Skip to main content

Spectral Tuning in Biology

  • Chapter
Photobiology

Abstract

Spectral tuning is a diverse topic, both with regard to mechanism and with regard to biological significance. We have touched upon a related topic already when dealing with quantum dots in Chapter 5. In organisms, spectral tuning can be achieved both by chemical means (choice of pigment) and by physical means. The latter aspect is treated towards the end of the chapter in a section on structural color. As for the functional aspect, spectral tuning has significance for photosynthesis, vision, bioluminescence, and coloration both for protection and signalling in various contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhoo, S.-H., Davis, S.D., Walker, J., Karniol, B. and Vierstra, R.D. (2001) Bacteriophytochromes are photochromic histidine kinasis using a biliverdin chromophore. Nature 414, 776–779.

    Article  PubMed  CAS  Google Scholar 

  • Björn, G.S. (1979) Action spectra for conversions of phycochrome b, a reversibly photochromic pigment in a blue-green alga, and its separation from other pigments. Physiol. Plant. 46, 281–286.

    Article  Google Scholar 

  • Björn, G.S. (1980) Photoreversibly photochromic pigments from blue-green algae (cyanobacteria). Diss. Lund University, CODEN LUNBDS/(NBFB-1009)/1–28/(1980).

    Google Scholar 

  • Björn, L.O. (1976) Why are plants green? Relationships between pigment absorption and photosynthetic efficiency. Photosynthetica 19, 121–129.

    Google Scholar 

  • Björn, L.O. (1979) Photoreversibly photochromic pigments in organisms: properties and roles in biological light perception. Quart. Revs. Biophys. 12, 1–23.

    Google Scholar 

  • Björn, L.O. (1985a) Varför håller växterna inte färgen? Forskning Framsteg, 85 (6), 40–46.

    Google Scholar 

  • Björn, L.O. (1985b) Växternas ljusperception. Svensk Bot. Tidskr. 79, 249–264.

    Google Scholar 

  • Björn, L.O. and Björn, G.S. (1980) Yearly review: Photochromic pigments and photoregulation in blue-green algae. Photochem. Photobiol. 32, 849–852.

    Google Scholar 

  • Björn, G.S., Braune, W. and Björn, L.O. (1985) Light-induced, dark reversible colour shift in petals of Phlox. Physiol. Plant. 64, 445–448.

    Article  Google Scholar 

  • Bowmaker, J.K., Heath, L.A., Wilkie, S.E. and Hunt, D.M. (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 37, 2183–2194.

    Article  PubMed  CAS  Google Scholar 

  • Britt, S.G., Feiler, R., Kirschfeld, K. and Zuker, C.S. (1993) Spectral tuning of rhodopsin and metarhodopsin in vivo. Neuron 11, 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Caveney, S. (1971) Cuticle reflectivity and optical activity in scarab beetles: The rôle of uric acid. Proc. R. Soc. London B 178, 205–225.

    CAS  Google Scholar 

  • Chittka, L. 1996. Does bee color vision predate the evolution of flower color? Naturwissenschaft 83, 136–138.

    Article  CAS  Google Scholar 

  • Chittka, L. and Menzel, R. (1992) The evolutionary adaptation of flower colors and the insect pollinators’s color vision. J. Comp. Physiol. A. 171, 171–181.

    Article  Google Scholar 

  • Chittka, L. and Dornhaus, A. (1999), Comparisons in physiology and evolution, and why bees can do the things they do. http://www.ciencia.cl/CienciaAlDia/volumen2/numero2/articulos/articulo5-eng.html.

    Google Scholar 

  • Chittka, L., Thomson, J.D. and Waser, N.M. (1999) Flower constancy, insect psychology, and plant evolution. Naturwiss. 86, 361–377.

    Article  CAS  Google Scholar 

  • Cinque, G, Croce, R. and Bassi, R. (2000) Absorption spectra of chlorophyll a and b in Lhcb protein environment. Photosynthesis Res. 64, 233–242.

