Skip to main content

Basal Ganglia – Cortex Interactions: Regulation of Cortical Function by D1 Dopamine Receptors in the Striatum

  • Chapter
Monoaminergic Modulation of Cortical Excitability
  • 488 Accesses

This paper reviews recent findings of molecular imaging studies that investigated the role of striatal dopamine in the regulation of basal ganglia output and cortical function. These studies employed immediate-early genes such as c-fos and zif 268 as functional markers to determine the effects of dopamine depletion and local dopamine receptor stimulation in the striatum on cortical function. The results indicate that the D1 receptor-regulated direct striatal output pathway provides widespread activation of the cortex. The various anatomical pathways that could mediate this basal ganglia-cortical regulation are discussed. It is concluded that likely several pathways act in concert, some signaling specific motor commands, others providing more general (and widespread) cortical activation, perhaps related to arousal and attentional states, that is necessary for normal motor functioning. All these basal gangliacortical activating mechanisms appear to be facilitated by striatal dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin, R.L., Young, A.B. and Penney, J.B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366-375.

    PubMed  Google Scholar 

  • Alexander, G.E., Crutcher, M.D. and DeLong, M.R. (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119-146.

    PubMed  Google Scholar 

  • Alexander, G.E., DeLong, M.R. and Strick, P.L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357-381.

    PubMed  Google Scholar 

  • Anderson, J.J., Chase, T.N. and Engber, T.M. (1993) Substance P increases release of acetyl-choline in the dorsal striatum of freely moving rats. Brain Res. 623, 189-194.

    PubMed  Google Scholar 

  • Anderson, J.J., Kuo, S., Chase, T.N. and Engber, T.M. (1994) Dopamine D1 receptor-stimulated release of acetylcholine in rat striatum is mediated indirectly by activation of striatal neurokinin1 receptors. J. Pharmacol. Exp. Ther. 269, 1144-1151.

    PubMed  Google Scholar 

  • Arbuthnott, G.W., MacLeod, N.K., Maxwell, D.J. and Wright, A.K. (1990) Distribution and synaptic contacts of the cortical terminals arising from neurons in the rat ventromedial tha-lamic nucleus. Neuroscience 38, 47-60.

    PubMed  Google Scholar 

  • Arenas, E., Alberch, J., Perez-Navarro, E., Solsona, C. and Marsal, J. (1991) Neurokinin receptors differentially mediate endogenous acetylcholine release evoked by tachykinins in the neostriatum. J. Neurosci. 11, 2332-2338.

    PubMed  Google Scholar 

  • Arnold, H.M., Nelson, C.L., Neigh, G.N., Sarter, M. and Bruno, J.P. (2000) Systemic and intra-accumbens administration of amphetamine differentially affects cortical acetylcho-line release. Neuroscience 96, 675-685.

    PubMed  Google Scholar 

  • Badiani, A., Oates, M.M., Day, H.E., Watson, S.J., Akil, H. and Robinson, T.E. (1998) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modu-lation by environmental novelty. J. Neurosci. 18, 10579-10593.

    PubMed  Google Scholar 

  • Badiani, A., Oates, M.M., Day, H.E., Watson, S.J., Akil, H. and Robinson, T.E. (1999) Envi-ronmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav. Brain Res. 103, 203-209.

    PubMed  Google Scholar 

  • Berger, A. and Posner, M.I. (2000) Pathologies of brain attentional networks. Neurosci. Biobehav. Rev. 24, 3-5.

    PubMed  Google Scholar 

  • Berger, B., Gaspar, P. and Verney, C. (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 14, 21-27.

    PubMed  Google Scholar 

  • Berke, J.D., Paletzki, R.F., Aronson, G.J., Hyman, S.E. and Gerfen, C.R. (1998) A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 5301-5310.

    PubMed  Google Scholar 

  • Berretta, S., Robertson, H.A. and Graybiel, A.M. (1992) Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. J. Neurophysiol. 68, 767-777.

