Skip to main content

Distribution of D1-Like and D2 Receptors in the Monkey Brain: Implications for Cognitive Function in Schizophrenia

  • Chapter
Monoaminergic Modulation of Cortical Excitability

Dopamine D1-like (D1 and D5) and D2 (D2S and D2L) receptors are widely distributed in neuronal circuits of the primate dorsolateral prefrontal cortex (dlPFC) which is critically implicated in cognitive function such as working memory. Working memory is dependent on normal dopaminergic function in the dlPFC and consistently impaired in schizophrenia. Therefore, D1 and D2 receptors are considered to be good drug targets for improvement of cognitive function and treatment of psychosis in schizophrenia. Current data show that D1 and selective drug targeting both of these receptors may be optimal for improvement of cognitive function in schizophrenia. The differential distribution and function of short (D2S) and long (D2L) isoforms of the D2 receptor represent an opportunity to develop novel antipsychotics with improved efficacy and side effects. D5 receptors have complementary localization and function in the brain and therefore a nonbehaviors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi-Dargham, A., Mawlawi, O., Lomberdo, I., Gil, R., Martinez, D., Huang, Y., Hwang, D.R., Keilp, J., Kochan, L., Van Heertum, R., Gorman, J.M. and Laruelle, M. (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci. 22, 3708-3719.

    CAS  PubMed  Google Scholar 

  • Agnati, L.F., Fuxe, K., Nicholson, C. and Sykova, E. (2000) Volume Transmission Revisited. Progress in Brain Research. Vol. 125, Elsevier, Amsterdam.

    Google Scholar 

  • Bergson, C., Mrzljak, L., Smiley, J.F., Pappy, M., Levenson, R. and Goldman-Rakic, P.S. (1995) Regional, cellular and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J. Neurosci. 15, 7821-7836.

    CAS  PubMed  Google Scholar 

  • Bordelon, J.R., Khan, Z.U. and Muly, E.C. (2006) D5 receptors are found with D1 in pyrami-dal cell spines of primate prefrontal cortex. Soc. Neurosci. Poster 332.18.

    Google Scholar 

  • Bunzow, J.R., Van Tol, H.H.M., Grandy, D.K., Albert, P., Salon, J., Christie, M., Machida, C.A., Neve, K.A. and Civelli, O. (1988) Cloning and expression of a rat D2 dopamine receptor. Nature 336, 783-787.

    Article  CAS  PubMed  Google Scholar 

  • Castner, S.A. and Goldman-Rakic, P.S. (2004) Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J. Neurosci. 24, 1446-1450.

    Article  CAS  PubMed  Google Scholar 

  • Castner, S.A., Williams, G.V. and Goldman-Rakic, P.S. (2000) Reversal of antipsychotic induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287, 2020-2022.

    Article  CAS  PubMed  Google Scholar 

  • Castner, S.A., Goldman-Rakic, P.S. and Williams, G.V. (2004) Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacol-ogy 174, 111-125.

    CAS  Google Scholar 

  • Centonze, D., Grande, C., Saulle, E., Martin, A.B., Gubellini, P., Pavon, N., Pisani, A., Bernardi, G., Moratalla, R. and Calabresi, P. (2003) Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci. 23, 8506-8512.

    CAS  PubMed  Google Scholar 

  • Centonze, D., Usiello, A., Costa, C., Picconi, B., Erbs, E., Bernardi, G., Borrelli, E. and Calabresi, P. (2004) Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. J. Neurosci. 24, 8214-8222.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Greengard, P. and Yan, Z. (2004) Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 101, 2596-2600.

    Article  CAS  PubMed  Google Scholar 

  • Ciliax, B.J., Nash, N., Heilman, C., Sunahara, R., Harney, A., Tiberi, M., Rye, D.B., Caron, M.G., Niznik, H.B. and Levey, A.L. (2000) Dopamine D5 receptor immunolocalization in rat and monkey brain. Synapse 37, 125-145.

    Article  CAS  PubMed  Google Scholar 

  • Gao, W., Krimer, L.S. and Goldman-Rakic, P.S. (2001) Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc. Natl. Acad. Sci. U.S.A. 98, 295-300.

    Article  CAS  PubMed  Google Scholar 

  • Gazi, L. and Strange, P.G. (2002) Dopamine receptors. In: M.N. Pangolos and C.H. Davies (Eds.), Understanding G Protein-coupled Receptors and Their Role in the CNS. Oxford University Press, Oxford, pp. 264-285.

    Google Scholar 

  • Gingrich, J.A. and Caron, M.G. (1993) Recent advances in the molecular biology of dopamine receptors. Ann. Rev. Neurosci. 16, 299-321.

    Article  CAS  PubMed  Google Scholar 

  • Giros, B., Sokoloff, P., Martres, M.-P., Riou, J.-F., Emorine, L.J. and Schwartz, J.-C. (1989) Alternative splicing directs the expression of two D2 receptor isoforms. Nature 342, 923-926.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic, P.S., Castner, S.A, Svensson, T.H., Siever, L.J. and Williams, G.V. (2004) Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology 174, 3-16.

    Article  CAS  PubMed  Google Scholar 

  • Khan, Z.U., Gutierrez, A., Martin, R., Penafiel, A., Rivera, A. and De La Calle, A. (1998a) Differential regional and cellular distribution of dopamine D2-like receptors. An immuno-cytochemical study of subtype specific antibodies in rat and human brain. J. Comp. Neurol. 402, 353-371.

    Article  CAS  PubMed  Google Scholar 

  • Khan, Z.U., Mrzljak, L., Gutierrez, A., De La Calle, A. and Goldman-Rakic, P.S. (1998b) Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl. Acad. Sci. U.S.A. 95, 7731-7736.

