Skip to main content

As the primary immunoglobulin class in mucosal secretions, secretory immunoglobulin A (SIgA) antibodies function as the immunological “ frontline,” protecting the vulnerable surfaces of the intestinal epithelium from pathogenic bacteria, viruses, and toxins encountered in the normal human diet. SIgA also serves as a barrier to commensal microbiota (Johansen et al., 1999; Kelly et al., 2005; Macpherson et al., 2000;), some of which are opportunistic pathogens capable of causing disease if afforded access to the systemic compartment. Protection is achieved primarily by “immune exclusion,” a general term referring to the ability of SIgA to coat intestinal antigens, thereby (1) preventing their attachment to epithelial cell receptors and (2) promoting their clearance from the intestinal lumen via peristalsis (Lamm, 1997). SIgA is also of critical importance to neonates whose mucosal immune systems are in the early stages of development. In humans, SIgA is the major immunoglobulin class in colostrum and breast milk, providing passive immunity to a variety of enteric pathogens (Brandtzaeg, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amerongen, H. M., Weltzin, R., Farnet, C. M., Michetti, P., Haseltine, W. A., and Neutra, M. R. (1991). Transepithelial transport of HIV-1 by intestinal M cells: A mechanism for transmission of AIDS. J. Acquir. Immun. Def. Synd. 4:760–765.

    CAS  Google Scholar 

  • Anderle, P., Rumbo, M., Sierro, F., Mansourian, R., Michetti, P., Roberts, M. A., and Kraehenbuhl, J. P. (2005). Novel markers of the human follicle-associated epithelium identified by genomic profiling and microdissection. Gastroenterology 129:321–327.

    Article  CAS  PubMed  Google Scholar 

  • Apter, F. M., Michetti, P., Winner, L. S. d., Mack, J. A., Mekalanos, J. J., and Neutra, M. R. (1993). Analysis of the roles of antilipopolysaccharide and anti-cholera toxin immunoglobulin A (IgA) antibodies in protection against Vibrio cholerae and cholera toxin by use of monoclonal IgA antibodies in vivo. Infect. Immun. 61:5279–5285.

    CAS  PubMed  Google Scholar 

  • Bjerke, K., and Brandtzaeg, P. (1988). Lack of relation between expression of HLA-DR and secretory component (SC) in follicle-associated epithelium of human Peyer’s patches. Clin. Exp. Immunol. 71:502–507.

    CAS  PubMed  Google Scholar 

  • Blanco, L. P., and DiRita, V. J. (2006). Antibodies enhance interaction of Vibrio cholerae with intestinal M-like cells. Infect. Immun. 74:6957–6964.

    Article  CAS  PubMed  Google Scholar 

  • Borel, Y., Fritsche, R., Borel, H., Dahlgren, U., Dalhman-Hoglund, A., and Hanson, L. A. (1996). Parenteral and oral administration of tolerogens: Protein–IgG conjugates. Ann. NY Acad. Sci. 778:80–87.

    Article  CAS  PubMed  Google Scholar 

  • Bouvet, J. P., and Fischetti, V. A. (1999). Diversity of antibody-mediated immunity at the mucosal barrier. Infect. Immun. 67:2687–2691.

    CAS  PubMed  Google Scholar 

  • Brandtzaeg, P. (1978). Polymeric IgA is complexed with secretory component (SC) on the surface of human intestinal epithelial cells. Scand. J. Immunol. 8:39–52.

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg, P. (2002). Role of local immunity and breast feeding in mucosal homeostasis and defense against infections. I. In: Calder, P. Field, C., and Gill, H. (eds.), Nutrition and Immune Function., CABI Publishing, New York.

    Google Scholar 

  • Brandtzaeg, P. (2003). Mucosal immunity: Integration between mother and the breast-fed infant. Vaccine 21:3382–3388.

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg, P., Baekkevold, E. S., Farstad, I. N., Jahnsen, F. L., Johansen, F. E., Nilsen, E. M., and Yamanaka, T. (1999). Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol. Today 20:141–151.

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg, P., and Bjerke, K. (1990). Immunomorphological characteristics of human Peyer’s patches. Digestion 46:262–273.