    PubMed  Google Scholar 

  • Björklund, A. and Lindvall, O. (1984) Dopamine containing systems in the CNS. In: A. Björklund and T. Hökfelt (Eds.), Handbook of Chemical Neuroanatomy, Vol. 2, Classical Transmitters in the CNS, Part 1. Elsevier, London, pp. 55-122.

    Google Scholar 

  • Blandini, F., Fancellu, R., Orzi, F., Conti, G., Greco, R., Tassorelli, C. and Nappi, G. (2003) Selective stimulation of striatal dopamine receptors of the D1- or D2-class causes opposite changes of fos expression in the rat cerebral cortex. Eur. J. Neurosci. 17, 763-770.

    PubMed  Google Scholar 

  • Bolam, J.P., Ingham, C.A., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D. and Wainer, B.H. (1986) Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res. 397, 279-289.

    PubMed  Google Scholar 

  • Bouthenet, M.-L., Souil, E., Martres, M.-P., Sokoloff, P., Giros, B. and Schwartz, J.-C. (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 564, 203-219.

    PubMed  Google Scholar 

  • Brownell, A.L., Canales, K., Chen, Y.I., Jenkins, B.G., Owen, C., Livni, E., Yu, M., Cicchetti, F., Sanchez-Pernaute, R. and Isacson, O. (2003) Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson's disease model. Neuroimage 20, 1064-1075.

    PubMed  Google Scholar 

  • Carlsson, M. and Carlsson, A. (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia - implications for schizophrenia and Parkinson’s disease. Trends Neurosci. 13, 272-276.

    PubMed  Google Scholar 

  • Cenci, M.A., Campbell, K., Wictorin, K. and Björklund, A. (1992) Striatal c-fos induction by cocaine or apomorphine occurs preferentially in output neurons projecting to the substantia nigra in the rat. Eur. J. Neurosci. 4, 376-380.

    PubMed  Google Scholar 

  • Cepeda, C., Buchwald, N.A. and Levine, M.S. (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes acti-vated. Proc. Natl. Acad. Sci. USA 90, 9576-9580.

    PubMed  Google Scholar 

  • Cepeda, C. and Levine, M.S. (1998) Dopamine and N-methyl-D-aspartate receptor interac-tions in the neostriatum. Dev. Neurosci. 20, 1-18.

    PubMed  Google Scholar 

  • Chaudhuri, A. (1997) Neural activity mapping with inducible transcription factors. Neurore-port 8, v-ix.

    Google Scholar 

  • Chaudhuri, A. and Cynader, M.S. (1993) Activity-dependent expression of the transcription factor Zif268 reveals ocular dominance columns in monkey visual cortex. Brain Res. 605, 349-353.

    PubMed  Google Scholar 

  • Chevalier, G. and Deniau, J.M. (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13, 277-280.

    PubMed  Google Scholar 

  • Ciliax, B.J., Nash, N., Heilman, C., Sunahara, R., Hartney, A., Tiberi, M., Rye, D.B., Caron, M.G., Niznik, H.B. and Levey, A.I. (2000) Dopamine D5 receptor immunolocalization in rat and monkey brain. Synapse 37, 125-145.

    PubMed  Google Scholar 

  • Cole, A.J., Bhat, R.V., Patt, C., Worley, P.F. and Baraban, J.M. (1992) D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J. Neurochem. 58, 1420-1426.

    PubMed  Google Scholar 

  • Csillik, B., Rakic, P. and Knyihar-Csillik, E. (1998) Peptidergic innervation and the nicotinic acetylcholine receptor in the primate basal nucleus. Eur. J. Neurosci. 10, 573-585.

    PubMed  Google Scholar 

  • Curran, E.J. and Watson, S.J. (1995) Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study. J. Comp. Neurol. 361, 57-76.

    PubMed  Google Scholar 

  • Day, J. and Fibiger, H.C. (1992) Dopaminergic regulation of cortical acetylcholine release. Synapse 12, 281-286.