    Article  CAS  Google Scholar 

  • Cronin, T.W., Caldwell, R.L. and Marshall, J. (2001) Sensory adaptation—tunable colour vision in a mantis shrimp. Nature 411, 547–548.

    Article  PubMed  CAS  Google Scholar 

  • Denton, E.J. and Land, M.F. (1971) Mechanism of reflection in silvery layers of fish and cephalopods. Proc. Roy. Soc. Lond. A 178, 43–61.

    CAS  Google Scholar 

  • Diakoff, S. and Scheibe, J. (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol. 51, 382–385.

    PubMed  CAS  Google Scholar 

  • Dominy, N.J. and Lucas, P.W. (2001) Ecological importance of trichromatic vision to primates. Nature 410, 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R.H., Partridge, J.C., Dulai, K., Hunt, D., Mullineaux, C.W., Tauber, A.Y. and Hynninen, P.H. (1998) Science 393, 423–424.

    Google Scholar 

  • Douglas, R.H., Partridge, J.C., Dulai, K.S., Hunt, D.M, Mullineaux, C.W. and Hynninen, P.H. (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacoseus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res. 39, 2817–2832.

    Article  PubMed  CAS  Google Scholar 

  • Fasick, J.I. and Robinson, P.R. (1998) Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry 37, 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Fasick, J.I. and Robinson, P.R. (2000) Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Visual Neurosci. 17, 781–788.

    Article  CAS  Google Scholar 

  • Fasick, J.I., Cronin, T.W., Hunt, D.M. and Robinson, P.R. (1998) The visual pigments of the bottlenose dolphin (Tursiops truncatus). Visual Neurosci. 15,643–651.

    Article  CAS  Google Scholar 

  • Fernandez, H.R.C. (1978) Visual pigments of bioluminescent and nonbioluminescent deep-sea fishes. Vision Sci. 19,589–592.

    Article  Google Scholar 

  • Figueiredo, P., Lima, J.C., Santos, H., Wigand, M.-C., Brouillard, M., Macanita, A.L and Pina, F. (1994) Photochromism of the synthetic 4’,7-dihydroxyflavylium chloride. J. Am. Chem. Soc. 116, 1249–1254.

    Article  CAS  Google Scholar 

  • Fox, D.L. (1976) Animal biochromes and structural colors. University of California Press, Berkeley.

    Google Scholar 

  • Frank, H.A., Bautista, J.A,, Josue, J.S. and Young, A.J. (2000) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39, 2831–2837.

    Article  PubMed  CAS  Google Scholar 

  • Fuad, N., Day, D.A., Ryrie, I.J. and Thorne, S.W. (1983) Photobiochem. Photobiophys. 5, 255–262.

    CAS  Google Scholar 

  • Fujimoto, K., Hasegawa, J., Hayashi, S., Kato, S. and Nakatsuji, H. (2005) Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study. Chem. Phys. Lett. 414, 239–242.

    Article  CAS  Google Scholar 

  • Fujita, Y. and Hattori, A. (1962) Photochemical interconversion between precursors of phycobilin chromoprotein in Tolypothrix tenuis. Plant Cell Physiol. 3, 209–220.

    CAS  Google Scholar 

  • Ghiradella, H. (1984) Structure of iridescent lepidopteran scales: Variations on several themes. Ann. Entomol. Soc. Am. 77,637–645.

    Google Scholar 

  • Ghiradella, H. (1985) Structure and development of iridescent lepidopteeran scales: The Papilionidae as a showcase family. Ann. Entomol. Soc. Am. 78, 252–264.

    Google Scholar 

  • Ghiradella, H. (1989) Structure and development of iridescent butterfly scales: Lattices and laminae. J. Morph. 202, 69–88.

    Article  Google Scholar 

  • Ghiradella, H. (1991) Light and color on the wing: Structural colors in butterflies and moths. Appl. Optics 30, 3492–3500.

    Google Scholar 

  • Ghiradella, H. (1994) Structure of butterfly scales: Patterning in an insect cuticle. Micr. Res. Tech. 27, 429–438.

