Skip to main content

Design of Inhibitors of Amyloid-β Misfolding and Aggregation for Alzheimer's Therapy

  • Chapter
Pharmacological Mechanisms in Alzheimer's Therapeutics

Alzheimer’s disease (AD), which afflicts an estimated 16 million people worldwide (Refolo & Fillit, 2004), is the most common cause of dementia in the elderly. By 2050, the number of people with AD is expected to triple, placing an enormous burden on the health care and social care systems. This neurodegenerative disorder is characterized clinically by progressive loss of memory, language problems, social withdrawal, and deterioration of executive functions, and eventually culminates in death (Citron, 2002). Most AD cases are sporadic, with multiple risk factors, such as aging, environmental stress, and diet. The remaining AD cases, which account for 5– 10% of total AD cases, are inherited from one generation to the next and are referred to as familial AD (FAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adessi, C., Frossard, M. J., Boissard, C., Fraga, S., Bieler, S., Ruckle, T., et al. (2003). Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer's disease. The Journal of Biological Chemistry, 278, 13905–13911.

    Article  PubMed  CAS  Google Scholar 

  • Adessi, C., & Soto, C. (2002). Converting a peptide into a drug: Strategies to improve stability and bioavailability. Current Medicinal Chemistry, 9, 963–978.

    Article  PubMed  CAS  Google Scholar 

  • Agadjanyan, M. G., Ghochikyan, A., Petrushina, I., Vasilevko, V., Movsesyan, N., Mkrtichyan, M., et al. (2005). Prototype Alzheimer's disease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. Journal of Immunology, 174, 1580–1586.

    CAS  Google Scholar 

  • Alexiou, C., Arnold, W., Klein, R. J., Parak, F. G., Hulin, P., Bergemann, C., et al. (2000). Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Research, 60, 6641–6648.

    PubMed  CAS  Google Scholar 

  • Allsop, D., Howlett, D., Christie, G., & Karran, E. (1998). Fibrillogenesis of beta-amyloid. Biochemical Society Transactions, 26, 459–463.

    PubMed  CAS  Google Scholar 

  • Bard, F., Cannon, C., Barbour, R., Burke, R. L., Games, D., Grajeda, H., et al. (2000). Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Medicine, 6, 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Bohr, H., & Bohr, J. (2000). Microwave-enhanced folding and denaturation of globular proteins. Physical Review E, 61, 4310–4314.

    Article  CAS  Google Scholar 

  • Bronfman, F. C., Garrido, J., Alvarez, A., Morgan, C., & Inestrosa, N. C. (1996). Laminin inhibits amyloid-beta-peptide fibrillation. Neuroscience Letters, 218, 201–203.

    Article  PubMed  CAS  Google Scholar 

  • Castano, E. M., Prelli, F., Wisniewski, T., Golabek, A., Kumar, R. A., Soto, C., et al. (1995). Fibrillogenesis in Alzheimer's disease of amyloid beta peptides and apolipoprotein E. The Biochemical Journal, 306(Pt. 2), 599–604.

    PubMed  CAS  Google Scholar 

  • Castillo, G. M., Lukito, W., Peskind, E., Raskind, M., Kirschner, D. A., Yee, A. G., et al. (2000). Laminin inhibition of beta-amyloid protein (Abeta) fibrillogenesis and identification of an Abeta binding site localized to the globular domain repeats on the laminin a chain. Journal of Neuroscience Research, 62, 451–462.

    Article  PubMed  CAS  Google Scholar 

  • Caughey, B., & Lansbury, P. T. (2003). Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annual Review of Neuroscience, 26, 267–298.

    Article  PubMed  CAS  Google Scholar 

  • Chou, P. Y., & Fasman, G. D. (1978). Empirical predications of protein conformation. Annual Review of Biochemistry, 47, 251–276.

    Article  PubMed  CAS  Google Scholar 

  • Citron, M. (2002). Alzheimer's disease: Treatments in discovery and development. Nature Neuroscience, 5(Suppl.), 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 261, 921–923.

    Article  PubMed  CAS  Google Scholar 

  • Dewachter, I., Van Dorpe, J., Spittaels, K., Tesseur, I., Van den, H. C., Moechars, D., et al. (2000). Modeling Alzheimer's disease in transgenic mice: Effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Experimental Gerontology, 35, 831–841.