    PubMed  Google Scholar 

  • Day, J. and Fibiger, H.C. (1993) Dopaminergic regulation of cortical acetylcholine release: effects of dopamine receptor agonists. Neuroscience 54, 643-648.

    PubMed  Google Scholar 

  • Day, J.C., Tham, C.S. and Fibiger, H.C. (1994) Dopamine depletion attenuates amphetamine-induced increases of cortical acetylcholine release. Eur. J. Pharmacol. 263, 285-292.

    PubMed  Google Scholar 

  • De Souza Silva, M.A., Hasenohrl, R.U., Tomaz, C., Schwarting, R.K.W. and Huston, J.P. (2000) Differential modulation of frontal cortex acetylcholine by injection of substance P into the nucleus basalis magnocellularis region in the freely-moving vs. the anesthetized preparation. Synapse 38, 243-253.

    PubMed  Google Scholar 

  • Defagot, M.C., Malchiodi, E.L., Villar, M.J. and Antonelli, M.C. (1997) Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies. Mol. Brain Res. 45, 1-12.

    PubMed  Google Scholar 

  • DeLong, M.R. (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281-285.

    PubMed  Google Scholar 

  • Dilts, R.P.J., Helton, T.E. and McGinty, J.F. (1993) Selective induction of Fos and FRA im-munoreactivity within the mesolimbic and mesostriatal dopamine terminal fields. Synapse 13, 251-263.

    PubMed  Google Scholar 

  • Donoghue, J.P. and Carroll, K.L. (1987) Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res. 408, 367-371.

    PubMed  Google Scholar 

  • Drago, J., Gerfen, C.R., Westphal, H. and Steiner, H. (1996) D1 dopamine receptor-deficient mouse: Cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74, 813-823.

    PubMed  Google Scholar 

  • Ferguson, S.M. and Robinson, T.E. (2004) Amphetamine-evoked gene expression in striato-pallidal neurons: regulation by corticostriatal afferents and the ERK/MAPK signaling cascade. J. Neurochem. 91, 337-348.

    PubMed  Google Scholar 

  • Filipkowski, R.K., Rydz, M. and Kaczmarek, L. (2001) Expression of c-fos, Fos B, Jun B, and Zif268 transcription factor proteins in rat barrel cortex following apomorphine-evoked whisking behavior. Neuroscience 106, 679-688.

    PubMed  Google Scholar 

  • Gaspar, P., Bloch, B. and Le Moine, C. (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur. J. Neuro-sci. 7, 1050-1063.

    Google Scholar 

  • Gerfen, C.R. (1991) Substance P (neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain. Brain Res. 556, 165-170.

    PubMed  Google Scholar 

  • Gerfen, C.R. (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133-139.

    PubMed  Google Scholar 

  • Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Jr. and Sibley, D.R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatoni-gral and striatopallidal neurons. Science 250, 1429-1432.

    PubMed  Google Scholar 

  • Gerfen, C.R., Keefe, K.A. and Gauda, E.B. (1995) D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate-early gene response in D1-containing neurons. J. Neurosci. 15, 8167-8176.

    PubMed  Google Scholar 

  • Gerfen, C.R., Staines, W.A., Arbuthnott, G.W. and Fibiger, H.C. (1982) Crossed connections of the substantia nigra in the rat. J. Comp. Neurol. 207, 283-303.

    PubMed  Google Scholar 

  • Gerfen, C.R. and Wilson, C.J. (1996) The basal ganglia. In: L.W. Swanson, A. Björklund and T. Hökfelt (Eds.), Handbook of Chemical Neuroanatomy. Elsevier, Amsterdam, pp. 371-468.

    Google Scholar 

  • Graybiel, A.M. (1997) The basal ganglia and cognitive pattern generators. Schizophr. Bull. 23, 459-469.

    PubMed  Google Scholar 

  • Graybiel, A.M., Canales, J.J. and Capper-Loup, C. (2000) Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci. 23, S71-S77.

