Skip to main content

Overview: Actin-Binding Protein Function and Its Relation to Disease Pathology

  • Chapter
Actin-Binding Proteins and Disease

Part of the book series: Protein Reviews ((PRON,volume 8))

  • 1022 Accesses

The actin cytoskeleton generates force and movement responsible for many critical and fundamental cellular processes (see Chap. 1). Force generation and motility are produced by two distinct mechanisms (1) the self-assembly of actin monomers into filaments, which can exert forces against boundaries and particles such as cell membranes, vesicles, organelles, or pathogenic bacteria, and generate movement of these boundaries and (2) through the activity of contractile motor proteins of the myosin family, which generate force and motility along actin filaments. Both mechanisms utilize chemical energy in the form of ATP although hydrolysis of ATP by actin does not contribute to the force generated by actomyosin. Each monomer incorporated into a filament and each myosin mechanical “step” consumes one ATP molecule, generating ADP and Pi as the hydrolysis products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, K. M., Gleeson, J. G., Bagrodia, S., Partington, M. W., MacMillan, J. C., Cerione, R. A., Mulley, J. C. and Walsh, C. A. 1998. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 20, 25-30.

    Article  PubMed  Google Scholar 

  • Anstee, D. J., Ridgwell, K., Tanner, M. J., Daniels, G. L. and Parsons, S. F. 1984. Individuals lacking the Gerbich blood-group antigen have alterations in the human erythrocyte membrane sialoglycoproteins beta and gamma. Biochem. J. 221, 97-104.

    PubMed  Google Scholar 

  • Belyantseva, I. A., Boger, E. T., Naz, S., Frolenkov, G. I., Sellers, J. R., Ahmed, Z. M., Griffith, A. J. and Friedman T. B. 2005. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat. Cell Biol. 7, 148-156.

    Article  PubMed  Google Scholar 

  • Bennett, V. and Chen, L. 2001. Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr. Opin. Cell Biol. 13, 61-67.

    Article  PubMed  Google Scholar 

  • Berg, J. S., Powell, B. C. and Cheney, R. E. 2001. A millennial myosin census. Mol. Biol. Cell 12, 780-794.

    PubMed  Google Scholar 

  • Blake, D. J., Weir, A., Newey, S. E. and Davies, K. E. 2002. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291-329.

    PubMed  Google Scholar 

  • Boeda, B., El-Amraoui, A., Bahloul, A., Goodyear, R., Daviet, L., Blanchard, S., Perfettini, I., Fath, K. R., Shorte, S., Reiners, J., Houdusse, A., Legrain, P., Wolfrum, U., Richardson, G. and Petit, C. 2002. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J. 21, 6689-6699.

    Article  PubMed  Google Scholar 

  • Bonne, G., Carrier, L., Richard, P., Hainque, B. and Schwartz, K. 1998. Familial hypertrophic cardiomyopathy: From mutations to functional defects. Circ. Res. 83, 580-593.

    PubMed  Google Scholar 

  • Bridgman, P. C. 1999. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J. Cell Biol. 146, 1045-1060.

    Article  PubMed  Google Scholar 

  • Burch, J. M., Fassihi, H., Jones, C. A., Mengshol, S. C., Fitzpatrick, J. E., and McGrath, J. A. 2006. Kindler syndrome: A new mutation and new diagnostic possibilities. Arch. Dermatol. 142, 620-624.

    Article  PubMed  Google Scholar 

  • Chang, A. N. and Potter, J. D. 2005. Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail. Rev. 10, 225-235.

    Article  PubMed  Google Scholar 

  • Ching, Y. H., Ghosh, T. K., Cross, S. J., Packham, E. A., Honeyman, L., Loughna, S., Robinson, T. E., Dearlove, A. M., Ribas, G., Bonser, A. J., Thomas, N. R., Scotter, A. J., Caves, L. S., Tyrrell, G. P., Newbury-Ecob, R. A., Munnich, A., Bonnet, D. and Brook, J. D. 2005. Mutation in myosin heavy chain 6 causes atrial septal defect. Nat. Genet. 37, 423-428.

    Article  PubMed  Google Scholar 

  • Condeelis, J., Singer, R. H. and Segall, J. E. 2005. The great escape: When cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695-718.

    Article  PubMed  Google Scholar 

  • Cuda, G., Fananapazir, L., Epstein, N. D. and Sellers, J. R. 1997. The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. J. Muscle Res. Cell Motil. 18, 275-283.