    Article  PubMed  Google Scholar 

  • Brayden, D. J., and Baird, A. W. (2004). Apical membrane receptors on intestinal M cells: Potential targets for vaccine delivery. Adv. Drug Deliv. Rev. 56:721–726.

    Article  CAS  PubMed  Google Scholar 

  • Carayannopoulos, L., Hexham, J. M., and Capra, J. D. (1996). Localization of the binding site for the monocyte immunoglobulin (Ig) A-Fc receptor (CD89) to the domain boundary between Ci2 and C23 in human IgA1. J. Exp. Med. 183:1579–1586.

    Article  CAS  PubMed  Google Scholar 

  • Chabot, S., Wagner, J. S., Farrant, and Neutra, M. R. (2006). TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J. Immunol. 176:4275–4283.

    Google Scholar 

  • Cheminay, C., Mohlenbrink, A., and Hensel, M. (2005). Intracellular Salmonella inhibit antigen presentation by dendritic cells. J. Immunol. 174:2892–2899.

    CAS  PubMed  Google Scholar 

  • Clark, M. A., Jepson, M. A., Simmons, N. L., and Hirst, B. H. (1993). Differential expression of lectin-binding sites defines mouse intestinal M cells. J. Histochem. Cytochem. 41:1679–1687.

    CAS  PubMed  Google Scholar 

  • Cook, J., and Barber, B. H. (1997). Recombinant antibodies with conformationally constrained HIV type 1 epitope inserts elicit glycoprotein 160-specific antibody responses in vivo. AIDS Res. Hum. Retroviruses 13:449–460.

    Article  CAS  PubMed  Google Scholar 

  • Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J. P. (1996). A pathogen-specific epitope inserted into recombinant secretory immunoglobulin A is immunogenic by the oral route. J. Biol. Chem. 271:33, 670–33, 677.

    Google Scholar 

  • Corthésy, B. (2003). Recombinant secretory immunoglobulin A in passive immunotherapy: linking immunology and biotechnology. Curr. Pharm. Biotechnol. 4:51–67.

    Article  PubMed  Google Scholar 

  • Crottet, P., and Corthésy, B. (1998). Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab’) 2: A possible implication for mucosal defense. J. Immunol. 161:5445–5453.

    CAS  PubMed  Google Scholar 

  • Crottet, P., and Corthésy, B. (1999). Mapping the interaction between murine IgA and murine secretory component carrying epitope substitutions reveals a role of domains II and III in covalent binding to IgA. J. Biol. Chem. 274:31, 456–31, 462.

    Google Scholar 

  • Crottet, P., Peitsch, M. C., Servis, C., and Corthésy, B. (1999). Covalent homodimers of murine secretory component induced by epitope substitution unravel the capacity of the polymeric Ig receptor to dimerize noncovalently in the absence of IgA ligand. J. Biol. Chem. 274:31, 445–31, 455.

    Google Scholar 

  • Dallas, S. D., and Rolfe, R. D. (1998). Binding of Clostridium difficile toxin A to human milk secretory component. J. Med. Microbiol. 47:879–888.

    Article  CAS  PubMed  Google Scholar 

  • Daniels, C. K., Schmucker, D. L., and Jones, A. L. (1989). Hepatic asialoglycoprotein receptor-mediated binding of human polymeric immunoglobulin A. Hepatology 9:229–234.

    Article  CAS  PubMed  Google Scholar 

  • Ermak, T., and Owen, R. L. (1986). Differential distribution of lymphocytes and accessory cells in mouse Peyer’s patches. Anat. Rec. 215:144–152.

    Article  CAS  PubMed  Google Scholar 

  • Estrada, A., McDermott, M. R., Underdown, B. J., and Snider, D. P. (1995). Intestinal immunization of mice with antigen conjugated to anti-MHC class II antibodies. Vaccine 13:901–907.

    Article  CAS  PubMed  Google Scholar 

  • Farstad, I. N., Halstensen, T. S., Fausa, O., and Brandtzaeg, P. (1994). Heterogeneity of M-cell-associated B and T cells in human Peyer’s patches. Immunology 83:457–464.