    PubMed  Google Scholar 

  • Graybiel, A.M., Moratalla, R. and Robertson, H.A. (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA 87, 6912-6916.

    PubMed  Google Scholar 

  • Groenewegen, H.J. and Berendse, H.W. (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci. 17, 52-57.

    PubMed  Google Scholar 

  • Groenewegen, H.J., Berendse, H.W., Wolters, J.G. and Lohman, A.H. (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog. Brain Res. 85, 95-116.

    PubMed  Google Scholar 

  • Grove, E.A., Domesick, V.B. and Nauta, W.J. (1986) Light microscopic evidence of striatal input to intrapallidal neurons of cholinergic cell group Ch4 in the rat: a study employing the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res. 367, 379-384.

    PubMed  Google Scholar 

  • Haber, S. and McFarland, N.R. (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. Neuroscientist 7, 315-324.

    PubMed  Google Scholar 

  • Haber, S.N. (2003) The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317-330.

    PubMed  Google Scholar 

  • Harlan, R.E. and Garcia, M.M. (1998) Drugs of abuse and immediate-early genes in the fore-brain. Mol. Neurobiol. 16, 221-267.

    PubMed  Google Scholar 

  • Henderson, Z. (1997) The projection from the striatum to the nucleus basalis in the rat: an electron microscopic study. Neuroscience 78, 943-955.

    PubMed  Google Scholar 

  • Herkenham, M. (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J. Comp. Neurol. 183, 487-517.

    PubMed  Google Scholar 

  • Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207, 532-535.

    PubMed  Google Scholar 

  • Howard, M.A. and Simons, D.J. (1994) Physiologic effects of nucleus basalis magnocellularis stimulation on rat barrel cortex neurons. Exp. Brain Res. 102, 21-33.

    PubMed  Google Scholar 

  • Hyman, S.E., Cole, R.L., Schwarzschild, M., Cole, D., Hope, B. and Konradi, C. (1996) Mo-lecular mechanisms of striatal gene regulation: a critical role for glutamate in dopamine-mediated gene induction. In: K.M. Merchant (Ed.), Pharmacological Regulation of Gene Expression in the CNS. CRC, Boca Raton, FL, pp. 115-131.

    Google Scholar 

  • Hyman, S.E. and Nestler, E.J. (1996) Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am. J. Psychiatry 153, 151-162.

    PubMed  Google Scholar 

  • Ingham, C.A., Bolam, J.P., Wainer, B.H. and Smith, A.D. (1985) A correlated light and elec-tron microscopic study of identified cholinergic basal forebrain neurons that project to the cortex in the rat. J. Comp. Neurol. 239, 176-192.

    PubMed  Google Scholar 

  • Joel, D. and Weiner, I. (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63, 363-379.

    PubMed  Google Scholar 

  • Johansson, B., Lindström, K. and Fredholm, B.B. (1994) Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caf-feine in the rat. Neuroscience 59, 837-849.

    PubMed  Google Scholar 

  • Kaczmarek, L. and Chaudhuri, A. (1997) Sensory regulation of immediate-early gene expres-sion in mammalian visual cortex: implications for functional mapping and neural plastic-ity. Brain Res. Rev. 23, 237-256.

    Google Scholar 

  • Kawaguchi, Y., Wilson, C.J. and Emson, P.C. (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J. Neurosci. 10, 3421-3438.

    PubMed  Google Scholar 

  • Kosofsky, B.E., Genova, L.M. and Hyman, S.E. (1995) Substance P phenotype defines specificity of c-fos induction by cocaine in developing rat striatum. J. Comp. Neurol. 351, 41-50.

    PubMed  Google Scholar 

  • Krout, K.E., Belzer, R.E. and Loewy, A.D. (2002) Brainstem projections to midline and intra-laminar thalamic nuclei of the rat. J. Comp. Neurol. 448, 53-101.