    Article  PubMed  Google Scholar 

  • Daniels, G. L., Shaw, M. A., Judson, P. A., Reid, M. E., Anstee, D. J., Colpitts, P., Cornwall, S., Moore, B. P. and Lee, S. 1986. A family demonstrating inheritance of the Leach phenotype: A Gerbich-negative phenotype associated with elliptocytosis. Vox Sang. 50, 117-121.

    Article  PubMed  Google Scholar 

  • Donaudy, F., Ferrara, A., Esposito, L., Hertzano, R., Ben-David, O., Bell, R. E., Melchionda, S., Zelante, L., Avraham, K. B. and Gasparini, P. 2003. Multiple mutations of MYO1A, a cochlear-expressed gene, in sensorineural hearing loss. Am. J. Hum. Genet. 72, 1571-1577.

    Article  PubMed  Google Scholar 

  • Donaudy, F., Snoeckx, R., Pfister, M., Zenner, H. P., Blin, N., Di Stazio, M., Ferrara, A., Lanzara, C., Ficarella, R., Declau, F., Pusch, C. M., Nurnberg, P., Melchionda, S., Zelante, L., Ballana, E., Estivill, X., Van Camp, G., Gasparini, P. and Savoia, A. 2004. Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4). Am. J. Hum. Genet. 74, 770-776.

    Article  PubMed  Google Scholar 

  • Donaudy, F., Zheng, L., Ficarella, R., Ballana, E., Carella, M., Melchionda, S., Estivill, X., Bartles, J. R. and Gasparini, P. 2006. Espin gene (ESPN) mutations associated with autosomal dominant hearing loss cause defects in microvillar elon-gation or organisation. J. Med. Genet. 43, 157-161.

    Article  PubMed  Google Scholar 

  • Dosaka-Akita, H., Hommura, F., Fujita, H., Kinoshita, I., Nishi, M., Morikawa, T., Katoh, H., Kawakami, Y. and Kuzumaki, N. 1998. Frequent loss of gelsolin expression in non-small cell lung cancers of heavy smokers. Cancer Res. 58, 322-327.

    PubMed  Google Scholar 

  • Eber, S. W., Gonzalez, J. M., Lux, M. L., Scarpa, A. L., Tse, W. T., Dornwell, M., Herbers, J., Kugler, W., Ozcan, R., Pekrun, A., Gallagher, P. G., Schroter, W., Forget, B. G. and Lux, S. E. 1996. Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nat. Genet. 13, 214-218.

    Article  PubMed  Google Scholar 

  • El-Amraoui, A. and Petit, C. 2005. Usher I syndrome: Unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J. Cell Sci. 118, 4593-4603.

    Article  PubMed  Google Scholar 

  • Endris, V., Wogatzky, B., Leimer, U., Bartsch, D., Zatyka, M., Latif, F., Maher, E. R., Tariverdian, G., Kirsch, S., Karch, D. and Rappold, G. A. 2002. The novel RhoGTPase activating gene MEGAP/srGAP3 has a putative role in severe mental retardation. Proc. Natl Acad. Sci. USA 99, 11754-11759.

    Article  PubMed  Google Scholar 

  • Frangiskakis, J. M., Ewart, A. K., Morris, C. A., Mervis, C. B., Bertrand, J., Robinson, B. F., Klein, B. P., Ensing, G. J., Everett, L. A., Green, E. D., Proschel, C., Gutowski, N. J., Noble, M., Atkinson, D. L., Odelberg, S. J. and Keating, M. T. 1996. LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86, 59-69.

    Article  PubMed  Google Scholar 

  • Gibbs, D., Kitamoto, J. and Williams, D. S. 2003. Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc. Natl Acad. Sci. USA 100, 6481-6486.

    Article  PubMed  Google Scholar 

  • Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J. and Winder, S. J. 2002. Functional plasticity of CH domains. FEBS Lett. 513, 98-106.

    Article  PubMed  Google Scholar 

  • Gouin, E., Gantelet, H., Egile, C., Lasa, I., Ohayon, H., Villiers, V., Gounon, P., Sansonetti, P. J. and Cossart, P. 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112(Pt 11), 1697-1708.