    CAS  PubMed  Google Scholar 

  • Favre, L., Spertini, F., and Corthésy, B. (2005). Secretory IgA possesses intrinsic modulatory properties stimulating mucosal and systemic immune responses. J. Immunol. 175:2793–2800.

    CAS  PubMed  Google Scholar 

  • Frey, A., Giannasca, K. T., Weltsin, R., Giannasca, P. J., Reggio, H., Lencer, W. I., and Neutra, M. R. (1996). Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: Implications for microbial attachment and vaccine targeting. J. Exp. Med. 184:1045–1059.

    Article  CAS  PubMed  Google Scholar 

  • Fritsche, R., and Borel, Y. (1994). Prevention of allergic sensitization to t-lactoglobulin with conjugates made of d-lactoglobulin coupled to isologous immunoglobulin G. J. Allergy Clin. Immunol. 93:778–786.

    Article  CAS  PubMed  Google Scholar 

  • Giannasca, P. J., Giannasca, K. T., Falk, P., Gordon, J. I., and Neutra, M. R. (1994). Regional differences in glycoconjugates of intestinal M cells in mice: Potential targets for mucosal vaccines. Am. J. Physiol. 267:G1108–G1121.

    CAS  PubMed  Google Scholar 

  • Giannasca, P. J., Giannasca, K. T., Leichtner, A. M., and Neutra, M. R. (1999). Human intestinal M cells display the sialyl Lewis A antigen. Infect. Immun. 67:946–953.

    CAS  PubMed  Google Scholar 

  • Helander, A., Silvey, K. J., Mantis, N. J., Hutchings, A. B., Chandran, K., Lucas, W. T., Nibert, M. L., and Neutra, M. R. (2003). The viral sigma1 protein and glycoconjugates containing alpha2–3-linked sialic acid are involved in type 1 reovirus adherence to M cell apical surfaces. J. Virol. 77:7964–7977.

    Article  CAS  PubMed  Google Scholar 

  • Herr, A. B., Ballister, E. R., and Bjorkman, P. J. (2003). Insights into IgA-mediated immune responses from the crystal structures of human FcHRI and its complex with IgA1-Fc. Nature 423:614–620.

    Article  CAS  PubMed  Google Scholar 

  • Higgins, L. M., Lambkin, I., Donnelly, G., Byrne, D., Wilson, C., Dee, J., Smith, M., and O’Mahony, D. J. (2004). In vivo phage display to identify M cell-targeting ligands. Pharm. Res. 21:695–705.

    Article  CAS  PubMed  Google Scholar 

  • Hooper, L. V. (2004). Laser microdissection: exploring host-bacterial encounters at the front lines. Curr. Opin. Microbiol. 7:290–295.

    Article  PubMed  Google Scholar 

  • Hopkins, S. A., and Kraehenbuhl, J. P. (1997). Dendritic cells of the murine Peyer’s patches colocalize with Salmonella typhimurium avirulent mutants in the subepithelial dome. Adv. Exp. Med. Biol. 417:105–109.

    CAS  PubMed  Google Scholar 

  • Hu, C. B., Lee, E. Y., Hewitt, J. E., Baenziger, J. U., Mu, J. Z., DeSchryver-Kecskemeti, K., and Alpers, D. H. (1991). The minor components of the rat asialoglycoprotein receptor are apically located in neonatal enterocytes. Gastroenterology 101:1477–1487.

    CAS  PubMed  Google Scholar 

  • Iwasaki, A., and Kelsall, B. (2001). Unique functions of CD11b+, CD8a+, and double negative Peyer’s patch dendritic cells. J. Immunol. 166:4884–4890.

    CAS  PubMed  Google Scholar 

  • Iwasaki, A., and Kelsall, B. L. (2000). Localization of distinct Peyer’s patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3t, MIP-3, and secondary lymphoid organ chemokine. J. Exp. Med. 191:1381–1394.

    Article  CAS  PubMed  Google Scholar 

  • Johansen, F. E., Pekna, M., Norderhaug, I. N., Haneberg, B., Hietala, M. A., Krajci, P., Betsholtz, C., and Brandtzaeg, P. (1999). Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190:915–922.

