed  CAS  Google Scholar 

  • Sakhi S., Bruce A., Sun N., Tocco G., Baudry M., and Schreiber S. S. (1994). p53 induction is associated with neuronal damage in the central nervous system. Proc. Natl. Acad. Sci. USA 91:7525–7529.

    PubMed  CAS  Google Scholar 

  • Sandhya T. L., Ong W. Y., Horrocks L. A., and Farooqui A. A. (1998). A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.

    PubMed  CAS  Google Scholar 

  • Sato K. and Matsuki N. (2002). A 72 kDa heat shock protein is protective against the selective vulnerability of CA1 neurons and is essential for the tolerance exhibited by CA3 neurons in the hippocampus. Neuroscience 109:745–756.

    PubMed  CAS  Google Scholar 

  • Shoham S. and Ebstein R. P. (1997). The distribution of β-amyloid precursor protein in rat cortex after systemic kainate-induced seizures. Exp. Neurol. 147:361–376.

    PubMed  CAS  Google Scholar 

  • Siskind L. J. (2005). Mitochondrial ceramide and the induction of apoptosis. J. Bioenerg. Biomembr. 37:143–153.

    PubMed  CAS  Google Scholar 

  • Sohl G., Guldenagel M., Beck H., Teubner B., Traub O., Gutierrez R., Heinemann U., and Willecke K. (2000). Expression of connexin genes in hippocampus of kainate-treated and kindled rats under conditions of experimental epilepsy. Brain Res. Mol. Brain Res. 83:44–51.

    PubMed  CAS  Google Scholar 

  • Sola C., Tusell J. M., and Serratosa J. (1997). Calmodulin is expressed by reactive microglia in the hippocampus of kainic acid-treated mice. Neuroscience 81:699–705.

    PubMed  CAS  Google Scholar 

  • Sorger P. K. (1991). Heat shock factor and the heat shock response. Cell 65:363–366.

    PubMed  CAS  Google Scholar 

  • Soule J., Messaoudi E., and Bramham C. R. (2006). Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem. Soc. Trans. 34:600–604.

    PubMed  CAS  Google Scholar 

  • Sperk G. (1994). Kainic acid seizures in the rat. Prog. Neurobiol. 42:1–32.

    PubMed  CAS  Google Scholar 

  • Stein-Behrens B. A., Elliott E. M., Miller C. A., Schilling J. W., Newcombe R., and Sapolsky R. M. (1992). Glucocorticoids exacerbate kainic acid-induced extracellular accumulation of excitatory amino acids in the rat hippocampus. J. Neurochem. 58: 1730–1735.

    PubMed  CAS  Google Scholar 

  • Stoica B. A., Movsesyan V. A., Knoblach S. M., and Faden A. I. (2005). Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol. Cell Neurosci. 29:355–371.

    PubMed  CAS  Google Scholar 

  • Sun A. Y., Cheng Y., Bu Q., and Oldfield F. (1992). The biochemical mechanisms of the excitotoxicity of kainic acid. Free radical formation. Mol. Chem. Neuropathol. 17:51–63.

    PubMed  CAS  Google Scholar 

  • Tamagno E., Robino G., Obbili A., Bardini P., Aragno M., Parola M., and Danni O. (2003). H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. 180:144–155.

    PubMed  CAS  Google Scholar 

  • Tatsukawa T., Chimura T., Miyakawa H., and Yamaguchi K. (2006). Involvement of basal protein kinase C and extracellular signal-regulated kinase 1/2 activities in constitutive internalization of AMPA receptors in cerebellar Purkinje cells. J. Neurosci. 26:4820–4825.

    PubMed  CAS  Google Scholar 

  • Thorburne S. K. and Juurlink B. H. (1996). Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem. 67:1014–1022.

    PubMed  CAS  Google Scholar 

  • van der Brug M. P., Goodenough S., and Wilce P. (2002). Kainic acid induces 14-3-3 ζ expression in distinct regions of rat brain. Brain Res. 956:110–115.

    PubMed  Google Scholar 

  • Vance J. E., Pan D., Campenot R. B., Bussière M., and Vance D. E. (1994). Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J. Neurochem. 62:329–337.

    PubMed  CAS  Google Scholar 

  • Varga V., Jenei Z., Janaky R., Saransaari P., and Oja S. S. (1997). Glutathione is an endogenous ligand of rat brain N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Neurochem. Res. 22:1165–1171.