    PubMed  Google Scholar 

  • Herz, C., Aumailley, M., Schulte, C., Schlotzer-Schrehardt, U., Bruckner-Tuderman, L. and Has, C. 2006. Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation and motility of epidermal keratinocytes. J. Biol. Chem. 281, 36082-36090.

    Article  PubMed  Google Scholar 

  • Jobard, F., Bouadjar, B., Caux, F., Hadj-Rabia, S., Has, C., Matsuda, F., Weissenbach, J., Lathrop, M., Prud’homme, J. F. and Fischer, J. 2003. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet. 12, 925-935.

    Article  PubMed  Google Scholar 

  • Kaplan, J. M., Kim, S. H., North, K. N., Rennke, H., Correia, L. A., Tong, H. Q., Mathis, B. J., Rodriguez-Perez, J. C., Allen, P. G., Beggs, A. H. and Pollak, M. R. 2000. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal seg-mental glomerulosclerosis. Nat. Genet. 24, 251-256.

    Article  PubMed  Google Scholar 

  • Kitajiri, S., Fukumoto, K., Hata, M., Sasaki, H., Katsuno, T., Nakagawa, T., Ito, J. and Tsukita, S. 2004. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J. Cell Biol. 166, 559-570.

    Article  PubMed  Google Scholar 

  • Kurabayashi, M., Tsuchimochi, H., Komuro, I., Takaku, F. and Yazaki, Y. 1988. Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. J. Clin. Invest. 82, 524-531.

    Article  PubMed  Google Scholar 

  • Lee, H. K., Driscoll, D., Asch, H., Asch, B. and Zhang, P. J. 1999. Downregulated gelsolin expression in hyperplastic and neoplastic lesions of the prostate. Prostate 40, 14-19.

    Article  PubMed  Google Scholar 

  • Libby, R. T., Lillo, C., Kitamoto, J., Williams, D. S. and Steel K. P. 2004. Myosin Va is required for normal photoreceptor synaptic activity. J. Cell Sci. 117, 4509-4515.

    Article  PubMed  Google Scholar 

  • Liu, X., Ondek, B. and Williams, D. S. 1998. Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice. Nat. Genet. 19, 117-118.

    Article  PubMed  Google Scholar 

  • Liu, X., Udovichenko, I. P., Brown, S. D., Steel, K. P. and Williams, D. S. 1999. Myosin VIIa participates in opsin transport through the photoreceptor cilium. J. Neurosci. 19, 6267-6274.

    PubMed  Google Scholar 

  • Melchionda, S., Ahituv, N., Bisceglia, L., Sobe, T., Glaser, F., Rabionet, R., Arbones, M. L., Notarangelo, A., Di Iorio, E., Carella, M., Zelante, L., Estivill, X., Avraham, K. B. and Gasparini, P. 2001. MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am. J. Hum. Genet. 69, 635-640.

    Article  PubMed  Google Scholar 

  • Miura, P. and Jasmin, B. J. 2006. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: How close are we? Trends Mol. Med. 12, 122-129.

    Article  PubMed  Google Scholar 

  • Mohiddin, S. A., Ahmed, Z. M., Griffith, A. J., Tripodi, D., Friedman, T. B., Fananapazir, L. and Morell, R. J. 2004. Novel association of hypertrophic cardiomyopathy, sensorineural deafness, and a mutation in unconventional myosin VI (MYO6). J. Med. Genet. 41, 309-314.

    Article  PubMed  Google Scholar 

  • Mohler, P. J., Schott, J. J., Gramolini, A. O., Dilly, K. W., Guatimosim, S., duBell, W. H., Song, L. S., Haurogne, K., Kyndt, F., Ali, M. E., Rogers, T. B., Lederer, W. J., Escande, D., Le Marec, H. and Bennett, V. 2003. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634-639.

    Article  PubMed  Google Scholar 

  • Nakano, T., Tani, M., Nishioka, M., Kohno, T., Otsuka, A., Ohwada, S. and Yokota, J. 2005. Genetic and epigenetic alterations of the candidate tumor-suppressor gene MYO18B, on chromosome arm 22q, in colorectal cancer. Genes Chromosomes Cancer 43, 162-171.

    Article  PubMed  Google Scholar 

  • Naz, S., Griffith, A. J., Riazuddin, S., Hampton, L. L., Battey, J. F. Jr., Khan, S. N., Wilcox, E. R. and Friedman, T. B. 2004. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J. Med. Genet. 41, 591-595.

