Skip to main content

Infinite Dimensional Mathematical Programming

  • Chapter
  • First Online:
Dynamic Optimization and Differential Games

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 135))

  • 2654 Accesses

Abstract

In this chapter we are concerned with the generalization of finite-dimensional mathematical programming to infinite-dimensional vector spaces. This topic is pertinent to dynamic optimization because dynamic optimization in continuous time de facto occurs in infinite-dimensional spaces since the variable x (t), even if x is a scalar, has an infinity of values for continuous \(t \in \left[t_0, t_f\right] \subseteq \mathfrak{R}^{1}_{+}\) where t f < t 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of References Cited and Additional Reading

  • Apostol, T. M. (1974). Mathematical Analysis. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Arrow, K. J. and A. C. Enthoven (1961). Quasi-concave programming. Econometrica 29, 779–800.

    Article  Google Scholar 

  • Bazaraa, M., H. Sherali, and C. Shetty (1993). Nonlinear Programming: Theory and Algorithms. New York: John Wiley.

    Google Scholar 

  • Berge, C. (1963). Topological Spaces. London: Oliver and Boyd.

    Google Scholar 

  • Berman, A. (1973). Cones, Matrices, and Mathematical Programming. New York: Springer-Verlag.

    Google Scholar 

  • Bressan, A. and B. Piccoli (2007). An Introduction to the Mathematical Theory of Control. Springfield, MO: American Institute of Mathematical Sciences.

    Google Scholar 

  • Bryson, A. E. and Y. C. Ho (1975). Applied Optimal Control. New York: Hemisphere.

    Google Scholar 

  • Budelis, J. J. and A. E. Bryson (1970). Some optimal control results for differential-difference systems. IEEE Transactions on Automatic Control 15, 237–241.

    Article  Google Scholar 

  • Canon, M., C. Cullum, and E. Polak (1970). Theory of Optimal Control and Mathematical Programming. New York: McGraw-Hill.

    Google Scholar 

  • Debnath, L. and P. Mikusinski (1999). Introduction to Hilbert Spaces with Applications. London: Academic Press.

    Google Scholar 

  • Fenchel, W. (1953). Convex Cones, Sets, and Functions. Princeton: Princeton Univesity Press.

    Google Scholar 

  • Girsanov, I. V. (1972). Lectures on Mathematical Theory of Extremum Problems. New York: Springer-Verlag.

    Google Scholar 

  • Guignard, M. (1969). Generalized kuhn-tucker conditions for mathematical programming problems in a banach space. SIAM Journal of Control 7, 232–241.

    Article  Google Scholar 

  • Lay, S. R. (1982). Convex Sets and Their Applications. New York: John Wiley.

    Google Scholar 

  • Luenberger, D. G. (1966). A generalized maximum principle. In A. Lavi and T. P. Vogl (Eds.), Recent Advances in Optimization Techniques. New York: John Wiley.

    Google Scholar 

  • Luenberger, D. G. (1969). Optimization by Vector Space Methods. New York: John Wiley.

    Google Scholar 

  • Minoux, M. (1986). Mathematical Programming: Theory and Algorithms. New York: John Wiley.

    Google Scholar 

  • Pervozvanskiy, A. A. (1967). Relationship between the basic theorems of mathematical programming and the maximum principle. Engineering Cybernetics 6, 11.

    Google Scholar 

  • Polak, E. (1973, April). An histrical survey of computational methods in optimal control. SIAM Review 15(2), 553–584.

    Article  Google Scholar 

  • Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko (1962). The Mathematical Theory of Optimal Processes. New York: Interscience.

    Google Scholar 

  • Ritter, K. (1967). Duality for nonlinear programming in a banach space. SIAM Journal on Applied Mathematics 15(2), 294–302.

    Article  Google Scholar 

  • Rockafellar, R. T. (1970). Convex Analysis. Princeton: Princeton University Press.

    Google Scholar 

  • Rudin, W. (1987). Real and Complex Analysis. New York: McGraw-Hill.

    Google Scholar 

  • Varaiya, P. (1967). Nonlinear programming in banach space. SIAM Journal on Applied Mathematics 15(2), 284–293.

    Article  Google Scholar 

  • Varaiya, P. P. (1965). Nonlinear programming and optimal control. Technical report, ERL Tech. Memo M-129. University of California, Berkeley.

    Google Scholar 

  • Wouk, A. (1979). A Course of Applied Functional Analysis. New York: John Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry L. Friesz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Friesz, T.L. (2010). Infinite Dimensional Mathematical Programming. In: Dynamic Optimization and Differential Games. International Series in Operations Research & Management Science, vol 135. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72778-3_4

Download citation

Publish with us

Policies and ethics