    Article  CAS  PubMed  Google Scholar 

  • Jones, B., Ghori, N., and Falkow, S. (1994). Salmonella typhimurium initiated murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s Patches. J. Exp. Med. 180:15–23.

    Article  CAS  PubMed  Google Scholar 

  • Kato, T. (1990). A study of secretory immunoglobulin A on membranous epithelial cells (M cells) and adjacent absorptive cells of rabbit Peyer’s patches. Gastroenterol. Japon.,25:15–23.

    CAS  Google Scholar 

  • Kelly, D., Conway, S., and Aminov, R. (2005). Commensal gut bacteria: Mechanisms of immune modulation. Trends Immunol. 26:326–333.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura, T., Garofalo, R. P., Kamijo, A., Hammond, D. K., Oka, J. A., Caflisch, C. R., Shenoy, M., Casola, A., Weigel, P. H., and Goldblum, R. M. (2000). Human intestinal epithelial cells express a novel receptor for IgA. J. Immunol. 164:5029–5034.

    CAS  PubMed  Google Scholar 

  • Kraehenbuhl, J. P., and Neutra, M. R. (2000). Epithelial M cells: Differentiation and function. Ann. Rev. Cell Develop. Biol. 16:301–332.

    Article  CAS  Google Scholar 

  • Lamm, M. E. (1997). Interactions of antigens and antibodies at mucosal surfaces. Ann. Rev. Microbiol. 51:311–340.

    Article  CAS  Google Scholar 

  • Lelouard, H., Reggio, H., Manget, P., Neutra, M., and Mountcourrier, P. (1999). Mucin related epitopes distinguish M cells and enterocytes in rabbit appendix and Peyer’s patches. Infect. Immun. 67:357–367.

    CAS  PubMed  Google Scholar 

  • Lo, D., Tynan, W., Dickerson, J., Mendy, J., Chang, H. W., Scharf, M., Byrne, D., Brayden, D., Higgins, L., Evans, C., and O’Mahony, D. J. (2003). Peptidoglycan recognition protein expression in mouse Peyer’s Patch follicle associated epithelium suggests functional specialization. Cell. Immunol. 224:8–16.

    Article  CAS  PubMed  Google Scholar 

  • Lo, D., Tynan, W., Dickerson, J., Scharf, M., Cooper, J., Byrne, D., Brayden, D., Higgins, L., Evans, C., and O’Mahony, D. J. (2004). Cell culture modeling of specialized tissue: Identification of genes expressed specifically by follicle-associated epithelium of Peyer’s patch by expression profiling of Caco-2/Raji co-cultures. Int. Immunol. 16:91–99.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald, T. T., and Monteleone, G. (2005). Immunity, inflammation, and allergy in the gut. Science 307:1920–1925.

    Article  CAS  PubMed  Google Scholar 

  • Macpherson, A. J., Gatto, D., Sainsbury, E., Harriman, G. R., Hengartner, H., and Zinkernagel, R. M. (2000). A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288:2222–2226.

    Article  CAS  PubMed  Google Scholar 

  • Mantis, N. J., Frey, A. F., and Neutra, M. R. (2000). Accessibility of glycolipid and glycoprotein epitopes on rabbit villus and follicle-associated epithelium. Am. J. Physiol. 278:G915–G924.

    CAS  Google Scholar 

  • Mantis, N. J., Cheung, M. C., Chintalacharuvu, K. R., Rey, J., Corthésy, B., and Neutra, M. R. (2002). Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J. Immunol. 169:1844–1851.

    CAS  PubMed  Google Scholar 

  • Mantis, N. J., Farrant, S. A., and Mehta, S. (2004). Oligosaccharide side chains on human secretory IgA serve as receptors for ricin. J. Immunol. 172:6838–6845.

    CAS  PubMed  Google Scholar 

  • Mantis, N. J., and Wagner, J. S. (2004). Analysis of adhesion molecules involved in leukocyte homing into the basolateral pockets of mouse Peyer’s patch M cells. J. Drug Target. (special issue on Cellular Aspects of Targeting in the Gastrointestinal Tract) 12:79–87.