    Article  PubMed  CAS  Google Scholar 

  • Duff, K. (2001). Transgenic mouse models of Alzheimer's disease: Phenotype and mechanisms of pathogenesis. Biochemical Society Symposium, 195–202.

    Google Scholar 

  • Edbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H., & Haass, C. (2003). Reconstitution of gamma-secretase activity. Nature Cell Biology, 5, 486–488.

    Article  PubMed  CAS  Google Scholar 

  • Evans, K. C., Berger, E. P., Cho, C. G., Weisgraber, K. H., & Lansbury, P. T., Jr. (1995). Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: Implications for the pathogenesis and treatment of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 92, 763–767.

    Article  PubMed  CAS  Google Scholar 

  • Findeis, M. A., Lee, J. J., Kelley, M., Wakefield, J. D., Zhang, M. H., Chin, J., et al. (2001). Characterization of cholyl-leu-val-phe-phe-ala-OH as an inhibitor of amyloid beta-peptide polymerization. Amyloid, 8, 231–241.

    PubMed  CAS  Google Scholar 

  • Findeis, M. A., Musso, G. M., Arico-Muendel, C. C., Benjamin, H. W., Hundal, A. M., Lee, J. J., et al. (1999). Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry, 38, 6791–6800.

    Article  PubMed  CAS  Google Scholar 

  • Geerts, H. (2004). NC-531 (Neurochem). Current Opinion in Investigational Drugs, 5, 95–100.

    PubMed  CAS  Google Scholar 

  • Ghanta, J., Shen, C. L., Kiessling, L. L., & Murphy, R. M. (1996). A strategy for designing inhibitors of beta-amyloid toxicity. The Journal of Biological Chemistry, 271, 29525–29528.

    Article  PubMed  CAS  Google Scholar 

  • Glenner, G. G., & Wong, C. W. (1984). Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120, 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Golabek, A., Marques, M. A., Lalowski, M., & Wisniewski, T. (1995). Amyloid beta binding proteins in vitro and in normal human cerebrospinal fluid. Neuroscience Letters, 191, 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Goldgaber, D., Lerman, M. I., McBride, O. W., Saffiotti, U., & Gajdusek, D. C. (1987). Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science, 235, 877–880.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, D. J., Sciarretta, K. L., & Meredith, S. C. (2001). Inhibition of beta-amyloid (40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry, 40, 8237–8245.

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., & Wisniewski, H. M. (1986). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. The Journal of Biological Chemistry, 261, 6084–6089.

    PubMed  CAS  Google Scholar 

  • Hamad-Schifferli, K., Schwartz, J. J., Santos, A. T., Zhang, S., & Jacobson, J. M. (2002). Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature, 415, 152–155.

    Article  PubMed  Google Scholar 

  • Hamazaki, H. (1995). Amyloid P component promotes aggregation of Alzheimer's beta-amyloid peptide. Biochemical and Biophysical Research Communications, 211, 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., & Allsop, D. (1991). Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends in Pharmacological Sciences, 12, 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J. D., Lieber, C. M., & Lansbury, P. T., Jr. (1997). Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chemistry and Biology, 4, 951–959.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, D. M., Walsh, D. M., Ye, C. P., Diehl, T., Vasquez, S., Vassilev, P. M., et al. (1999). Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. The Journal of Neuroscience, 19, 8876–8884.

    PubMed  CAS  Google Scholar 

  • Hock, C., Konietzko, U., Streffer, J. R., Tracy, J., Signorell, A., Muller-Tillmanns, B., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron, 38, 547–554.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, E., Burke, R. M., & Doig, A. J. (2000). Inhibition of toxicity in the beta-amyloid peptide fragment beta -(25–35) using N-methylated derivatives: A general strategy to prevent amyloid formation. The Journal of Biological Chemistry, 275, 25109–25115.

    Article  PubMed  CAS  Google Scholar 

  • Janciauskiene, S., Garcia, d. F., Carlemalm, E., Dahlback, B., & Eriksson, S. (1995). Inhibition of Alzheimer beta-peptide fibril formation by serum amyloid P component. The Journal of Biological Chemistry, 270, 26041–26044.