    PubMed  CAS  Google Scholar 

  • Verdaguer E., García-Jordà E., Canudas A. M., Domìnguez E., Jiménez A., Pubill D., Escubedo E., Camarasa Pallàs Mercè J., and Camins A. (2002). Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. NeuroReport 13:413–416.

    PubMed  CAS  Google Scholar 

  • Vezzani A., Civenni G., Rizzi M., Monno A., Messali S., and Samanin R. (1994). Enhanced neuropeptide Y release in the hippocampus is associated with chronic seizure susceptibility in kainic acid treated rats. Brain Res. 660:138–143.

    PubMed  CAS  Google Scholar 

  • Wang X. S., Ong W. Y., and Connor J. R. (2001). A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J. Neurocytol. 30:353–360.

    PubMed  Google Scholar 

  • Wang X. S., Ong W. Y., and Connor J. R. (2002). A light and electron microscopic study of divalent metal transporter-1 distribution in the rat hippocampus, after kainate-induced neuronal injury. Exp. Neurol. 177:193–201.

    PubMed  CAS  Google Scholar 

  • Wang J. Q., Arora A., Yang L., Parelkar N. K., Zhang G., Liu X., Choe E. S., and Mao L. (2005a). Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol. Neurobiol. 32:237–249.

    CAS  Google Scholar 

  • Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005b). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.

    CAS  Google Scholar 

  • Wang J. Q., Liu X., Zhang G., Parelkar N. K., Arora A., Haines M., Fibuch E. E., and Mao L. (2006). Phosphorylation of glutamate receptors: a potential mechanism for the regulation of receptor function and psychostimulant action. J. Neurosci. Res. 84:1621–1629.

    PubMed  CAS  Google Scholar 

  • Wang J. Q., Fibuch E. E., and Mao L. (2007). Regulation of mitogen-activated protein kinases by glutamate receptors. J. Neurochem. 100:1–11.

    PubMed  CAS  Google Scholar 

  • Weber G. F. (1999). Final common pathways in neurodegenerative diseases: regulatory role of the glutathione cycle. Neurosci. Biobehav. Rev. 23:1079–1086.

    PubMed  CAS  Google Scholar 

  • Wilson C. J., Finch C. E., and Cohen H. J. (2002). Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J. Am. Geriatr. Soc. 50:2041–2056.

    PubMed  Google Scholar 

  • Xia J., Chung H. J., Wihler C., Huganir R. L., and Linden D. J. (2000). Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28:499–510.

    PubMed  CAS  Google Scholar 

  • Yabuuchi K., Minami M., Katsumata S., and Satoh M. (1993). In situ hybridization study of interleukin-1β mRNA induced by kainic acid in the rat brain. Brain Res. Mol. Brain Res. 20:153–161.

    PubMed  CAS  Google Scholar 

  • Yoshikawa K., Kita Y., Kishimoto K., and Shimizu T. (2006). Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure - Dual phase regulation and differential involvement of COX-1 and COX-2. J. Biol. Chem. 281:14663–14669.

    PubMed  CAS  Google Scholar 

  • Zafra F., Castrén E., Thoenen H., and Lindholm D. (1991). Interplay between glutamate and γ-aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc. Natl. Acad. Sci. USA 88:10037–10041.

    Google Scholar 

  • Zaleska M. M. and Wilson D. F. (1989). Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J. Neurochem. 52:255–260.

    PubMed  CAS  Google Scholar 

  • Zheng W. H. and Quirion R. (2004). Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J. Neurochem. 89:844–852.

    PubMed  CAS  Google Scholar 

  • Zhu X. M. and Ong W. Y. (2004). Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J. Neurosci. Res. 77:402–409.

    PubMed  CAS  Google Scholar 

  • Ziegra C. J., Willard J. M., and Oswald R. E. (1992). Coupling of a purified goldfish brain kainate receptor with a pertussis toxin-sensitive G protein. Proc. Natl. Acad. Sci. USA 89:4134–4138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A., Ong, WY., Horrocks, L.A. (2008). Glutamate Receptors and Their Association with Other Neurochemical Parameters in Excitotoxicity. In: Neurochemical Aspects of Excitotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73023-3_6

Download citation

Publish with us

Policies and ethics