    PubMed  Google Scholar 

  • Krout, K.E., Loewy, A.D., Westby, G.W. and Redgrave, P. (2001) Superior colliculus projec-tions to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 431, 198-216.

    PubMed  Google Scholar 

  • LaHoste, G.J., Ruskin, D.N. and Marshall, J.F. (1996) Cerebrocortical Fos expression follow-ing dopaminergic stimulation: D1/D2 synergism and its breakdown. Brain Res. 728, 97-104.

    PubMed  Google Scholar 

  • LaHoste, G.J., Yu, J. and Marshall, J.F. (1993) Striatal Fos expression is indicative of dopa-mine D1/D2 synergism and receptor supersensitivity. Proc. Natl. Acad. Sci. USA 90, 7451-7455.

    PubMed  Google Scholar 

  • Le Moine, C. and Bloch, B. (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J. Comp. Neu-rol. 355, 418-426.

    Google Scholar 

  • Le Moine, C. and Bloch, B. (1996) Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 73, 131-143.

    PubMed  Google Scholar 

  • Le Moine, C., Normand, E., Guitteny, A.F., Fouque, B., Teoule, R. and Bloch, B. (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc. Natl. Acad. Sci. USA 87, 230-234.

    PubMed  Google Scholar 

  • Le Moine, C., Svenningsson, P., Fredholm, B.B. and Bloch, B. (1997) Dopamine-adenosine interactions in the striatum and the globus pallidus: inhibition of striatopallidal neurons through either D2 or A2A receptors enhances D1 receptor-mediated effects on c-fos ex-pression. J. Neurosci. 17, 8038-8048.

    PubMed  Google Scholar 

  • Lindefors, N., Brene, S., Herrera-Marschitz, M. and Persson, H. (1989) Region specific regu-lation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain. Exp. Brain Res. 77, 611-620.

    PubMed  Google Scholar 

  • Lindefors, N., Brene, S., Herrera-Marschitz, M. and Persson, H. (1990) Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons. Exp. Brain Res. 80, 489-500.

    PubMed  Google Scholar 

  • Mansour, A., Meador-Woodruff, J.H., Bunzow, J.R., Civelli, O., Akil, H. and Watson, S.J. (1990) Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradiographic analysis. J. Neurosci. 10, 2587-2600.

    PubMed  Google Scholar 

  • McHaffie, J.G., Stanford, T.R., Stein, B.E., Coizet, V. and Redgrave, P. (2005) Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401-407.

    PubMed  Google Scholar 

  • Melzer, P. and Steiner, H. (1997) Stimulus-dependent expression of immediate-early genes in rat somatosensory cortex. J. Comp. Neurol. 380, 145-153.

    PubMed  Google Scholar 

  • Mengod, G., Vilaro, M.T., Niznik, H.B., Sunahara, R.K., Seeman, P., O’Dowd, B.F. and Palacios, J.M. (1991) Visualization of a dopamine D1 receptor mRNA in human and rat brain. Mol. Brain Res. 10, 185-191.

    PubMed  Google Scholar 

  • Middleton, F.A. and Strick, P.L. (1996) The temporal lobe is a target of output from the basal ganglia. Proc. Natl. Acad. Sci. USA 93, 8683-8687.

    PubMed  Google Scholar 

  • Middleton, F.A. and Strick, P.L. (1997) New concepts about the organization of basal ganglia output. Adv. Neurol. 74, 57-68.

    PubMed  Google Scholar 

  • Middleton, F.A. and Strick, P.L. (2000) Basal ganglia and cerebellar loops: motor and cogni-tive circuits. Brain Res. Rev. 31, 236-250.

    Google Scholar 

  • Middleton, F.A. and Strick, P.L. (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb. Cortex 12, 926-935.

    PubMed  Google Scholar 

  • Mink, J.W. (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381-425.

