Skip to main content

Micron-Sized Iron Oxide Particles (MPIOs) for Cellular Imaging: More Bang for the Buck

  • Chapter
Nanoparticles in Biomedical Imaging

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 102))

Abstract

Iron oxide particles have been used for molecular and cellular magnetic resonance imaging since the 1980s. Interestingly, early research in these fields used particles in the micron size range. After a long disappearance, the utility of micron-sized iron oxide particles, or MPIOs, has been rediscovered, largely due to their improved construction and stability. Due to the very high iron content of single MPIOs, their use as a cell-tracking agent has enabled the detection of single particles in single cells, the detection of single cells in vivo, and the ability to label cells directly in vivo. This chapter begins by discussing the physical and magnetic properties of MPIOs and compares them to the more commonly used iron oxide particles, USPIOs and SPIOs. Next, the unique properties of MPIOs as an MRI agent are illustrated, with examples of MRI experiments on the particles themselves, and on cells labeled with MPIOs. The chapter then reviews work on various applications of cell therapy, using cells labeled with MPIOs, with a section on the detection of single cells in vivo. Lastly, there is a presentation of work using MPIOs to directly label cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, E.T., Feili-Hariri, M., Xu, H., Genove, G., Morel, P.A., 2003. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49, 1006–1013.

    Article  PubMed  CAS  Google Scholar 

  • Arbuthnott, G.W., Dunnett, S.B., 1990. Indentification of grafted neurons with fluorescent-labelled microspheres. In: Dunnett, S.B., Richards, S.J. (Eds.), Progress in Brain Research. Elsevier Science Publisher B.V., Amsterdam, pp. 385–390.

    Google Scholar 

  • Artemov, D., Bhujwalla, Z.M., Bulte, J.W., 2004. Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol 5, 485–494.

    Article  PubMed  CAS  Google Scholar 

  • Benderbous, S., Corot, C., Jacobs, P., Bonnemain, B., 1996. Superparamagnetic agents: physicochemical characteristics and preclinical imaging evaluation. Acad Radiol 3 Suppl 2, S292–S294.

    Article  PubMed  Google Scholar 

  • Bowen, C.V., Zhang, X., Saab, G., Gareau, P.J., Rutt, B.K., 2002. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Bulte, J.W., Hoekstra, Y., Kamman, R.L., Magin, R.L., Webb, A.G., Briggs, R.W., Go, K.G., Hulstaert, C.E., Miltenyi, S., The, T.H., 1992. Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med 25, 148–157.

    Article  PubMed  CAS  Google Scholar 

  • Callaghan, P.T., 1993. Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford, England.

    Google Scholar 

  • Corot, C., Petry, K.G., Trivedi, R., Saleh, A., Jonkmanns, C., Le Bas, J.F., Blezer, E., Rausch, M., Brochet, B., Foster-Gareau, P., Baleriaux, D., Gaillard, S., Dousset, V., 2004. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 39, 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, C.H., Arai, T., Yang, P.C., McConnell, M.V., Pauly, J.M., Conolly, S.M., 2005. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53, 999–1005.

    Article  PubMed  CAS  Google Scholar 

  • Deans, A.E., Wadghiri, Y.Z., Turnbull, D.H., 2006. MRI of neural progenitor migration in the developing mouse brain. Proc 14th ISMRM, abstract #355.

    Google Scholar 

  • Dick, A.J., Guttman, M.A., Raman, V.K., Peters, D.C., Pessanha, B.S., Hill, J.M., Smith, S., Scott, G., McVeigh, E.R., Lederman, R.J., 2003. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 108, 2899–2904.

    Article  PubMed  Google Scholar 

  • Dodd, S.J., Williams, M., Suhan, J.P., Williams, D.S., Koretsky, A.P., Ho, C., 1999. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J 76, 103–109.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch, F., Alvarez-Buylla, A., 1996. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad SciUSA 93, 14895–14900.

    Article  CAS  Google Scholar 

  • Dunning, M.D., Kettunen, M.I., Ffrench, C.C., Franklin, R.J., Brindle, K.M., 2006. Magnetic resonance imaging of functional Schwann cell transplants labelled with magnetic microspheres. Neuroimage 31, 172–180.

    Article  PubMed  Google Scholar 

  • Foster-Gareau, P., Heyn, C., Alejski, A., Rutt, B.K., 2003. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 49, 968–971.

