Skip to main content

Antimicrobial C3a –Biology, Biophysics, and Evolution

  • Conference paper
Current Topics in Innate Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 598))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, E., Rydengard, V., Sonesson, A., Morgelin, M., Bjorck, L., and Schmidtchen, A. (2004) Antimicrobial activities of heparin-binding peptides. Eur J Biochem 271: 1219-1226.

    Article  PubMed  CAS  Google Scholar 

  • Baev, D., Li, X.S., Dong, J., Keng, P., and Edgerton, M. (2002) Human salivary histatin 5 causes disordered volume regulation and cell cycle arrest in Candida albicans. Infect Immun 70: 4777-4784.

    Article  PubMed  CAS  Google Scholar 

  • Boman, H.G., Agerberth, B., and Boman, A. (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61: 2978-2984.

    PubMed  CAS  Google Scholar 

  • Brogden, K.A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3: 238-250.

    Article  PubMed  CAS  Google Scholar 

  • Bulet, P., Stocklin, R., and Menin, L. (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198: 169-184.

    Article  PubMed  CAS  Google Scholar 

  • Caporale, L.H., Tippett, P.S., Erickson, B.W., and Hugli, T.E. (1980) The active site of C3a anaphylatoxin. J Biol Chem 255: 10758-10763.

    PubMed  CAS  Google Scholar 

  • Den Hertog, A.L., Wong Fong Sang, H.W., Kraayenhof, R., Bolscher, J.G., Van’t Hof, W., Veerman, E.C., and Nieuw Amerongen, A.V. (2004) Interactions of histatin 5 and histatin 5-derived peptides with liposome membranes: surface effects, translocation and permeabilization. Biochem J 379: 665-672.

    Article  Google Scholar 

  • Epand, R.F., Ramamoorthy, A., and Epand, R.M. (2006) Membrane lipid composition and the interaction of pardaxin: the role of cholesterol. Protein Pept Lett 13: 1-5.

    Article  PubMed  CAS  Google Scholar 

  • Ganz, T. (2001) Antimicrobial proteins and peptides in host defense. Semin Respir Infect 16: 4-10.

    Article  PubMed  CAS  Google Scholar 

  • Glukhov, E., Stark, M., Burrows, L.L., and Deber, C.M. (2005) Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem 280: 33960-33967.

    Article  PubMed  CAS  Google Scholar 

  • Hallock, K.J., Lee, D.K., Omnaas, J., Mosberg, H.I., and Ramamoorthy, A. (2002) Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 83: 1004-1013.

    PubMed  CAS  Google Scholar 

  • Huber, R., Scholze, H., Paques, E.P., and Deisenhofer, J. (1980) Crystal structure analysis and molecular model of human C3a anaphylatoxin. Hoppe Seylers Z Physiol Chem 361: 1389-1399.

    Google Scholar 

  • Hugli, T.E. (1990) Structure and function of C3a anaphylatoxin. Curr Top Microbiol Immunol 153: 181-208.

    PubMed  CAS  Google Scholar 

  • Janssen, B.J., Huizinga, E.G., Raaijmakers, H.C., Roos, A., Daha, M.R., Nilsson-Ekdahl, K., Nilsson, B., and Gros, P. (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437: 505-511.

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto, S., Yalcindag, A., Laouini, D., Brodeur, S., Bryce, P., Lu, B., Humbles, A.A., Oettgen, H., Gerard, C., and Geha, R.S. (2004) The anaphylatoxin C3a downregulates the Th2 response to epicutaneously introduced antigen. J Clin Invest 114: 399-407.

    Article  PubMed  CAS  Google Scholar 

  • Koshlukova, S.E., Lloyd, T.L., Araujo, M.W., and Edgerton, M. (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274: 18872-18879.

    Article  PubMed  CAS  Google Scholar 

  • Kozel, T.R. (1996) Activation of the complement system by pathogenic fungi. Clin Microbiol Rev 9: 34-46.

    PubMed  CAS  Google Scholar 

  • Kozel, T.R., Weinhold, L.C., and Lupan, D.M. (1996) Distinct characteristics of initiation of the classical and alternative complement pathways by Candida albicans. Infect Immun 64: 3360-3368.

    PubMed  CAS  Google Scholar 

  • Lee, M.T., Hung, W.C., Chen, F.Y., and Huang, H.W. (2005) Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation. Biophys J 89: 4006-4016.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer, R.I., and Ganz, T. (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9: 18-22.