    Article  CAS  PubMed  Google Scholar 

  • Khan, Z.U., Gutierrez, A., Martin, R., Penafiel, A., Rivera, A. and De La Calle, A. (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100, 689-699.

    Article  CAS  PubMed  Google Scholar 

  • Laplante, F., Sibley, D.R. and Quirion, R. (2004) Reduction in acetylcholine release in the hippocampus of dopamine D5 receptor-deficient mice. Neuropsychopharmacology 29, 1620-1627.

    Article  CAS  PubMed  Google Scholar 

  • Lee, F.J.S, Xue, S., Pei, L., Vukusic, B., Chery, N., Wang, Y., Wang, Y.T., Niznik, H.B., Yu, A. and Liu, F. (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111, 219-230.

    Article  CAS  PubMed  Google Scholar 

  • Levey, A.I., Hersch, S.M., Rye, D.B., Sunahara, R.K., Niznik, H.B., Kitt, C.A., Price, D.L., Maggio, R., Brann, M.R. and Ciliax, B.J. (1993) Localization of D1 and D2 dopamine re-ceptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. U.S.A. 90, 8861-8865.

    Article  CAS  PubMed  Google Scholar 

  • Monsma, F.J., McVittie, L.D., Gerfen, C.R., Mahan, L.C. and Sibley, D.R. (1989) Multiple dopamine D2 receptors produced by alternative RNA splicing. Nature 342, 926-929.

    Article  CAS  PubMed  Google Scholar 

  • Mrzljak, L., Bergson, C., Pappy, M., Huff, R., Levenson, R. and Goldman-Rakic, P.S. (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381, 245-248.

    Article  CAS  PubMed  Google Scholar 

  • Mrzljak, L., Fieles, W.E., Khan, Z.U. and Medd, A.M. (2006) Association of D5 dopamine receptors with pre- and postsynaptic elements of glutamatergic synapses. Soc. Neurosci. Poster. 332.22.

    Google Scholar 

  • Muly III C.E., Szigeti, K. and Goldman-Rakic, P.S. (1998) D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J. Neurosci. 18, 10553-10565.

    CAS  PubMed  Google Scholar 

  • Nusser, Z., Sieghart, W., Stephenson, F.A. and Somogyi, P. (1996) The α-6 subunit of the GABAa receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J. Neurosci. 16, 103-114.

    CAS  PubMed  Google Scholar 

  • Paspalas, C.D. and Goldman-Rakic, P.S. (2004) Microdomains for dopamine volume neuro-transmission in primate prefrontal cortex. J. Neurosci. 24, 5292-5300.

    Article  CAS  PubMed  Google Scholar 

  • Paspalas, C.D. and Goldman-Rakic, P.S. (2005) Presynaptic D1 dopamine receptor in primate prefrontal cortex: target-specific expression in the glutamatergic synapse. J. Neurosci. 25, 1260-1267.

    Article  CAS  PubMed  Google Scholar 

  • Pei, L., Lee, F.J.S., Moszczynska, A., Vukusic, B. and Liu, F. (2004) Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J. Neurosci. 24, 1149-1158.

    Article  CAS  PubMed  Google Scholar 

  • Petralia, R.S., Rubio, M.E., Wang, Y.-X. and Wenthold, R.J. (2000) Regional and synaptic expression of ionotropic glutamate receptors. In: O.P. Ottersen and J. Storm-Mathisen (Eds.), Handbook of Chemical Neuroanatomy: Glutamate. Vol. 18, Elsevier, Amsterdam, pp. 145-182.

    Google Scholar 

  • Scott, L., Sol Kruse, M., Forssberg, H., Brismar, H., Greengard, P. and Aperia, A. (2002) Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc. Natl. Acad. Sci. U.S.A. 99, 1661-1664.

    Article  CAS  PubMed  Google Scholar 

  • Sesack, S.R., Aoki, C. and Pickel, V.M. (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J. Neurosci. 14, 88-106.

    CAS  PubMed  Google Scholar 

  • Sesack, S.R., Snyder, C.L. and Lewis, D.A. (1995) Axon terminals immunolabeled for dopa-mine or tyrosine hydroxylase synapse of GABA-immunoreactive dendrites in rat and monkey. J. Comp. Neurol. 363, 264-280.

    Article  CAS  PubMed  Google Scholar 

  • Smiley, J.F., Levey, A.I., Ciliax, B.J. and Goldman-Rakic, P.S. (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc. Natl. Acad. Sci. U.S.A. 91, 5720-5724.

    Article  CAS  PubMed  Google Scholar 

  • Usiello, A., Balk, J., Rouge-Pont, F., Picetti, R., Dierich, A., LeMeur, M., Piazza, P.V. and Borrelli, E. (2000) Distinct function of the two isoforms of dopamine D2 receptors. Nature 408, 199-203.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Vijayraghavan, S. and Goldman-Rakic, P.S. (2004) Selective D2 receptor actions on the functional circuitry of working memory. Science 303, 853-856.

    Article  CAS  PubMed  Google Scholar 

  • Xu, R., Hranilovic, D., Fetsko, L.A., Bucan, M. and Wang, Y. (2002) Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol. Psychiatry 7, 1075-1082.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mrzljak, L., Fieles, W.E., Medd, A.M., Largent, B.L., Khan, Z.U. (2007). Distribution of D1-Like and D2 Receptors in the Monkey Brain: Implications for Cognitive Function in Schizophrenia. In: Tseng, KY., Atzori, M. (eds) Monoaminergic Modulation of Cortical Excitability. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72256-6_2

Download citation

Publish with us

Policies and ethics