    PubMed  Google Scholar 

  • Moore, H., Fadel, J., Sarter, M. and Bruno, J.P. (1999) Role of accumbens and cortical dopa-mine receptors in the regulation of cortical acetylcholine release. Neuroscience 88, 811-822.

    PubMed  Google Scholar 

  • Moore, H., Sarter, M. and Bruno, J.P. (1995) Bidirectional modulation of cortical acetylcho-line efflux by infusion of benzodiazepine receptor ligands into the basal forebrain. Neuro-sci. Lett. 189, 31-34.

    Google Scholar 

  • Moratalla, R., Xu, M., Tonegawa, S. and Graybiel, A.M. (1996) Cellular responses to psy-chomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc. Natl. Acad. Sci. USA 93, 14928-14933.

    PubMed  Google Scholar 

  • Nakajima, Y., Stanfield, P.R., Yamaguchi, K. and Nakajima, S. (1991) Substance P excites cultured cholinergic neurons in the basal forebrain. Adv. Exp. Med. Biol. 295, 157-167.

    PubMed  Google Scholar 

  • Nicola, S.M., Surmeier, J. and Malenka, R.C. (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185-215.

    PubMed  Google Scholar 

  • Orieux, G., Francois, C., Feger, J. and Hirsch, E.C. (2002) Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat. J. Neurosci. 22, 8762-8770.

    PubMed  Google Scholar 

  • Orosz, D. and Bennett, J.P. (1990) Baseline and apomorphine-induced extracellular levels of nigral substance P are increased in an animal model of Parkinson’s disease. Eur. J. Phar-macol. 182, 509-514.

    Google Scholar 

  • Oueslati, A., Breysse, N., Amalric, M., Kerkerian-Le Goff, L. and Salin, P. (2005) Dysfunc-tion of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is re-versed by metabotropic glutamate receptor 5 antagonism. Eur. J. Neurosci. 22, 2765-2774.

    PubMed  Google Scholar 

  • Parent, A. and Hazrati, L.N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev. 20, 91-127.

    PubMed  Google Scholar 

  • Paul, M.L., Graybiel, A.M., David, J.-C. and Robertson, H.A. (1992) D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J. Neurosci. 12, 3729-3742.

    PubMed  Google Scholar 

  • Pelled, G., Bergman, H. and Goelman, G. (2002) Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson’s disease - a functional magnetic reso-nance imaging study. Eur. J. Neurosci. 15, 389-394.

    PubMed  Google Scholar 

  • Petitet, F., Glowinski, J. and Beaujouan, J.C. (1991) Evoked release of acetylcholine in the rat striatum by stimulation of tachykinin NK-1 receptors. Eur. J. Pharmacol. 192, 203-204.

    PubMed  Google Scholar 

  • Pinna, A., Wardas, J., Cristalli, G. and Morelli, M. (1997) Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas. Brain Res. 759, 41-49.

    PubMed  Google Scholar 

  • Rasmusson, D.D. (2000) The role of acetylcholine in cortical synaptic plasticity. Behav. Brain Res. 115, 205-218.

    PubMed  Google Scholar 

  • Redgrave, P., Prescott, T.J. and Gurney, K. (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009-1023.

    PubMed  Google Scholar 

  • Robbins, T.W. (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp. Brain Res. 133, 130-138.

    PubMed  Google Scholar 

  • Robbins, T.W., Granon, S., Muir, J.L., Durantou, F., Harrison, A. and Everitt, B.J. (1998) Neural systems underlying arousal and attention. Implications for drug abuse. Ann. N. Y. Acad. Sci. 846, 222-237.

    PubMed  Google Scholar 

  • Robertson, G.S. and Fibiger, H.C. (1992) Neuroleptics increase c-fos expression in the fore-brain: contrasting effects of haloperidol and clozapine. Neuroscience 46, 315-328.

    PubMed  Google Scholar 

  • Robertson, G.S. and Jian, M. (1995) D1 and D2 dopamine receptors differentially increase Fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain. Neuroscience 64, 1019-1034.