    Article  CAS  Google Scholar 

  • Ghiradella, H. (1998) Hairs, bristles and scales. In: Harrison, F.W. and Locke, M. (eds) Microscopic anatomy of invertebrates, Vol. 11A Insecta. Wiley-Liss, New York, pp. 257–287.

    Google Scholar 

  • Gill, E.M. and Wittmershaus, B.P. (1999) Spectral resolution of low-energy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 through direct excitation. Photosynthesis Res. 61, 53–64.

    Article  CAS  Google Scholar 

  • Glazer, A.N. and Wedemayer, G.J. 1995. Cryptomonad biliproteins—an evolutionary perspective. Photosynthesis Res. 46, 93–105.

    Article  CAS  Google Scholar 

  • Goto, T. and Kondo, T. (1991) Structure and molecular stacking of anthocyanins—flower color variation. Angew. Chem. Int. Engl. 30, 17–33.

    Article  Google Scholar 

  • Gralak, B., Tayeb, G. and Enoch, S. (2001) Morpho butterfly wings color modelled with lamellar grating theory. Optics Express 9, 567–578.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, A.R., Bhaya, D. and He, Q. (2001) Tracking the ligh environment by cyanobacteria and the dynamic nature of light harvesting. J. Biol. Chem. 276, 11449–11452.

    Article  PubMed  CAS  Google Scholar 

  • Halldal. P. (1968) Photosyntheic capacities and photosynthetic action spectra of endozoic algae of the massive coral. Favia. Biol. Bull. 134, 411–424.

    Google Scholar 

  • Hart, N.S., Partridge, J.C., Bennett, A.T.D. and Cuthill, I.C. (2000) Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. J. Comp. Physiol. A, 186, 681–694.

    Article  PubMed  CAS  Google Scholar 

  • Herring (1994) Reflective systems in aquatic animals. Comp. Biochem. Physiol. 109A, 513–546.

    Google Scholar 

  • Herring, P. (2002) The biology of the deep ocean. Oxford University Press, Oxford.

    Google Scholar 

  • Hinton, H.E. and Jarman, G.M. (1972) Physiological color change in the Hercules beetle. Nature 238, 160–161.

    Article  Google Scholar 

  • Hinton, H.E. and Jarman, G.M. (1973) Physilogical color change in the elytra of the Hercules beetle, Dynastes hercules.J. Insect Physiol. 19, 533–549.

    Article  Google Scholar 

  • Holzwarth, A.R. (1991) Structure-function relationships and energy transfer in phycobiliprotein antennae. Physiol. Plant. 83, 518–528.

    Article  CAS  Google Scholar 

  • Huxley (1968) A theoretical treatment of the reflexion of light by multilayer structures. J. Exp. Biol., 48, 227–245.

    Google Scholar 

  • Isayama, T., Alexeev, D., Makino, C.L., Washington, I., Nakanishi, K., and Turro, N.J. (2006) An accessory chromophore in red vision. Nature 443, 649.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G.H. 1992. Ultraviolet vision in vertebrates. Am. Zool., 32,544–554.

    Google Scholar 

  • Jensen, P. and Bunker, P.R. (2000) Computational molecular spectroscopy. John Wiley and Sons, Hoboken, NJ.

    Google Scholar 

  • Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W. and Krauβ, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 nm resolution. Nature 411, 909–917.

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan, N.V., Dorra, D., Schweitzer, G., Beszmertnaya, I.N. and Holzwarth, A.R. (1997) Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry 36, 13830–13837.

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, D.M. and Grossman, A.R. (1996) Similarity of a chromatic adaptation sensor to phytochrome and to ethylene receptors. Science 273, 1409–1412.

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, D.M. and Grossman, A.R. (1997) New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J. Bacteriol. 179, 3914–3921.

    PubMed  CAS  Google Scholar 

  • Kehoe, D.M. and Grossman, A.R. (1998) Use of molecular genetics to investigate complementary chromatic adaptation: advances in transformation and complementation. Meth. Enzymol. 297, 279–290.

    CAS  Google Scholar 

  • Kehoe, D.M. and Gutu, A. (2006) Responding to color: the regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 57, 127–150.