    Google Scholar 

  • Marcial, M. A., and Madara, J. L. (1986). Cryptosporidium: Cellular localization, structural analysis of absorptive cell-parasite membrane-membrane interactions in guinea pigs, and suggestion of protozoan transport by M cells. Gastroenterology 90:583–594.

    CAS  PubMed  Google Scholar 

  • Mellman, I., and Plutner, H. (1984). Internalization and degradation of macrophage Fc receptors bound to polyvalent immune complexes. J. Cell Biol. 98:1170–1177.

    Article  CAS  PubMed  Google Scholar 

  • Mellman, I., Plutner, H., and Ukkonen, P. (1984). Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody: Possible role of a prelysosomal compartment. J. Cell Biol. 98:1163–1169.

    Article  CAS  PubMed  Google Scholar 

  • Michetti, P., Porta, N., Mahan, M. J., Slauch, J. M., Mekalanos, J. J., Blum, A., Kraehenbuhl, J. P., and Neutra, M. R. (1994). Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by Salmonella typhimurium. Gastroenterology 107:915–923.

    CAS  PubMed  Google Scholar 

  • Monteiro, R. C., and van de Winkel, J. G. (2003). IgA Fc receptors. Ann. Rev. Immunol. 21:177–204.

    Article  CAS  Google Scholar 

  • Moura, I. C., Arcos-Fajardo, M., Sadaka, C., Leroy, V., Benhamou, M., Novak, J., Vrtovsnik, F., Haddad, E., Chintalacharuvu, K. R., and Monteiro, R. C. (2004). Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J. Am. Soc. Nephrol. 15:622–634.

    Article  CAS  PubMed  Google Scholar 

  • Moura, I. C., Centelles, M. N., Arcos-Fajardo, M., Malheiros, D. M., Collawn, J. F., Cooper, M. D., and Monteiro, R. C. (2001). Identification of the transferrin receptor as a novel immunoglobulin (Ig) A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J. Exp. Med. 194:417–425.

    Article  CAS  Google Scholar 

  • Mowat, A. M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3:331–341.

    Article  CAS  PubMed  Google Scholar 

  • Mu, J.-Z., Gordon, M., Shao, J.-S., and Alpers, D. H. (1997). Apical expression of functional asialoglycoprotein receptor in human intestinal epithelial cell line HT-29. Gastroenterology 113:1501–1509.

    Article  CAS  PubMed  Google Scholar 

  • Neutra, M., Mantis, N., and Kraehenbuhl, J. P. (2001). Collaboration of epithelial cells with organized mucosal lymphoid tissue. Nat. Immunol. 2:1004–1009.

    Article  CAS  PubMed  Google Scholar 

  • Neutra, M., Phillips, T., Mayer, E., and Fishkind, D. (1987). Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch. Cell Tissue Res. 247:537–546.

    Article  CAS  PubMed  Google Scholar 

  • Neutra, M. R., Frey, A., and Kraehenbuhl, J. P. (1996). Epithelial M cells: Gateways for mucosal infection and immunization. Cell 86:345–348.

    Article  CAS  PubMed  Google Scholar 

  • Niedergang, F., Sirard, J. C., Blanc, C. T., and Kraehenbuhl, J. P. (2000). Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors. Proc. Natl. Acad. Sci. USA 97:14, 650–14, 655.

    Google Scholar 

  • O’Leary, A. D., and Sweeney, E. C. (1986). Lymphoglandular complexes of the colon: structure and distribution. Histopathology 10:267–283.

    Article  PubMed  Google Scholar 

  • Owen, R., and Bhalla, D. (1983). Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer’s Patch M cells. Am. J. Anat, 168:199–212.

    Article  CAS  PubMed  Google Scholar 

  • Owen, R., Pierce, N., Apple, R., and Cray W., Jr. (1986). M Cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s Patches: A mechanism for antigen sampling and for microbial transepithelial migration. J. Infect. Dis. 153:1108–1118.

    CAS  PubMed  Google Scholar 

  • Pappo, J., and Ermak, T. H. (1989). Uptake and translocation of fluorescent latex particles by rabbit Peyer’s patch follicle epithelium: A quantitative model for M cell uptake. Clin. Exp. Immunol. 76:144–148.