    Article  PubMed  Google Scholar 

  • Frank, J.A., Miller, B.R., Arbab, A.S., Zywicke, H.A., Jordan, E.K., Lewis, B.K., Bryant, L.H., Jr., Bulte, J.W., 2003. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228, 480–487.

    Article  PubMed  Google Scholar 

  • Frank, J.A., Zywicke, H., Jordan, E.K., Mitchell, J., Lewis, B.K., Miller, B., Bryant, L.H., Jr., Bulte, J.W., 2002. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9 Suppl 2, S484–S487.

    Article  PubMed  Google Scholar 

  • Hawrylak, N., Ghosh, P., Broadus, J., Schlueter, C., Greenough, W.T., Lauterbur, P.C., 1993. Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp Neurol 121, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Heyn, C., Ronald, J.A., Mackenzie, L.T., MacDonald, I.C., Chambers, A.F., Rutt, B.K., Foster, P.J., 2006. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55, 23–29.

    Article  PubMed  Google Scholar 

  • Hill, J.M., Dick, A.J., Raman, V.K., Thompson, R.B., Yu, Z.X., Hinds, K.A., Pessanha, B.S., Guttman, M.A., Varney, T.R., Martin, B.J., Dunbar, C.E., McVeigh, E.R., Lederman, R.J., 2003. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108, 1009–1014.

    Article  PubMed  Google Scholar 

  • Hinds, K.A., Hill, J.M., Shapiro, E.M., Laukkanen, M.O., Silva, A.C., Combs, C.A., Varney, T.R., Balaban, R.S., Koretsky, A.P., Dunbar, C.E., 2003. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102, 867–872.

    Article  PubMed  CAS  Google Scholar 

  • Hogemann, D., Josephson, L., Weissleder, R., Basilion, J.P., 2000. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjug Chem 11, 941–946.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Q., Zhang, Z.G., Ding, G.L., Zhang, L., Ewing, J.R., Wang, L., Zhang, R., Li, L., Lu, M., Meng, H., Arbab, A.S., Hu, J., Li, Q.J., Pourabdollah Nejad, D.S., Athiraman, H., Chopp, M., 2005. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28, 698–707.

    Article  PubMed  Google Scholar 

  • Josephson, L., Tung, C.H., Moore, A., Weissleder, R., 1999. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10, 186–191.

    Article  PubMed  CAS  Google Scholar 

  • Lauterbur, P.C., Bernardo, M.L., Jr., Mendonca Dias, M.H., Heldman, A.W., 1986. Microscopic NMR imaging of the magnetic fields around magnetite particles. Proc 5th SMRM, 229.

    Google Scholar 

  • Perez, J.M., Josephson, L., O’Loughlin, T., Hogemann, D., Weissleder, R., 2002a. Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20, 816–820.

    CAS  Google Scholar 

  • Perez, J.M., O’Loughin, T., Simeone, F.J., Weissleder, R., Josephson, L., 2002b. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc 124, 2856–2857.

    Article  CAS  Google Scholar 

  • Ponder, K.P., Gupta, S., Leland, F., Darlington, G., Finegold, M., DeMayo, J., Ledley, F.D., Chowdhury, J.R., Woo, S.L., 1991. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sci USA 88, 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  • Raynal, I., Prigent, P., Peyramaure, S., Najid, A., Rebuzzi, C., Corot, C., 2004. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 39, 56–63.

    Article  PubMed  CAS  Google Scholar 

  • Renshaw, P.F., Owen, C.S., Evans, A.E., Leigh, J.S., Jr., 1986. Immunospecific NMR contrast agents. Magn Reson Imaging 4, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, O., Fricke, S., Chien, C., Dettin, L., Vanmeter, J., Shapiro, E., Dai, H.N., Casimiro, M., Ileva, L., Dagata, J., Johnson, M.D., Lisanti, M.P., Koretsky, A., Albanese, C., 2006. Contrast-enhanced in vivo imaging of breast and prostate cancer cells by MRI. Cell Cycle 5, 113–119.

    PubMed  CAS  Google Scholar 

  • Saini, S., Stark, D.D., Hahn, P.F., Bousquet, J.C., Introcasso, J., Wittenberg, J., Brady, T.J., Ferrucci, J.T., Jr., 1987a. Ferrite particles: a superparamagnetic MR contrast agent for enhanced detection of liver carcinoma. Radiology 162, 217–222.