    Article  PubMed  CAS  Google Scholar 

  • Kelber, A. (1999) Ovipositing butterflies use a red receptor to see green. J. Exp. Biol. 202, 2619–2630.

    PubMed  Google Scholar 

  • Kiang, N.Y., Siefert, J., Govindjee and Blankenship, R.E. (2007) Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7, 252–274.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, S, Yoshioka, S, Fujii, Y, and Okamoto, N. (2002) Photophysics of structural color in the Morpho butterflies. Forma 17, 103–121.

    Google Scholar 

  • Kinoshita, S., and Yoshioka, S. (Eds.) (2005) Structural colors in biological systems. Osaka University Press, Osaka.

    Google Scholar 

  • Kleinschmidt, J. and Harosi, F. (1992) Proc. Natl. Acad. Sci USA, 89, 9181–9185.

    Article  PubMed  CAS  Google Scholar 

  • Knipp, B., Müller, M., Metzler-Nolte, N., Balaban, T.S., Braslavsky, S.E. and Schaffner, K. (1998) NMR verification of helical conformations of phycocyanobilin in organic solvents. Helv. Chim. Acta 81, 881–888.

    Article  CAS  Google Scholar 

  • Knuttel, H. and Fiedler, K. (2001) Host-plant derived variation in ultraviolet wing-patterns influences mate selection by male butterflies. J. Exp. Biol. 204, 2447–2459.

    PubMed  CAS  Google Scholar 

  • Kochendoerfer, G.G., Lin, S.W., Sakmar, T.P. and Mathies, R.A. (1999) How color visual pigments are tuned. Trends Biochem. Sci. 24, 300–305.

    Article  PubMed  CAS  Google Scholar 

  • Kochubey, S.M. and Samokhval, E.G. (2000) Long-wavelength chlorophyll forms in Photosystem I from pea thylakoids. Photosynthesis Res. 63, 281–290.

    Article  CAS  Google Scholar 

  • Koehne, B., and Trissl, H.W. (1998) The cyanobacterium Spirulina platensis contains a long wavelength-absorbing pigment C-738 (F-760(77K)) at room temperature. Biochemistry 37, 5494–5500.

    Article  PubMed  CAS  Google Scholar 

  • Koehne, B., Elli, G., Jennings, R.C., Wilhelm, C. and Trissl, H.-W. (1999) Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim.Biophys. Acta 1412, 94–107.

    CAS  Google Scholar 

  • Land, E. (1964) The retinex theory of color vision. Sci. Am. 108–128.

    Google Scholar 

  • Land, M.F. (1966) A multilayer interference reflector in the eye of the scallop, Pecten maximus. J. Exp. Biol. 45, 433–447.

    Google Scholar 

  • Land, M.F. and Nilsson D.-E. (2002) Animal eyes. Oxford University Press, Oxford.

    Google Scholar 

  • Large, M.C.J., McKenzie, D.R., Parker, A.R., Steel, B.C., Ho, K., Bosi, S.G., Nicorovici, N. and McPhedran, R.C. (2001) The mechanism of light reflectance in silverfish. Proc. R. Soc. Lond. A 457, 511–518.

    Google Scholar 

  • Lazaroff, N. and Schiff (1962) Action spectrum for developmental photoinduction of the blue-green alga Nostoc muscorum. Science 137, 603–604.

    Article  PubMed  Google Scholar 

  • Linanto, J. and Korppi-Tommola, J. (2000) Spectroscopic properties of Mg-chlorin, Mg-porphin and chlorophylls a,b,c(1), c(2), c(3) and d studied by semi-empirical and ab initio MO/CI methods. Phys. Chem. Chemical Phys. 2, 4962–4970.

    Google Scholar 

  • Lucas, P.W., Darvell, B., Lee. P.K.D., Yuen, T.D.B. and Choong, M.F. (1998) Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichomatic colour vision. Folia Primatol. 69, 139–152.

    Article  PubMed  CAS  Google Scholar 

  • Lunau, K. (1996) Unidirectionality of floral colour changes. Plant Systematics Evol. 200, 125–140.