    CAS  PubMed  Google Scholar 

  • Pappo, J., and Owen, R. L. (1988). Absence of secretory component expression by epithelial cells overlying rabbit gut-associated lymphoid tissue. Gastroenterology 95:1173–1174.

    CAS  PubMed  Google Scholar 

  • Pleass, R. J., Dunlop, J. I., Anderson, C. M., and Woof, J. M. (1999). Identification of residues in the CH2/CH3 domain interface of IgA essential for interaction with the human Fcf receptor (Fc R) CD89. J. Biol. Chem. 274:23, 508–23, 514.

    Google Scholar 

  • Pron, B., Boumaila, C., Jaubert, F., Berche, P., Milon, G., Geissmann, F., and Gaillard, J. L. (2001). Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell. Microbiol. 3:331–340.

    Article  CAS  PubMed  Google Scholar 

  • Quan, C. P., Berneman, A., Pires, R., Avrameas, S., and Bouvet, J. P. (1997). Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect. Immun. 65:3997–4004.

    CAS  PubMed  Google Scholar 

  • Rey, J., Garin, N., Spertini, F., and Corthésy, B. (2004). Targeting of secretory IgA to Peyer’s patch dendritic and T cells after transport by intestinal M cells. J. Immunol. 172:3026–3033.

    CAS  PubMed  Google Scholar 

  • Rodewald, R., and Kraehenbuhl, J. P. (1984). Receptor-mediated transport of IgG. J. Cell Biol. 99:159S–164S.

    Article  CAS  PubMed  Google Scholar 

  • Roy, M. J., and Varvayanis, M. (1987). Development of dome epithelium in gut-associated lymphoid tissues: Association of IgA with M cells. Cell Tissue Res. 248:645–651.

    Article  CAS  PubMed  Google Scholar 

  • Royle, L., Roos, A., Harvey, D. J., Wormald, M. R., van Gijlswijk-Janssen, D., Redwan el, R. M., Wilson, I. A., Daha, M. R., Dwek, R. A., and Rudd, P. M. (2003). Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J. Biol. Chem. 278:20, 140–20, 153.

    Google Scholar 

  • Sakamoto, N., Shibuya, K., Shimizu, Y., Yotsumoto, K., Miyabayashi, T., Sakano, S., Tsuji, T., Nakayama, E., Nakauchi, H., and Shibuya, A. (2001). A novel Fc receptor for IgA and IgM is expressed on both hematopoietic and non-hematopoietic tissues. Eur. J. Immunol. 31:1310–1316.

    Article  CAS  PubMed  Google Scholar 

  • Sansonetti, P. J., Arondel, J., Cantey, J. R., Prevost, M. C., and Huerre, M. (1996). Infection of rabbit Peyer’s patches by Shigella flexneri: Effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infect. Immun. 64:2752–2764.

    CAS  PubMed  Google Scholar 

  • Shreedhar, V. K., Kelsall, B. L., and Neutra, M. R. (2003). Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer’s patches. Infect. Immun. 71:504–509.

    Article  CAS  PubMed  Google Scholar 

  • Sicinski, P., Rowinski, J., Warchol, J. B., Jarzabek, Z., Gut, W., Szczygiel, B., Bielecki, K., and Koch, G. (1990). Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology 98:56–58.

    CAS  PubMed  Google Scholar 

  • Simister, N. E., and Rees, A. R. (1985). Isolation and characterization of an Fc receptor from neonatal rat intestine. Eur. J. Immunol. 15:733–738.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M., Thomas, N., Jenkins, P., Miller, N., Cremaschi, D., and Porta, C. (1995). Selective transport of microparticles across Peyer’s patch follicle-associated M cells from mice and rats. Exp. Physiol. 80:735–743.

    CAS  PubMed  Google Scholar 

  • Snider, D. P., Underdown, B. J., and McDermott, M. R. (1997). Intranasal antigen targeting to MHC class II molecules primes local IgA and serum IgG antibody responses in mice. Immunology 90:323–329.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, K., Meek, B., Doi, Y., Muramatsu, M., Chiba, T., Honjo, T., and Fagarasan, S. (2004). Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA 101:1981–1986.