    CAS  Google Scholar 

  • Saini, S., Stark, D.D., Hahn, P.F., Wittenberg, J., Brady, T.J., Ferrucci, J.T., Jr., 1987b. Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 162, 211–216.

    CAS  Google Scholar 

  • Shapiro, E.M., Gonzalez-Perez, O., Garcia-Verdugo, J.M., Alvarez-Buylla, A., Koretsky, A.P., 2006a. Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage. 32, 1150–1157.

    Article  Google Scholar 

  • Shapiro, E.M., Medford-Davis, L.N., Dunbar, C.E., Koretsky, A.P., 2006b. Antibody mediated cell labeling of peripheral T cells with micron sized iron oxide particles (MPIOs) allows single cell detection by MRI. Proc 14th ISMRM, abstract # 1868.

    Google Scholar 

  • Shapiro, E.M., Medford-Davis, L.N., Fahmy, T., Dunbar, C.E., Koretsky, A.P., 2007. Antibody-red cell labeling of peripheral T cells with micron-Sized iron oxide particles 7. Micron-Sized Iron Oxide Particles for Cellular Imaging 161 (MPIOs) allows single cell detection by MRI, Contest Media and Molecular Imaging, 2, 53.

    Google Scholar 

  • Shapiro, E.M., Sharer, K., Skrtic, S., Koretsky, A.P., 2006c. In vivo detection of single cells by MRI. Magn Reson Med 55, 242–249.

    Article  Google Scholar 

  • Shapiro, E.M., Skrtic, S., Koretsky, A.P., 2005. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53, 329–338.

    Article  PubMed  Google Scholar 

  • Shapiro, E.M., Skrtic, S., Sharer, K., Hill, J.M., Dunbar, C.E., Koretsky, A.P., 2004. MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101, 10901–10906.

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto, A., Pouliquen, D., Kreft, B.P., Stark, D.D., 1994. Effects of spatial distribution on proton relaxation enhancement by particulate iron eoxide. J Magn Reson Imaging 4, 653–657.

    Article  PubMed  CAS  Google Scholar 

  • Tracy, K., Yin, J.J., Munasinghe, J., Shapiro, E.M., Koretsky, A.P., Kelly, K., 2006. The role of VEGF in growth of brain metastases from single cells as visualized by contrast enhanced MRI. Proc 14th ISMRM, abstract # 466.

    Google Scholar 

  • Vreys, R., Peleman, C., Geraerts, M., De Cuyper, M., Debyser, Z., Baekelandt, V., Ven der Linden, A., 2006. Validation of magnetoliposomes as MR contrast agents for in situ labeling of endogenous neural progenitor cells in the mouse brain. Proc 14th ISMRM, abstract #356.

    Google Scholar 

  • Weisskoff, R.M., Zuo, C.S., Boxerman, J.L., Rosen, B.R., 1994. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31, 601–610.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y.L., Ye, Q., Foley, L.M., Hitchens, T.K., Sato, K., Williams, J.B., Ho, C., 2006. In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. Proc Natl Acad Sci USA 103, 1852–1857.

    Google Scholar 

  • Yeh, T.C., Zhang, W., Ildstad, S.T., Ho, C., 1993. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med 30, 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, R.L., Zhang, L., Zhang, Z.G., Morris, D., Jiang, Q., Wang, L., Zhang, L.J., Chopp, M., 2003. Migration and differentiation of adult rat subventricular zone progenitor cells transplanted into the adult rat striatum. Neuroscience 116, 373–382.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Jiang, Q., Jiang, F., Ding, G., Zhang, R., Wang, L., Zhang, L., Robin, A.M., Katakowski, M., Chopp, M., 2004. In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage. 23, 281–287.

    Article  PubMed  CAS  Google Scholar 

  • Zurkiya, O., Hu, X., 2006. Off-resonance saturation as a means of generating contrast with superparamagnetic nanoparticles. Magn Reson Med 56, 726–732.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shapiro, E.M., Koretsky, A.P. (2008). Micron-Sized Iron Oxide Particles (MPIOs) for Cellular Imaging: More Bang for the Buck. In: Bulte, J.W., Modo, M.M. (eds) Nanoparticles in Biomedical Imaging. Fundamental Biomedical Technologies, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72027-2_7

Download citation

Publish with us

Policies and ethics