    Article  PubMed  CAS  Google Scholar 

  • Janciauskiene, S., Rubin, H., Lukacs, C. M., & Wright, H. T. (1998). Alzheimer's peptide Abeta1–42 binds to two beta-sheets of alpha1-antichymotrypsin and transforms it from inhibitor to substrate. The Journal of Biological Chemistry, 273, 28360–28364.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., et al. (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Katzman, R., & Saitoh, T. (1991). Advances in Alzheimer's disease. FASEB Journal, 5, 278–286.

    PubMed  CAS  Google Scholar 

  • Kim, C. A., & Berg, J. M. (1993). Thermodynamic Beta-Sheet Propensities Measured Using A Zinc Finger Host Peptide. Biophysical Journal, 64, A175.

    Google Scholar 

  • Kim, H. D., Cao, Y., Kong, F. K., Van Kampen, K. R., Lewis, T. L., Ma, Z., et al. (2005). Induction of a Th2 immune response by co-administration of recombinant adenovirus vectors encoding amyloid beta-protein and GM-CSF. Vaccine, 23, 2977–2986.

    Article  PubMed  CAS  Google Scholar 

  • Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., & Selkoe, D. J. (2003). Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proceedings of the National Academy of Sciences of the United States of America, 100, 6382–6387.

    Article  PubMed  CAS  Google Scholar 

  • Kisilevsky, R., Lemieux, L. J., Fraser, P. E., Kong, X., Hultin, P. G., & Szarek, W. A. (1995). Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: Implications for Alzheimer's disease. Nature Medicine, 1, 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Kogan, M. J., Bastus, N. G., Amigo, R., Grillo-Bosch, D., Araya, E., Turiel, A., et al. (2006). Nanoparticle-Mediated Local and Remote Manipulation of Protein Aggregation. Nano Letters, 6, 110–115.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Levine, H., III (1995). Soluble multimeric Alzheimer beta(1–40) pre-amyloid complexes in dilute solution. Neurobiology of Aging, 16, 755–764.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R., Barkhordarian, H., Emadi, S., Park, C. B., & Sierks, M. R. (2005). Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiology of Disease, 20, 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo, A., & Yankner, B. A. (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proceedings of the National Academy of Sciences of the United States of America, 91, 12243–12247.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J., Yee, A., Brewer, H. B., Jr., Das, S., & Potter, H. (1994). Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature, 372, 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Mason, J. M., Kokkoni, N., Stott, K., & Doig, A. J. (2003). Design strategies for anti-amyloid agents. Current Opinion in Structural Biology, 13, 526–532.

    Article  PubMed  CAS  Google Scholar 

  • Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 82, 4245–4249.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, E., Soto, C., Governale, S., Frangione, B., & Ghiso, J. (1996). Apolipoprotein J and Alzheimer's amyloid beta solubility. The Biochemical Journal, 316(Pt. 2), 671–679.

    PubMed  CAS  Google Scholar 

  • Merlini, G., Ascari, E., Amboldi, N., Bellotti, V., Arbustini, E., Perfetti, V., et al. (1995). Interaction of the anthracycline 4′-iodo-4′-deoxydoxorubicin with amyloid fibrils: Inhibition of amyloidogenesis. Proceedings of the National Academy of Sciences of the United States of America, 92, 2959–2963.

    Article  PubMed  CAS  Google Scholar 

  • Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., et al. (1999). Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. The Journal of Biological Chemistry, 274, 6483–6492.

    Article  PubMed  CAS  Google Scholar 

  • Mook-Jung, I., Joo, I., Sohn, S., Kwon, H. J., Huh, K., & Jung, M. W. (1997). Estrogen blocks neurotoxic effects of beta-amyloid (1–42) and induces neurite extension on B103 cells. Neuroscience Letters, 235, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G. J. (1994). Designing Peptide Mimetics. Trends in Pharmacological Sciences, 15, 124–129.

    Article  PubMed  CAS  Google Scholar 

  • Ono, K., Hasegawa, K., Naiki, H., & Yamada, M. (2004). Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. Journal of Neuroscience Research, 75, 742–750.

    Article  PubMed  CAS  Google Scholar 

  • Ono, K., Yoshiike, Y., Takashima, A., Hasegawa, K., Naiki, H., & Yamada, M. (2003). Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer's disease. Journal of Neurochemistry, 87, 172–181.

    Article  PubMed  CAS  Google Scholar 

  • Orgogozo, J. M., Gilman, S., Dartigues, J. F., Laurent, B., Puel, M., Kirby, L. C., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61, 46–54.