    Article  PubMed  Google Scholar 

  • Nishioka, M., Kohno, T., Tani, M., Yanaihara, N., Tomizawa, Y., Otsuka, A., Sasaki, S., Kobayashi, K., Niki, T., Maeshima, A., Sekido, Y., Minna, J. D., Sone, S. and Yokota, J. 2002. MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proc. Natl Acad. Sci. USA 99, 12269-12274.

    Article  PubMed  Google Scholar 

  • Ochs, H. D. and Thrasher, A. J. 2006. The Wiskott-Aldrich syndrome. J. Allergy Clin. Immunol. 117, 725-738.

    Article  PubMed  Google Scholar 

  • Pastural, E., Barrat, F. J., Dufourcq-Lagelouse, R., Certain, S., Sanal, O., Jabado, N., Seger, R., Griscelli, C., Fischer, A. and de Saint Basile, G. 1997. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat. Genet. 16, 289-292.

    Article  PubMed  Google Scholar 

  • Pastural, E., Ersoy, F., Yalman, N., Wulffraat, N., Grillo, E., Ozkinay, F., Tezcan, I., Gedikoglu, G., Philippe, N., Fischer, A. and de Saint Basile, G. 2000. Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics 63, 299-306.

    Article  PubMed  Google Scholar 

  • Probst, F. J., Fridell, R. A., Raphael, Y., Saunders, T. L., Wang, A., Liang, Y., Morell, R. J., Touchman, J. W., Lyons, R. H., Noben-Trauth, K., Friedman, T. B. and Camper, S. A. 1998. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444-1447.

    Article  PubMed  Google Scholar 

  • Puius, Y. A., Mahoney, N. M. and Almo, S. C. 1998. The modular structure of actinregulatory proteins. Curr. Opin. Cell Biol. 10, 23-34.

    Article  PubMed  Google Scholar 

  • Rayment, I., Holden, H. M., Sellers, J. R., Fananapazir, L. and Epstein, N. D. 1995. Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA 92, 3864-3868.

    Article  PubMed  Google Scholar 

  • Reiners, J., Nagel-Wolfrum, K., Jurgens, K., Marker, T. and Wolfrum, U. 2006. Molecular basis of human Usher syndrome: Deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp. Eye Res. 83, 97-119.

    Article  PubMed  Google Scholar 

  • Revenu, C., Athman, R., Robine, S. and Louvard, D. 2004. The co-workers of actin filaments: From cell structures to signals. Nat. Rev. Mol. Cell Biol. 5, 635-646.

    Article  PubMed  Google Scholar 

  • Robertson, S. P. 2005. Filamin A: Phenotypic diversity. Curr. Opin. Genet. Dev. 15, 301-307.

    Article  PubMed  Google Scholar 

  • Rottner, K., Lommel, S., Wehland, J. and Stradal, T. E. 2004. Pathogen-induced actin filament rearrangement in infectious diseases. J. Pathol. 204, 396-406.

    Article  PubMed  Google Scholar 

  • Self, T., Mahony, M., Fleming, J., Walsh, J., Brown, S. D. and Steel, K. P. 1998. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557-566.

    PubMed  Google Scholar 

  • Self, T., Sobe, T., Copeland, N. G., Jenkins, N. A., Avraham, K. B. and Steel, K. P. 1999. Role of myosin VI in the differentiation of cochlear hair cells. Dev. Biol. 214, 331-341.

    Article  PubMed  Google Scholar 

  • Seri, M., Cusano, R., Gangarossa, S., Caridi, G., Bordo, D., Lo Nigro, C., Ghiggeri, G. M., Ravazzolo, R., Savino, M., Del Vecchio, M., d’Apolito, M., Iolascon, A., Zelante, L. L., Savoia, A., Balduini, C. L., Noris, P., Magrini, U., Belletti, S., Heath, K. E., Babcock, M., Glucksman, M. J., Aliprandis, E., Bizzaro, N., Desnick, R. J. and Martignetti, J. A. 2000. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat. Genet. 26, 103-105.