    PubMed  Google Scholar 

  • Robertson, G.S. and Staines, W.A. (1994) D1 dopamine receptor agonist-induced Fos-like immunoreactivity occurs in basal forebrain and mesopontine tegmentum cholinergic neu-rons and striatal neurons immunoreactive for neuropeptide Y. Neuroscience 59, 375-387.

    PubMed  Google Scholar 

  • Robertson, G.S., Vincent, S.R. and Fibiger, H.C. (1990) Striatonigral projection neurons contain D1 dopamine receptor-activated c-fos. Brain Res. 523, 288-290.

    PubMed  Google Scholar 

  • Robertson, G.S., Vincent, S.R. and Fibiger, H.C. (1992) D1 and D2 dopamine receptors dif-ferentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neurosci-ence 49, 285-296.

    Google Scholar 

  • Rodriguez-Puertas, R., Herrera-Marschitz, M., Koistinaho, J. and Hokfelt, T. (1999) Dopamine D1 receptor modulation of glutamate receptor messenger RNA levels in the neocortex and neostriatum of unilaterally 6-hydroxydopamine-lesioned rats. Neuroscience 89, 781-797.

    PubMed  Google Scholar 

  • Rolland, A.S., Herrero, M.T., Garcia-Martinez, V., Ruberg, M., Hirsch, E.C. and Francois, C. (2007) Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain 130, 265-275.

    PubMed  Google Scholar 

  • Sagar, S.M., Sharp, F.R. and Curran, T. (1988) Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240, 1328-1331.

    PubMed  Google Scholar 

  • Sarter, M. and Bruno, J.P. (1999) Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci. 22, 67-74.

    PubMed  Google Scholar 

  • Sarter, M., Givens, B. and Bruno, J.P. (2001) The cognitive neuroscience of sustained atten-tion: where top-down meets bottom-up. Brain Res. Rev. 35, 146-160.

    PubMed  Google Scholar 

  • Schwarting, R.K.W. and Huston, J.P. (1996) Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological squeal. Prog. Neurobiol. 49, 215-266.

    PubMed  Google Scholar 

  • Sharp, F.R., Sagar, S.M. and Swanson, R.A. (1993) Metabolic mapping with cellular resolu-tion: c-fos vs. 2-deoxyglucose. Crit. Rev. Neurobiol. 7, 205-228.

    PubMed  Google Scholar 

  • Sheng, M. and Greenberg, M.E. (1990) The regulation and function of c-fos and other imme-diate early genes in the nervous system. Neuron 4, 477-485.

    PubMed  Google Scholar 

  • Smith, Y., Raju, D.V., Pare, J.F. and Sidibe, M. (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 27, 520-527.

    PubMed  Google Scholar 

  • Solanto, M.V. (2002) Dopamine dysfunction in AD/HD: integrating clinical and basic neuro-science research. Behav. Brain Res. 130, 65-71.

    PubMed  Google Scholar 

  • Staiger, J.F., Bisler, S., Schleicher, A., Gass, P., Stehle, J.H. and Zilles, K. (2000) Exploration of a novel environment leads to the expression of inducible transcription factors in barrel-related columns. Neuroscience 99, 7-16.

    PubMed  Google Scholar 

  • Steiner, H. and Gerfen, C.R. (1994) Tactile sensory input regulates basal and apomorphine-induced immediate-early gene expression in rat barrel cortex. J. Comp. Neurol. 344, 297-304.

    PubMed  Google Scholar 

  • Steiner, H. and Gerfen, C.R. (1995) Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. J. Comp. Neurol. 353, 200-212.

    PubMed  Google Scholar 

  • Steiner, H. and Gerfen, C.R. (1996) Dynorphin regulates D1 dopamine receptor-mediated responses in the striatum: relative contributions of pre- and postsynaptic mechanisms in dorsal and ventral striatum demonstrated by altered immediate-early gene induction. J. Comp. Neurol. 376, 530-541.