    Article  Google Scholar 

  • Lunau, K. (2004) Adaptive radiation and coevolution - pollination biology case studies. Organisms Diversity Evol. 4, 207–224.

    Article  Google Scholar 

  • Lythgoe, J.N. (1984) Visual pigments and environmental light. Vision Sci. 24, 1539–1550.

    Article  CAS  Google Scholar 

  • MacColl, R. (1998) Cyanobacterial phycobilisomes. J. Struct. Biol. 124,311–334.

    CAS  Google Scholar 

  • Maier, EJ. and Bowmaker, J.K. (1993) Color-vision in the passeriform bird, Leiothrix lutea—correlation of visual pigment absorbancy and oil droplet transmission with spectral sensitivity.J. Comp. Physiol. A 172, 295–301.

    Article  Google Scholar 

  • Makino, C.L., Groesbeek, M., Lugtenburg, J. and Baylor, D.A. (1999) Spectral tuning in salamander visual pigments studied with dehydroretinal chromophores. Biophys. J. 77,1024–1035.

    PubMed  CAS  Google Scholar 

  • Marshall, J. and Oberwinkler, J. (1999) The colourful world of the mantis shrimp. Nature 401, 873–874.

    Article  PubMed  CAS  Google Scholar 

  • Mason, CW (1926) Structural colors in insects. I. J. Phys. Chem. 30, 383–395.

    Article  CAS  Google Scholar 

  • Mason, CW (1927a) Structural colors in insects. II. J. Phys. Chem. 31, 321–354.

    Article  CAS  Google Scholar 

  • Mason, CW (1927b) Structural colors in insects. III. J. Phys. Chem. 31, 1856–1872.

    Article  CAS  Google Scholar 

  • Matsui, S., Seidou, M., Uchiyama, I., Sekiya, N., Hiraki, K., Yoshihara, K. and Kito, Y. (1988) 4-hydroxyretinal, a new visual pigment chromophore found in the bioluminescent squid, Watasenia scintillans. Biochim. Biophys. Acta, 966, 370–374.

    PubMed  CAS  Google Scholar 

  • Mauzerall, D. (1976) Chlorophyll and photosynthesis. Pil. Trans. Roy. Soc. Lond. B 273, 287–294.

    Article  CAS  Google Scholar 

  • Miller, W.H., Mø ller, A.R. and Bernhard, C.G. (1966) The corneal nipple array. In: C.G. Bernhard (Ed.), The functional organgization of the compound eye. Pergamon Press, Oxford, pp. 21–33.

    Google Scholar 

  • Morehouse, N.I., Vukusic, P, and Rutkowski, R. (2007) Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc. Roy. Soc. London B 274, 359–366.

    Article  CAS  Google Scholar 

  • Morris, R.B. (1975) Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak. Proc. R. Soc. Entomology A 48, 149–154.

    Google Scholar 

  • Murrell, J.N. (1963) The theory of the electronic spectra of organic molecules. Methuen, London. (German edition Elektronenspektren organischer Moleküle, Bibliographisches Institut Mannheim 1967).

    Google Scholar 

  • Nathans, J. (1990) Determinants of visual pigment absorbance: Identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29, 9746–9752.

    Article  PubMed  CAS  Google Scholar 

  • Nathans, J. (1992) Rhodopsin: Structure, function, and genetics. Biochemistry 31, 4923–4931.

    Article  PubMed  CAS  Google Scholar 

  • Neitz, M., Neitz, J. and Jacobs, G.H. (1991) Spectral tuning of pigments underlying red-green color vision. Science 252, 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Neitz. J., Neitz, M. and Jacobs, G.H. (1993) More than three different cone pigments among people with normal color vision. Vision Res. 33, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Neville, A.C. (1993) Biology of the Fibrous Composites. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ohad, I., Clayton, R.K. and Bogorad, L. (1979) Photoreversible absorption changes in solutions of allophycocyanin purified from Fremyella diplosiphon: Temperature dependence and quantum efficiency. Proc. Natl. Acad. Sci. USA 76, 5655–5659.

