Skip to main content

Introduction

  • Chapter
  • First Online:
Dynamic Optimization and Differential Games

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 135))

  • 2697 Accesses

Abstract

In this book we present the theory of continuous-time dynamic optimization, covering the classical calculus of variations, the modern theory of optimal control, and their linkage to infinite-dimensional mathematical programming. We present an overview of the main classes of practical algorithms for solving dynamic optimization problems and develop some facility with the art of formulating dynamic optimization models. Upon completing our study of dynamic optimization, we turn to dynamic Nash games. Our coverage of dynamic games emphasizes continuous-time variational inequalities and subsumes portions of the classical theory of differential games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of References Cited and Additional Reading

  • Arrow, K. J. and M. Kurz (1970). Public Investment, the Rate of Return, and Optimal Fiscal Policy. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Bagchi, A. (1984). Stackelberg Differential Games in Economic Models. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Basar, T. and G. J. Olsder (1998). Dynamic Noncooperative Game Theory. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Bazaraa, M., H. Sherali, and C. Shetty (1993). Nonlinear Programming: Theory and Algorithms. New York: John Wiley.

    Google Scholar 

  • Bellman, R. E. (1957). Dynamic Programming. Princeton: Princeton University Press.

    Google Scholar 

  • Bernstein, D., T. L. Friesz, R. L. Tobin, and B. W. Wie (1993). A variational control formulation of the simultaneous route and departure-time equilibrium problem. Proceedings of the International Symposium on Transportation and Traffic Theory, 107–126.

    Google Scholar 

  • Bertsekas, D. and R. Gallager (1992). Data Networks. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Datta-Chaudhuri, M. (1967). Optimum allocation of investments and transportation in a two-region economy. In K. Shell (Ed.), Essays on the Theory of Optimal Economic Growth, pp. 129–140. MIT Press.

    Google Scholar 

  • Domazlicky, B. (1977). A note on the inclusion of transportation in models of the regional allocation of investment. Journal of Regional Science 17, 235–241.

    Article  Google Scholar 

  • Friesz, T., D. Bernstein, Z. Suo, and R. Tobin (2001). Dynamic network user equilibrium with state-dependent time lags. Networks and Spatial Economics 1(3/4), 319–347.

    Article  Google Scholar 

  • Friesz, T. and N. Kydes (2003). The dynamic telecommunications flow routing problem. Networks and Spatial Economics 4(1), 55–73.

    Article  Google Scholar 

  • Friesz, T. and J. Luque (1987). Optimal regional growth models: multiple objectives, singular controls, and sufficiency conditions. Journal of Regional Science 27, 201–224.

    Article  Google Scholar 

  • Friesz, T. and R. Mookherjee (2006). Solving the dynamic network user equilibrium problem with state-dependent time shifts. Transportation Research Part B 40(3), 207–229.

    Article  Google Scholar 

  • Friesz, T., R. Mookherjee, and M. Rigdon (2004). Differential variational inequalities with state-dependent time shifts and applications to differential games. In 11th International Symposium on Dynamic Games and Applications, Tucson.

    Google Scholar 

  • Friesz, T. L., D. Bernstein, T. Smith, R. Tobin, and B. Wie (1993). A variational inequality formulation of the dynamic network user equilibrium problem. Operations Research 41(1), 80–91.

    Article  Google Scholar 

  • Friesz, T. L., M. A. Rigdon, and R. Mookherjee (2006). Differential variational inequalities and shipper dynamic oligopolistic network competition. Transportation Research Part B 40, 480–503.

    Article  Google Scholar 

  • Hotelling, H. (1978). A mathemathical theory of population. Environment and Planning A 10, 1223–1239.

    Article  Google Scholar 

  • Intriligator, M. (1964). Regional allocation of investment: comment. Quarterly Journal of Economics 78, 659–662.

    Article  Google Scholar 

  • Isaacs, R. (1965). Differential Games. New York: Dover.

    Google Scholar 

  • McGill, J. and G. van Ryzin (1999). Revenue management: research overview and prospects. Transportation Science 33(2), 233–256.

    Article  Google Scholar 

  • Miller, T., T. L. Friesz, and R. L. Tobin (1996). Equilibrium Facility Location on Networks. New York: Springer-Verlag.

    Google Scholar 

  • Mookherjee, R. and T. Friesz (2008). Pricing, allocation, and overbooking in dynamic service network competition when demand is uncertain. Production and Operations Management 14(4), 1–20.

    Google Scholar 

  • Ohtsuki, Y. A. (1971). Regional allocation of public investment in an n-region economy. Journal of Regional Science 11, 225–233.

    Article  Google Scholar 

  • Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko (1962). The Mathematical Theory of Optimal Processes. New York: Interscience.

    Google Scholar 

  • Puu, T. (1989). Lecture Notes in Economics and Mathematical Systems. New York: Springer-Verlag.

    Google Scholar 

  • Puu, T. (1997). Mathematical Location and Land Use Theory; An Introduction. New York: Springer-Verlag.

    Google Scholar 

  • Rahman, M. (1963). Regional allocation of investment: an aggregative study in the theory of development programming. Quarterly Journal of Economics 77, 26–39.

    Article  Google Scholar 

  • Ramsey, F. P. (1928). A mathematical theory of saving. Economic Journal 38, 543–559.

    Article  Google Scholar 

  • Sakashita, N. (1967). Regional allocation of public investments. Papers, Regional Science Association 19, 161–182.

    Article  Google Scholar 

  • Sethi, S. P. and G. L. Thompson (1981). Optimal Control theory: Applications to Management Science. Boston: Martinus Nijhoff.

    Google Scholar 

  • Tait, K. (1965). Singular Problems in Optimal Control. Ph. D. thesis, Harvard University, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry L. Friesz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Friesz, T.L. (2010). Introduction. In: Dynamic Optimization and Differential Games. International Series in Operations Research & Management Science, vol 135. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72778-3_1

Download citation

Publish with us

Policies and ethics