    PubMed  Google Scholar 

  • Steiner, H. and Gerfen, C.R. (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp. Brain Res. 123, 60-76.

    PubMed  Google Scholar 

  • Steiner, H. and Kitai, S.T. (2000) Regulation of rat cortex function by D1 dopamine receptors in the striatum. J. Neurosci. 20, 5449-5460.

    PubMed  Google Scholar 

  • Steiner, H. and Kitai, S.T. (2001) Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. Eur. J. Neurosci. 14, 1390-1404.

    PubMed  Google Scholar 

  • Surmeier, D.J., Song, W.-J. and Yan, Z. (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579-6591.

    PubMed  Google Scholar 

  • Takano, K., Stanfield, P.R., Nakajima, S. and Nakajima, Y. (1995) Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neu-rons. Neuron 14, 999-1008.

    PubMed  Google Scholar 

  • Taymans, J.M., Kia, H.K., Groenewegen, H.J., Leysen, J.E. and Langlois, X. (2005) Bilateral control of brain activity by dopamine D1 receptors: evidence from induction patterns of regulator of G protein signaling 2 and c-fos mRNA in D1-challenged hemiparkinsonian rats. Neuroscience 134, 643-656.

    PubMed  Google Scholar 

  • Uslaner, J., Badiani, A., Norton, C.S., Day, H.E., Watson, S.J., Akil, H. and Robinson, T.E. (2001) Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neuro-sci. 13, 1977-1983.

    Google Scholar 

  • Uylings, H.B., Groenewegen, H.J. and Kolb, B. (2003) Do rats have a prefrontal cortex? Behav. Brain Res. 146, 3-17.

    PubMed  Google Scholar 

  • Wang, J.Q. and McGinty, J.F. (1996) Glutamatergic and cholinergic regulation of immediate-early gene and neuropeptide gene expression in the striatum. In: K.M. Merchant (Ed.), Pharmacological Regulation of Gene Expression in the CNS. CRC, Boca Raton, FL, pp. 81-113.

    Google Scholar 

  • Wang, J.Q., Smith, A.J.W. and McGinty, J.F. (1995) A single injection of amphetamine or methamphetamine induces dynamic alterations in c-fos, zif/268 and preprodynorphin mes-senger RNA expression in rat forebrain. Neuroscience 68, 83-95.

    PubMed  Google Scholar 

  • Yano, M. and Steiner, H. (2005) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132, 855-865.

    PubMed  Google Scholar 

  • You, Z.-B., Herrera-Marschitz, M., Nylander, I., Goiny, M., O’Connor, W.T., Ungerstedt, U. and Terenius, L. (1994) The striatonigral dynorphin pathway of the rat studied with in vivo mi-crodialysis - II. Effects of dopamine D1 and D2 receptor agonists. Neuroscience 63, 427-434.

    PubMed  Google Scholar 

  • Young, S.T., Porrino, L.J. and Iadarola, M.J. (1991) Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA 88, 1291-1295.

    PubMed  Google Scholar 

  • Zaborszky, L. and Cullinan, W.E. (1992) Projections from the nucleus accumbens to choliner-gic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res. 570, 92-101.

    PubMed  Google Scholar 

  • Zaborszky, L., Cullinan, W.E. and Braun, A. (1991) Afferents to basal forebrain cholinergic projection neurons: an update. Adv. Exp. Med. Biol. 295, 43-100.

    PubMed  Google Scholar 

  • Zhang, L., Lou, D., Jiao, H., Zhang, D., Wang, X., Xia, Y., Zhang, J. and Xu, M. (2004) Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J. Neurosci. 24, 3344-3354.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Steiner, H. (2007). Basal Ganglia – Cortex Interactions: Regulation of Cortical Function by D1 Dopamine Receptors in the Striatum. In: Tseng, KY., Atzori, M. (eds) Monoaminergic Modulation of Cortical Excitability. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72256-6_18

Download citation

Publish with us

Policies and ethics