    Article  PubMed  CAS  Google Scholar 

  • Ohki, K. and Fujita, Y. (1978) Photocontrol of phycoerythrin formation in the blue-green alga Tolypothrix tenuis growing in the dark. Plant Cell Physiol. 19, 7–15.

    CAS  Google Scholar 

  • Öquist, G. (1969) Adaptations in pigment composition and photosynthesis by far red radiation in Chlorella pyrenoidosa. Physiol. Plant. 22, 516–528.

    Article  Google Scholar 

  • Osorio, D. and Vorobyev, M. (1996) Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. Lond. B 263, 593–599.

    Article  CAS  Google Scholar 

  • Osorio, D., Marshall, N.J. and Cronine, T.W. (1997) Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vision Res. 37, 3299–3309.

    Article  PubMed  CAS  Google Scholar 

  • PÅlsson, L.O., Flemming, C., Gobels, B., van Grondelle, R., Dekker, J.P. and Schlodder, E. (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys. J. 74, 2611-2622.

    Article  PubMed  Google Scholar 

  • Parker, A.R. (1998) The diversity and implications of animal structural colours. J. Exp. Biol. 201, 2343–2347.

    PubMed  CAS  Google Scholar 

  • Parker, A.R. (1999) Light-reflection strategies. Am. Sci. 87, 248–255.

    Article  Google Scholar 

  • Parker, A.R. (2000) 515 million years of structural color. J. Opt. A: Pure Appl. Opt. 2, R15-R28.

    Article  Google Scholar 

  • Parker, A.R., McPhedran, R.C., McKenzie, D.R., Botten, L.C., and Nicorovici, N.-A. P. (2001) Aphrodite’s iridescence. Nature 409, 36–37.

    Article  PubMed  CAS  Google Scholar 

  • Parker, A.R., Welch, V.L., Driver, D., and Martini, N. (2003) An opal analogue discovered in a weevil. Nature 426, 786–787.

    Article  PubMed  CAS  Google Scholar 

  • Peichl. L., Behrmann, G. and Kröger, H.H. (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur. J. Neurosci. 13, 1520–1528.

    Article  PubMed  CAS  Google Scholar 

  • Peitsch, D., Fietz, A., Hertel, H., Desouza, J., Ventura, D.F. and Menzel, R. (1992) The spectral input systems of hymenopteran insects and their receptor-based color-vision. J. Comp. Physiol. A Sensory Neural Behav. Physiol. 170, 23–40.

    CAS  Google Scholar 

  • Pfaff, G. and Reynders, P. (1999) Angle-dependent optical effects from submicron structures of films and pigments. Chem. Rev. 99, 1963–1981.

    Article  PubMed  CAS  Google Scholar 

  • Polívka, T., Herek, J.L., Zigmantas, D., Åkerlund, H.E. and Sundström, V. (1999) Direct observation of the (forbidden) S-1 state in carotenoids. Proc. Natl Acad. Sci. USA 96, 4914–4917.

    Article  PubMed  Google Scholar 

  • Prum, R.O. (2006) Anatomy, physics and evolution of structural colors In: G.E. Hill and K.J. McGraw (Eds.), Bird coloration, Vol. 1, Mechanisms and measurements. Harvard University Press, Cambridge, MA, pp. 295–353.

    Google Scholar 

  • Regan, B.C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P. and Mollon, P. (1998) Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res. 38, 3321–3327.

    Article  PubMed  CAS  Google Scholar 

  • Ritz, T., Damjanovic’, A., Schulten, K, Zhang, J.P. and Koyama, Y. (2000) Efficient light harvesting through carotenoids. Photosynthesis Res. 66, 125–144.

    Article  CAS  Google Scholar 

  • Robinson, B.L. and Miller, J.N. (1970) Photomorphogenesis in the blue-green alga Nostoc commune. Physiol. Plantarum 23, 461–472.

    Article  Google Scholar 

  • Rutkowski, R.L., Macedonia, J.M., Morehouse, N., and Taylor-Taft, L. (2005) Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc. R. Soc. London B 272, 2329–2335.