    Article  CAS  PubMed  Google Scholar 

  • Tohno, M., Shimosato, T., Kitazawa, H., Katoh, S., Iliev, I. D., Kimura, T., Kawai, Y., Watanabe, K., Aso, H., Yamaguchi, T., and Saito, T. (2005). Toll-like receptor 2 is expressed on the intestinal M cells in swine. Biochem. Biophys. Res. Commun. 330:547–554.

    Article  CAS  PubMed  Google Scholar 

  • Tomana, M., Zikan, J., Moldoveanu, Z., Kulhavy, R., Bennett, J. C., and Mestecky, J. (1993). Interactions of cell-surface galactosyltransferase with immunoglobulins. Mol. Immunol. 30:265–275.

    Article  CAS  PubMed  Google Scholar 

  • Trombetta, E. S., and Mellman, I. (2005). Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23:975–1028.

    Article  CAS  PubMed  Google Scholar 

  • van der Waaij, L. A., Kroese, F. G., Visser, A., Nelis, G. F., Westerveld, B. D., Jansen, P. L., and Hunter, J. O. (2004). Immunoglobulin coating of faecal bacteria in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 16:669–674.

    Article  PubMed  Google Scholar 

  • van der Waaij, L. A., Limburg, P. C., Mesander, G., and van der Waaij, D. (1996). In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38:348–354.

    Article  PubMed  Google Scholar 

  • van Egmond, M., Damen, C. A., van Spriel, A. B., Vidarsson, G., van Garderen, E., and van de Winkel, J. G. (2001). IgA and the IgA Fc receptor. Trends Immunol. 22:205–211.

    Article  PubMed  Google Scholar 

  • Weltzin, R., Lucia-Jandris, P., Michetti, P., Fields, B. N., Kraehenbuhl, J. P., and Neutra, M. R. (1989). Binding and transepithelial transport of immunoglobulins by intestinal M cells: Demonstration using monoclonal IgA antibodies against enteric viral proteins. J. Cell Biol. 108:1673–1685.

    Article  CAS  PubMed  Google Scholar 

  • Williams, N. A., Hirst, T. R., and Nashar, T. O. (1999). Immune modulation by the cholera-like enterotoxins: From adjuvant to therapeutic. Immunol. Today 20:95–101.

    Article  CAS  PubMed  Google Scholar 

  • Wold, A. E., Mestecky, J., Tomona, M., Kobata, A., Ohbayashi, H., Endo, T., and Eden, C. S. (1990). Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect. Immun. 58:3073–3077.

    CAS  PubMed  Google Scholar 

  • Wolf, J., Rubin, D., Finberg, R., Kauffman, R., Sharpe, A., Trier, J., and Fields, B. (1981). Intestinal M cells: A pathway for entry of reovirus into the host. Science 212:471–472.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, T., Helgeland, L., Farstad, I. N., Fukushima, H., Midtvedt, T., and Brandtzaeg, P. (2003). Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J. Immunol. 170:816–822.

    CAS  PubMed  Google Scholar 

  • Yamanaka, T., Straumfors, A., Morton, H., Fausa, O., Brandtzaeg, P., and Farstad, I. (2001). M cell pockets of human Peyer’s patches are specialized extensions of germinal centers. Eur. J. Immunol. 31:107–117.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, T., Straumfors, A., Morton, H. C., Rugtveit, J., Fausa, O., Brandtzaeg, P., and Farstad, I. N. (1999). Prominent expression of co-stimulatory molecules B7.1 (CD80) and B7.2 (CD86) by sIgDCD20lo memory B cells in human Peyer’s patch M cell pockets. Immunol. Lett. 69:42.

    Google Scholar 

  • Zhou, F., Kraehenbuhl, J. P., and Neutra, M. R. (1995). Mucosal IgA response to rectally administered antigen formulated liposomes in IgA coated liposomes. Vaccine 13:637–644.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mantis, N.J., Corthésy, B. (2007). IgA and Antigen Sampling. In: Kaetzel, C.S. (eds) Mucosal Immune Defense: Immunoglobulin A. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72232-0_9

Download citation

Publish with us

Policies and ethics