    Article  PubMed  Google Scholar 

  • Lohner, K., and Blondelle, S.E. (2005) Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics. Comb Chem High Throughput Screen 8: 241-256.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z.X., Fok, K.F., Erickson, B.W., and Hugli, T.E. (1984) Conformational analysis of COOH-terminal segments of human C3a. Evidence of ordered conformation in an active 21-residue peptide. J Biol Chem 259: 7367-7370.

    PubMed  CAS  Google Scholar 

  • Maxwell, A.I., Morrison, G.M., and Dorin, J.R. (2003) Rapid sequence divergence in mammalian beta-defensins by adaptive evolution. Mol Immunol 40: 413-421.

    Article  PubMed  CAS  Google Scholar 

  • Nonaka, M., and Yoshizaki, F. (2004) Evolution of the complement system. Mol Immunol 40: 897-902.

    Article  PubMed  CAS  Google Scholar 

  • Nordahl, E.A., Rydengard, V., Nyberg, P., Nitsche, D.P., Morgelin, M., Malmsten, M., Bjorck, L., and Schmidtchen, A. (2004) Activation of the complement system generates antibacterial peptides. Proc Natl Acad Sci U S A 101: 16879-16884.

    Article  PubMed  CAS  Google Scholar 

  • Odds, F.C. (1988) Candida and candidosis. London ; Philadelphia: Bailliére Tindall.

    Google Scholar 

  • Ohki, S., Marcus, E., Sukumaran, D.K., and Arnold, K. (1994) Interaction of melittin with lipid membranes. Biochim Biophys Acta 1194: 223-232.

    Article  PubMed  CAS  Google Scholar 

  • Opekarova, M., and Tanner, W. (2003) Specific lipid requirements of membrane proteins–a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610: 11-22.

    Article  PubMed  CAS  Google Scholar 

  • Pasupuleti, M., Walse, B., Nordahl, E.A., Morgelin, M., Malmsten, M., and Schmidtchen, A. (2006) Preservation of antimicrobial properties of complement peptide C3a - from invertebrates to humans. J Biol Chem.

    Google Scholar 

  • Pinto, M.R., Chinnici, C.M., Kimura, Y., Melillo, D., Marino, R., Spruce, L.A., De Santis, R., Parrinello, N., and Lambris, J.D. (2003) CiC3-1a-mediated chemotaxis in the deuterostome invertebrate Ciona intestinalis (Urochordata). J Immunol 171: 5521-5528.

    PubMed  CAS  Google Scholar 

  • Pitarch, A., Sanchez, M., Nombela, C., and Gil, C. (2003) Analysis of the Candida albicans proteome. II. Protein information technology on the Net (update 2002). J Chromatogr B Analyt Technol Biomed Life Sci 787: 129-148.

    Article  PubMed  CAS  Google Scholar 

  • Powers, J.P., and Hancock, R.E. (2003) The relationship between peptide structure and antibacterial activity. Peptides 24: 1681-1691.

    Article  PubMed  CAS  Google Scholar 

  • Ringstad, L., Andersson Nordahl, E., Schmidtchen, A., and Malmsten, M. (2007) Composition Effect on Peptide Interaction with Lipids and Bacteria: Variants of C3a Peptide CNY21. Biophys J 92: 87-98.

    Article  PubMed  CAS  Google Scholar 

  • Savolainen, J., Lammintausta, K., Kalimo, K., and Viander, M. (1993) Candida albicans and atopic dermatitis. Clin Exp Allergy 23: 332-339.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, L.B., Kawahara, M.S., Hugli, T.E., Vik, D., Fearon, D.T., and Austen, K.F. (1983) Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase. J Immunol 130: 1891-1895.

    PubMed  CAS  Google Scholar 

  • Selsted, M.E., Brown, D.M., DeLange, R.J., Harwig, S.S., and Lehrer, R.I. (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem 260: 4579-4584.

    PubMed  CAS  Google Scholar 

  • Selsted, M.E., Harwig, S.S., Ganz, T., Schilling, J.W., and Lehrer, R.I. (1985) Primary structures of three human neutrophil defensins. J Clin Invest 76: 1436-1439.

    PubMed  CAS  Google Scholar 

  • Semple, C.A., Rolfe, M., and Dorin, J.R. (2003) Duplication and selection in the evolution of primate beta-defensin genes. Genome Biol 4: R31.

    Article  PubMed  Google Scholar 

  • Shai, Y. (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66: 236-248.