    Article  CAS  Google Scholar 

  • Scharnagl, C. and Fischer, S.F. (1993) Reversible photochemistry in the a-subunit of phycoerythrocyanin: Characterisation of chromophore and protein by molecular dynamics and quantum chemical calculations. Photochem. Photobiol. 57, 63–70.

    CAS  Google Scholar 

  • Scheer, H. and Kufer, W. (1977) Studies on plant bile pigments, IV: Conformational studies on C-phycocyanin from Spirulina platensis. Z. Naturforsch. 32c,513–519.

    CAS  Google Scholar 

  • Scheibe, J. (1972) Photoreversible pigment: occurrence in a blue-green alga. Science 1976, 1037–1039.

    Article  Google Scholar 

  • Schelvis, J.P.M, van Noort, P.I., Aartsma, P.I. and van Gorkom, H.J. (1994) Energy transfer, charge separation and pigment arrangement in the reaction center of photosystem II. Biochim. Biophys. Acta 1184, 242–250.

    Article  CAS  Google Scholar 

  • Schneeweis, D.M. and Green, D.G. (1995) Spectral properties of turtle cones. Visual Neurosci. 12, 333–344.

    CAS  Google Scholar 

  • Schulten, K. and Karplus, M. (1972) On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. 14, 305–309.

    Article  CAS  Google Scholar 

  • Seki, T. and Vogt, K. (1998) Evolutionary aspects of the diversity of visual pigment chromophores in the class Insecta. Comp. Biochem. Physiol. B 119, 53–64.

    Google Scholar 

  • Sharpe, L.T., Stockman, A., Jägle, H. and Nathans, J. (1999) Opsin genes, cone photopigments, color vision, and color blindness. In: K.Gegenfurtner, and L.T. Sharpe (Eds.), Color vision: from genes to perception. Cambridge University Press, New York.

    Google Scholar 

  • Shubin, V.V., Murthy, S.D.S, Karapetyan, N.V. and Mohanty, P.S. (1991) Origin of the 77-K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim. Biophys. Acta, 1060, 28–36.

    Article  CAS  Google Scholar 

  • Siitari, H., Honkavaara, J. and Viitala, J. (1999) Ultraviolet reflection of berries attracts foraging birds. A laboratory study with redwings (Turdus iliacus) and bilberries (Vaccinium myrtillus). Proc. R. Soc. Lond. B 266, 2125–2129.

    Article  Google Scholar 

  • Srinivasarao, M. (1999) Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935–1961.

    Article  PubMed  CAS  Google Scholar 

  • Stavenga, D.G., Foletti, S., Palasantzas, G., and Arikawa, K. (2006) Light on the moth-eye corneal nipple array of butterflies. Proc. R. Soc. London B 273, 661–667.

    Article  CAS  Google Scholar 

  • Stavenga, D.G., Giraldo, M.A. and Hoenders, B.J. (2006) Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies. Opt. Expr. 14, 4880–4890.

    Article  CAS  Google Scholar 

  • Stomp, M., Huisman, J., Stal, L.J., and Matthijs, H.C.P. (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282.

    PubMed  CAS  Google Scholar 

  • Tanimura, T., Isono, K. and Tsukahara, Y. (1986) 3-hydroxyretinal as a chromophore of Drosophila melanogaster visual pigment analyzed by high-pressure liquid-chromatography. Photochem. Photobiol. 43, 225–228.

    CAS  Google Scholar 

  • Thrash, R.J., Fang, H.L.-B. and Leroi, G.E. (1979) On the role of forbidden low-lying excited states of light-harvesting carotenoids in energy transfer in photosynthesis. Photochem. Photobiol. 29, 1049–1050.

    CAS  Google Scholar 

  • Vogelmann, T.C. and Scheibe, J. 1978. Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143, 233–239.

    Article  CAS  Google Scholar 

  • Vogt, K. (1983) Is the fly visual pigment a rhodopsin? Zschr Naturforsch. C, 38, 329–333.