    Article  PubMed  Google Scholar 

  • Siegel, D. H., Ashton, G. H., Penagos, H. G., Lee, J. V., Feiler, H. S., Wilhelmsen, K. C., South, A. P., Smith, F. J., Prescott, A. R., Wessagowit, V., Oyama, N., Akiyama, M., Al Aboud, D., Al Aboud, K., Al Githami, A., Al Hawsawi, K., Al Ismaily, A., Al-Suwaid, R., Atherton, D. J., Caputo, R., Fine, J. D., Frieden, I. J., Fuchs, E., Haber, R. M., Harada, T., Kitajima, Y., Mallory, S. B., Ogawa, H., Sahin, S., Shimizu, H., Suga, Y., Tadini, G., Tsuchiya, K., Wiebe, C. B., Wojnarowska, F., Zaghloul, A. B., Hamada, T., Mallipeddi, R., Eady, R. A., McLean, W. H., McGrath, J. A. and Epstein E. H. 2003. Loss of kindlin-1, a human homolog of the aenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174-187.

    Article  PubMed  Google Scholar 

  • Smith, G. L., Murphy, B. J. and Law, M. 2003. Vaccinia virus motility. Annu. Rev. Microbiol. 57, 323-342.

    Article  PubMed  Google Scholar 

  • Stevens, J. M., Galyov, E. E. and Stevens, M. P. 2006. Actin-dependent movement of bacterial pathogens. Nat. Rev. Microbiol. 4, 91-101.

    Article  PubMed  Google Scholar 

  • Tanaka, M., Mullauer, L., Ogiso, Y., Fujita, H., Moriya, S., Furuuchi, K., Harabayashi, T., Shinohara, N., Koyanagi, T. and Kuzumaki, N. 1995. Gelsolin: A candidate for suppressor of human bladder cancer. Cancer Res. 55, 3228-3232.

    PubMed  Google Scholar 

  • Tchernia, G., Mohandas, N. and Shohet, S. B. 1981. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. J. Clin. Invest. 68, 454-460.

    Article  PubMed  Google Scholar 

  • Wachsstock, D. H., Schwartz, W. H. and Pollard, T. D. 1993. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys. J. 65, 205-214.

    Article  PubMed  Google Scholar 

  • Wang, A., Liang, Y., Fridell, R. A., Probst, F. J., Wilcox, E. R., Touchman, J. W., Morton, C. C., Morell, R. J., Noben-Trauth, K., Camper, S. A. and Friedman, T. B. 1998. Association of unconventional myosin MYO15 mutations with human non-syndromic deafness DFNB3. Science 280, 1447-1451.

    Article  PubMed  Google Scholar 

  • Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levilliers, J., Weston, M. D., Kelley, P. M., Kimberling, W. J., Wagenaar, M., Levi-Acobas, F., Larget-Piet, D., Munnich, A., Steel, K. P., Brown, S. D. M. and Petit, C. 1995. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374,60-61.

    Article  PubMed  Google Scholar 

  • Wu, X. and Hammer, J. A. 3rd. 2000. Making sense of melanosome dynamics in mouse melanocytes. Pigment Cell Res. 13, 241-247.

    Article  PubMed  Google Scholar 

  • Yanaihara, N., Nishioka, M., Kohno, T., Otsuka, A., Okamoto, A., Ochiai, K., Tanaka, T. and Yokota, J. 2004. Reduced expression of MYO18B, a candidate tumor-suppressor gene on chromosome arm 22q, in ovarian cancer. Int. J. Cancer 112,150-154.

    Article  PubMed  Google Scholar 

  • Yao, J., Le, T. C., Kos, C. H., Henderson, J. M., Allen, P. G., Denker, B. M. and Pollak, M. R. 2004. Alpha-actinin-4-mediated FSGS: An inherited kidney disease caused by an aggregated and rapidly degraded cytoskeletal protein. PLoS Biol. 2, e167.

    Article  PubMed  Google Scholar 

  • Yoshida, H., Cheng, W., Hung, J., Montell, D., Geisbrecht, E., Rosen, D., Liu, J. and Naora, H. 2004. Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc. Natl Acad. Sci. USA 101, 8144-8149.

    Article  PubMed  Google Scholar 

  • Zheng, L., Sekerkova, G., Vranich, K., Tilney, L. G., Mugnaini, E. and Bartles, J. R. 2000. The deaf jerker mouse has a mutation in the gene encoding the espin actinbundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377-385.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krendel, M., De La Cruz, E.M. (2008). Overview: Actin-Binding Protein Function and Its Relation to Disease Pathology. In: dos Remedios, C.G., Chhabra, D. (eds) Actin-Binding Proteins and Disease. Protein Reviews, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71749-4_5

Download citation

Publish with us

Policies and ethics