    Article  PubMed  CAS  Google Scholar 

  • Skarnes, R.C., and Watson, D.W. (1957) Antimicrobial factors of normal tissues and fluids. Bacteriol Rev 21: 273-294.

    PubMed  CAS  Google Scholar 

  • Sohnle, P.G., and Kirkpatrick, C.H. (1976) Deposition of complement in the lesions of experimental cutaneous candidiasis in guinea pigs. J Cutan Pathol 3: 232-238.

    Article  PubMed  CAS  Google Scholar 

  • Sonesson, A., Ringstad, L., Andersson Nordahl, E., Malmsten, M., Morgelin, M., and Schmidtchen, A. (2006) Antifungal activity of C3a and C3a-derived peptides against Candida. Biochim Biophys Acta.

    Google Scholar 

  • Steiner, H., Hultmark, D., Engström, A., Bennich, H., and Boman, H.G. (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248.

    Article  PubMed  CAS  Google Scholar 

  • Sunyer, J.O., Boshra, H., and Li, J. (2005) Evolution of anaphylatoxins, their diversity and novel roles in innate immunity: insights from the study of fish complement. Vet Immunol Immunopathol 108: 77-89.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J.C., Crawford, I.P., and Hugli, T.E. (1977) Limited degradation of the third component (C3) of human complement by human leukocyte elastase (HLE): partial characterization of C3 fragments. Biochemistry 16: 3390-3396.

    Article  PubMed  CAS  Google Scholar 

  • Tennessen, J.A. (2005) Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection. J Evol Biol 18: 1387-1394.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Agerberth, B., Lothgren, A., Almstedt, A., and Johansson, J. (1998) Apolipoprotein A-I binds and inhibits the human antibacterial/cytotoxic peptide LL-37. J Biol Chem 273: 33115-33118.

    Article  PubMed  CAS  Google Scholar 

  • Werfel, T., Kirchhoff, K., Wittmann, M., Begemann, G., Kapp, A., Heidenreich, F., Gotze, O., and Zwirner, J. (2000) Activated human T lymphocytes express a functional C3a receptor. J Immunol 165: 6599-6605.

    PubMed  CAS  Google Scholar 

  • Williamson, M.P., and Madison, V.S. (1990) Three-dimensional structure of porcine C5adesArg from 1H nuclear magnetic resonance data. Biochemistry 29: 2895-2905.

    Article  PubMed  CAS  Google Scholar 

  • Wright, J., Schwartz, J.H., Olson, R., Kosowsky, J.M., and Tauber, A.I. (1986) Proton secretion by the sodium/hydrogen ion antiporter in the human neutrophil. J Clin Invest 77: 782-788.

    Article  PubMed  CAS  Google Scholar 

  • Yount, N.Y., Bayer, A.S., Xiong, Y.Q., and Yeaman, M.R. (2006) Advances in antimicrobial peptide immunobiology. Biopolymers.

    Google Scholar 

  • Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84: 5449-5453.

    Article  PubMed  CAS  Google Scholar 

  • Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.

    Article  PubMed  CAS  Google Scholar 

  • Zelezetsky, I., Pontillo, A., Puzzi, L., Antcheva, N., Segat, L., Pacor, S., Crovella, S., and Tossi, A. (2006a) Evolution of the primate cathelicidin - correlation between structural variations and antimicrobial activity. J Biol Chem.

    Google Scholar 

  • Zelezetsky, I., and Tossi, A. (2006b) Alpha-helical antimicrobial peptides-Using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta.

    Google Scholar 

  • Zeya, H.I., and Spitznagel, J.K. (1963) Antibacterial and Enzymic Basic Proteins from Leukocyte Lysosomes: Separation and Identification. Science 142: 1085-1087.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., and Falla, T.J. (2004) Cationic antimicrobial peptides - an update. Expert Opin Investig Drugs 13: 97-106.

    Article  PubMed  Google Scholar 

  • Zhang, X., Boyar, W., Toth, M.J., Wennogle, L., and Gonnella, N.C. (1997) Structural definition of the C5a C terminus by two-dimensional nuclear magnetic resonance spectroscopy. Proteins 28: 261-267.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Thangamani, S., Ho, B., and Ding, J.L. (2005) The ancient origin of the complement system. Embo J 24: 382-394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Malmsten, M., Schmidtchen, A. (2007). Antimicrobial C3a –Biology, Biophysics, and Evolution. In: Lambris, J.D. (eds) Current Topics in Innate Immunity. Advances in Experimental Medicine and Biology, vol 598. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71767-8_11

Download citation

Publish with us

Policies and ethics