    PubMed  CAS  Google Scholar 

  • Pallitto, M. M., Ghanta, J., Heinzelman, P., Kiessling, L. L., & Murphy, R. M. (1999). Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry, 38, 3570–3578.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla, M., Bozner, P., Soto, C., Shao, H., Robakis, N. K., Zagorski, M., et al. (1998). Inhibition of Alzheimer beta-fibrillogenesis by melatonin. The Journal of Biological Chemistry, 273, 7185–7188.

    Article  PubMed  CAS  Google Scholar 

  • Penn, S. G., He, L., & Natan, M. J. (2003). Nanoparticles for bioanalysis. Current Opinion in Chemical Biology, 7, 609–615.

    Article  PubMed  CAS  Google Scholar 

  • Permanne, B., Adessi, C., Saborio, G. P., Fraga, S., Frossard, M. J., Van Dorpe, J., et al. (2002). Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide. FASEB Journal, 16, 860–862.

    PubMed  CAS  Google Scholar 

  • Pfeifer, M., Boncristiano, S., Bondolfi, L., Stalder, A., Deller, T., Staufenbiel, M., et al. (2002). Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science, 298, 1379.

    Article  PubMed  CAS  Google Scholar 

  • Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., & Cotman, C. W. (1993). Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. The Journal of Neuroscience, 13, 1676–1687.

    PubMed  CAS  Google Scholar 

  • Price, D. L., Tanzi, R. E., Borchelt, D. R., & Sisodia, S. S. (1998). Alzheimer's disease: Genetic studies and transgenic models. Annual Review of Genetics, 32, 461–493.

    Article  PubMed  CAS  Google Scholar 

  • Refolo, L. M., & Fillit, H. M. (2004). Drug discovery for Alzheimer's disease: The end of the beginning. Journal of Molecular Neuroscience, 24, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Salomon, A. R., Marcinowski, K. J., Friedland, R. P., & Zagorski, M. G. (1996). Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry, 35, 13568–13578.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., et al. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Medicine, 2, 864–870.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzman, A. L., Gregori, L., Vitek, M. P., Lyubski, S., Strittmatter, W. J., Enghilde, et al. (1994). Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proceedings of the National Academy of Sciences of the United States of America, 91, 8368–8372.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (1994). Alzheimer's disease: A central role for amyloid. Journal of Neuropathology and Experimental Neurology, 53, 438–447.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (1997). Alzheimer's disease: Genotypes, phenotypes, and treatments. Science, 275, 630–631.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2000). The origins of Alzheimer disease: A is for amyloid. The Journal of the American Medical Association, 283, 1615–1617.

    Article  CAS  Google Scholar 

  • Selkoe, D. J., & Podlisny, M. B. (2002). Deciphering the genetic basis of Alzheimer's disease. Annual Review of Genomics and Human Genetics, 3, 67–99.

    Article  PubMed  CAS  Google Scholar 

  • Serpell, L. C., & Smith, J. M. (2000). Direct visualisation of the beta-sheet structure of synthetic Alzheimer's amyloid. Journal of Molecular Biology, 299, 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., et al. (1992). Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature, 359, 325–327.

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson, E. M., Knudsen, E., Asuni, A., Fitzer-Attas, C., Sage, D., Quartermain, D., et al. (2004). An attenuated immune response is sufficient to enhance cognition in an Alzheimer's disease mouse model immunized with amyloid-beta derivatives. The Journal of Neuroscience, 24, 6277–6282.

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson, E. M., Permanne, B., Soto, C., Wisniewski, T., & Frangione, B. (2000). In vivo reversal of amyloid-beta lesions in rat brain. Journal of Neuropathology and Experimental Neurology, 59, 11–17.

    PubMed  CAS  Google Scholar 

  • Simons, K., & Ehehalt, R. (2002). Cholesterol, lipid rafts, and disease. The Journal of Clinical Investigation, 110, 597–603.

    PubMed  CAS  Google Scholar 

  • Soto, C. (1999). Plaque busters: Strategies to inhibit amyloid formation in Alzheimer's disease. Molecular Medicine Today, 5, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Branes, M. C., Alvarez, J., & Inestrosa, N. C. (1994). Structural determinants of the Alzheimer's amyloid beta-peptide. Journal of Neurochemistry, 63, 1191–1198.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., & Castano, E. M. (1996). The conformation of Alzheimer's beta peptide determines the rate of amyloid formation and its resistance to proteolysis. The Biochemical Journal, 314(Pt. 2), 701–707.