    Google Scholar 

  • Vogt, K. and Kirschfeld, K. (1984) Chemical identity of the chromophores of fly visual pigment. Naturwiss. 71, 211–213.

    Article  CAS  Google Scholar 

  • Vorobyev, M., Osorio, D., Bennet, A.T.D., Marshall, N.J. and Cuthill, I.C. (1998) Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A Sensory Neural Behav. Physiol. 183, 621–633.

    Article  CAS  Google Scholar 

  • Vukusic, P., Sambles, J.R., Lawrence, C.R. and Wootton, R.J. (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266,1403–1411.

    Article  Google Scholar 

  • Vukusic, P., Sambles, J.R., and Ghiradella, H. (2000a) Optical classification of microstructure in butterfly wing scales. Photonics Sci. News 6, 61–66.

    Google Scholar 

  • Vukusic, P., Sambles, J.R. and Lawrence, C.R. (2000b) Colour mixing in wing scales of a butterfly. Nature 404, 457.

    Google Scholar 

  • Vukusic, P., and Hooper, I. (2005) Directionally controlled fluorescence emission in butterflies. Science 310, 1151.

    Article  PubMed  CAS  Google Scholar 

  • Vukusic, P., Hallam, B., and Noyes, J. (2007) Brilliant whiteness in ultrathin beetle scales, Science 315, 348.

    Article  PubMed  CAS  Google Scholar 

  • Wald, G. and Brown, P.K. (1958) Human rhodopsin. Science 127, 222–226.

    Article  PubMed  CAS  Google Scholar 

  • Warrant, E. (2000) The eyes of deep-sea fishes and the changing nature of visual scenes with depth. Phil. Trans. R. Soc. Lond. 355, 1155–1159.

    Article  CAS  Google Scholar 

  • Weiss, C., Jr. (1972) The pi electron structure and absorption spectra of chlorophylls in solution. J. Mol. Spectrosc. 44, 37–80.

    Article  CAS  Google Scholar 

  • Welch, V.L., Vigneron, J.P. and Parker, A.R. (2005) The cause of colouration in the ctenophore, Beroë cucumis. Curr. Biol. 15, R985-R986.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, S. (1997) Molecular genetic basis of adaptive selection: Examples from color vision in vertebrates. Annu. Rev. Genet. 31, 315-336.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, S., Radlwimmer, F.B. and Blow, N.S. (2000) Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc. Natl Acad. Sci. USA 97, 7366-7371.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, A. (2002) Antireflection of butterfly and moth wings through microstructure. Forma, 17,75–89.

    Google Scholar 

  • Yoshioka, S., Nakamura, E, and Kinoshita, S. (2007) Origin of two-color iridescence in rock dove’s feather. J. Phys. Soc. Japan 76, 013801-1–013801-4.

    Article  CAS  Google Scholar 

  • Zhao, K.H. and Scheer, H. (1995) Type-I and Type-II reversible photochemistry of phycoerythrocyanobilin alpha-subunit from Mastigocladus laminosus both involve Z-isomerisation, E-isomerisation of phycoviolobilin chromophore and are controlled by sulphydryls in apoprotein. Biochim. Biophys. Acta 1228, 244–253.

    Article  Google Scholar 

  • Zhao, K.H., Haessner, R., Cmiel, E. and Scheer, H. (1995) Type I reversible photochemistry of phycoerythrocyanin involves Z/E-isomerisation of a-84 phycoviolobilin chromophore. Biochim. Biophys. Acta 1228, 235–243.

    Article  Google Scholar 

  • Zouni, A., Witt, H.T., Kern, J, Fromme, P, Krauβ, N., Saenger, W. and Orth, P. (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743.

    Article  PubMed  CAS  Google Scholar 

  • Zucchelli, G., Jennings, R.C. and Garlaschi, F.M. (1990) The presence of long-wavelength chlorophyll a spectral forms in the light-harvesting chlorophyll a/b protein complex II. J. Photochem. Photobiol. B, Biol. 6, 381–394.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Björn, L.O., Ghiradella, H. (2008). Spectral Tuning in Biology. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_9

Download citation

Publish with us

Policies and ethics