Skip to main content

Pseudogenes and The Electron Transport Chain

  • Conference paper
Oxygen Transport to Tissue XXVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 599))

  • 940 Accesses

Abstract

With the advent of easy access to the human genome sequence, molecular biology techniques to target respirome-specific genes have begun to be exploited in the study of human disorders and in particular human cancers. In some recent publications it would appear that some investigators have inappropriately targeted pseudogenes rather than functional genes. The high transcription level and generally small size of many of the genes in the respirome make them prone to duplications in the form of processed pseudogenes within the human genome. Such genes can be challenging to analyse using standard molecular genetics approaches. In this presentation, we offer an analysis of pseudogenes that have been identified to have significant homology with some elements of the respirome. Other sequence elements such as Alu repeats, which present similar research obstacles, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. F. Vanin. Processed pseudogenes: Characteristics and evolution. Annu. Rev. Genet. 19, 253-272 (1985).

    Article  PubMed  CAS  Google Scholar 

  2. A. J. Mighell, N. R. Smith, P. A. Robinson, and A. F. Markham. Vertebrate pseudogenes. FEBS Lett. 468, 109-114 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. I. Goncalves, L. Duret and D. Mouchiroud. Nature and structure of human genes that generate retropseudogenes. Genome Res. 10(5), 672-678 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. V. E. Prince and F.B. Pickett. Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet. 3(11),827-37 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. D. Torrents, M. Suyama, E. Zdobnov and P. Bork. A genome-wide survey of human pseudogenes. Genome Res. 13(12),2559-2567 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. Z. Zhang, P. M. Harrison, Y. Liu and M. Gerstein. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 13(12), 2541-2558 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. A. M. Weiner, P. L. Deininger and A. Efstratiadis. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 55, 631-661 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. A. Pavlicek, J. Paces, R. Zika and J. Hejnar. Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. Gene. 300(1-2), 189-194 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. M. Hattori, S. Kuhara, O. Takenaka and Y. Sakaki. L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature. 321(6070), 625-628 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. D. D. Luan and T. H. Eickbush. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol Cell Biol. 15(7), 3882-3891 (1995).

    PubMed  CAS  Google Scholar 

  11. G. J. Cost, Q. Feng, A. Jacquier and J. D. Boeke. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21(21),5899-5910 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. D. Grover, M. Mukerji, P. Bhatnagar, K. Kannan and S. K. Brahmachari. Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics. 20(6), 813-817 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860-921 (2001).

    Google Scholar 

  14. Z. Zhang, N. Carriero and M. Gerstein. Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet. 20(2), 62-67 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. E. S. Balakirev and F. J. Ayala. Pseudogenes: are they "junk" or functional DNA? Annu Rev Genet. 37,123-151 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. P. M. Harrison, D. Zheng, Z. Zhang, N. Carriero, M. Gerstein. Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res. 33(8), 2374-2383 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. J. R. McCarrey and K. Thomas. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature. 326(6112), 501-505 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. J. Bristow, S. E. Gitelman, M. K. Tee, B. Staels and W. L. Miller. Abundant adrenal-specific transcription of the human P450c21A "pseudogene".j J Biol Chem. 268(17), 12919-12924 (1993).

    PubMed  CAS  Google Scholar 

  19. S. Ramos-Onsins and M. Aguade. Molecular evolution of the Cecropin multigene family in Drosophila. functional genes vs. pseudogenes. Genetics. 150(1), 157-171 (1998).

    PubMed  CAS  Google Scholar 

  20. S. M. Troyanovsky and R. E. Leube. Activation of the silent human cytokeratin 17 pseudogene-promoter region by cryptic enhancer elements of the cytokeratin 17 gene. Eur J Biochem. 225(1), 61-69 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. O. Podlaha and J. Zhang. Nonneutral evolution of the transcribed pseudogene Makorin1-p1 in mice. Mol Biol Evol. 21(12), 2202-2209 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. B. S. Zhou, D. R. Beidler and Y. C. Cheng. Identification of antisense RNA transcripts from a human DNA topoisomerase I pseudogene. Cancer Res. 52(15), 4280-4285 (1992).

    PubMed  CAS  Google Scholar 

  23. D. Weil, M. A. Power, G. C. Webb and C. L. Li. Antisense transcription of a murine FGFR-3 psuedogene during fetal developement. Gene. 187(1), 115-122 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. I. E. Scheffler. Mitochondria make a come back. Adv Drug Deliv Rev. 49(1-2), 3-26 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. S. Berry. Endosymbiosis and the design of eukaryotic electron transport. Biochim Biophys Acta. 1606(1-3), 57-72 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. O. G. Berg and C. G. Kurland. Why mitochondrial genes are most often found in nuclei. Mol Biol Evol. 17(6), 951-961 (2000).

    PubMed  CAS  Google Scholar 

  27. C. G. Kurland and S. G. Andersson. Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev. 64(4), 786-820 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman. Basic local alignment search tool. J Mol Biol. 215(3), 403-410 (1990).

    PubMed  CAS  Google Scholar 

  29. T. Gabaldon and M. A. Huynen. Shaping the mitochondrial proteome. Biochim Biophys Acta. 1659(2-3), 212-220 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. J. E. Walker. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 25 (3), 253-324 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. U. Weidner, S. Geier, A. Ptock, T. Friedrich, H. Leif and H. Weiss. The gene locus of the proton-translocating NADH: ubiquinone oxidoreductase in Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol. 233(1), 109-122 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. J. Carroll, R. J. Shannon, I. M. Fearnley, J. E. Walker and J. Hirst. Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J Biol Chem. 277(52), 50311-50317 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. T. Gabaldon, D. Rainey and M. A. Huynen. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I). J Mol Biol. 348(4), 857-870 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. A. Khelifi, L. Duret and D. Mouchiroud. HOPPSIGEN: a database of human and mouse processed pseudogenes. Nucleic Acids Res. 33(Database issue), D59-D66 (2005).

    Google Scholar 

  35. K.A. Kreuzer, U. Lass, O. Landt, A. Nitsche, J. Laser, H. Ellerbrok, G. Pauli, D. Huhn and C.A Schmidt. Highly sensitive and specific fluorescence reverse transcription-PCR assay for the pseudogene-free detection of beta-actin transcripts as quantitative reference. Clin Chem.45(2), 297-300 (1999).

    PubMed  CAS  Google Scholar 

  36. D. Zheng, Z. Zhang, P. M. Harrison, J. Karro, N. Carriero and M. Gerstein. Integrated pseudogene annotation for human chromosome 22: evidence for transcription. J Mol Biol. 349(1), 27-45 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Oey, H., Maguire, D., McCabe, M. (2008). Pseudogenes and The Electron Transport Chain. In: Maguire, D.J., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVIII. Advances in Experimental Medicine and Biology, vol 599. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71764-7_14

Download citation

Publish with us

Policies and ethics