    PubMed  CAS  Google Scholar 

  • Soto, C., Castano, E. M., Frangione, B., & Inestrosa, N. C. (1995). The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. The Journal of Biological Chemistry, 270, 3063–3067.

    Article  PubMed  CAS  Google Scholar 

  • Soto, C., Ghiso, J., & Frangione, B. (1997). Alzheimer's amyloid-ß aggregation is modulated by the interaction of multiple factors. Alzheimer's Research, 3, 215–222.

    Google Scholar 

  • Soto, C., Sigurdsson, E. M., Morelli, L., Kumar, R. A., Castano, E. M., & Frangione, B. (1998). Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer's therapy. Nature Medicine, 4, 822–826.

    Article  PubMed  CAS  Google Scholar 

  • Spinney, L. (2004). Update on Elan vaccine for Alzheimer's disease. Lancet Neurology, 3, 5.

    Google Scholar 

  • Tagliavini, F., Giaccone, G., Verga, L., Frangione, B., & Bugiani, O. (1992). Down syndrome as a key to the time sequence of brain changes in Alzheimer disease. Progress in Clinical and Biological Research, 379, 143–158.

    PubMed  CAS  Google Scholar 

  • Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M., Niimura, M., Takahashi, Y., et al. (2003). The role of presenilin cofactors in the gamma-secretase complex. Nature, 422, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Teplow, D. B. (1998). Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid, 5, 121–142.

    PubMed  CAS  Google Scholar 

  • Tjernberg, L. O., Naslund, J., Lindqvist, F., Johansson, J., Karlstrom, A. R., Thyberg, J., et al. (1996). Arrest of beta-amyloid fibril formation by a pentapeptide ligand. The Journal of Biological Chemistry, 271, 8545–8548.

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama, T., Shoji, A., Kataoka, K., Suwa, Y., Asano, S., Kaneko, H., et al. (1996). Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. The Journal of Biological Chemistry, 271, 6839–6844.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski, J. Q. (2002). Tauists, Baptists, Syners, Apostates, and new data. Annals of Neurology, 52, 263–265.

    Article  PubMed  Google Scholar 

  • Tycko, R. (2006). Molecular structure of amyloid fibrils: Insights from solid-state NMR. Quarterly Reviews of Biophysics, 39,1–55.

    Article  PubMed  CAS  Google Scholar 

  • Van Leuven, F. (2000). Single and multiple transgenic mice as models for Alzheimer's disease. Progress in Neurobiology, 61, 305–312.

    Article  PubMed  Google Scholar 

  • Vassar, R., & Citron, M. (2000). Abeta-generating enzymes: Recent advances in beta- and gamma-secretase research. Neuron, 27, 419–422.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J., & Selkoe, D. J. (2002). Amyloid-beta oligomers: Their production, toxicity and therapeutic inhibition. Biochemical Society Transactions, 30, 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., & Teplow, D. B. (1997). Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. The Journal of Biological Chemistry, 272, 22364–22372.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. S., Chen, Y. T., & Chou, S. W. (2005). Inhibition of amyloid fibril formation of beta-amyloid peptides via the amphiphilic surfactants. Biochimica et Biophysica Acta, 1741, 307–313.

    PubMed  CAS  Google Scholar 

  • Wood, S. J., MacKenzie, L., Maleeff, B., Hurle, M. R., & Wetzel, R. (1996). Selective inhibition of Abeta fibril formation. The Journal of Biological Chemistry, 271, 4086–4092.

    Article  PubMed  CAS  Google Scholar 

  • Wood, S. J., Wetzel, R., Martin, J. D., & Hurle, M. R. (1995). Prolines and amyloidogenicity in fragments of the Alzheimer's peptide beta/A4. Biochemistry, 34, 724–730.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Estrada, L.D., Lasagna, C., Soto, C. (2007). Design of Inhibitors of Amyloid-β Misfolding and Aggregation for Alzheimer's Therapy. In: Pharmacological Mechanisms in Alzheimer's Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71522-3_15

Download citation

Publish with us

Policies and ethics