Skip to main content

Platelet-Derived Growth Factor

  • Chapter
Angiogenesis
  • 2807 Accesses

In the approximately 40 years since the initial report of the existence of PDGF we have learned a great deal regarding this family of five growth factors. We know at least something about how they initiate signaling events leading to cellular responses, and how these events contribute to biological processes essential for development, physiology and pathology. The discoveries to date indicate that we have not learned all there is to know. Additional reagents (to selectively block the action of PDGFs) and approaches (to detect PDGF-specific contributions) will profoundly accelerate future experimentation. This additional information is likely to provide new opportunities to use PDGF-based approaches to correct a wide variety of pathological afflictions including angiogenesis-dependent (solid tumors, age-related macular degeneration, diabetic complications) and proliferation-driven (atherosclerosis, solid tumors) diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antoniades HN, Scher CD, Stiles CD. Purification of human platelet-derived growth factor. Proc Natl Acad Sci USA 1979;76(4):1809–13.

    PubMed  CAS  Google Scholar 

  2. Heldin CH, Westermark B, Wasteson A. Platelet-derived growth factor: purification and partial characterization. Proc Natl Acad Sci USA 1979;76(8):3722–6.

    PubMed  CAS  Google Scholar 

  3. Raines EW, Ross R. Platelet-derived growth factor I. High yield purification and evidence for multiple forms. J Biol Chem 1982;257:5154–60.

    PubMed  CAS  Google Scholar 

  4. Deuel TF, Huang JS, Proffitt RT, Baenziger JU, Chang D, Kennedy BB. Human platelet-derived growth factor. Purification and resolution into two active protein fractions. J Biol Chem 1981;256(17):8896–9.

    PubMed  CAS  Google Scholar 

  5. Heldin CH, Wasteson A, Westermark B. Platelet-derived growth factor. Molecular and Cellular Endocrinology 1985;39:169–87.

    PubMed  CAS  Google Scholar 

  6. Li X, Ponten A, Aase K, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor [see comments]. Nat Cell Biol 2000;2(5):302–9.

    PubMed  CAS  Google Scholar 

  7. Hamada T, Ui-Tei K, Miyata Y. A novel gene derived from developing spinal cords, SCDGF, is a unique member of the PDGF/VEGF family. FEBS Lett 2000;475(2):97–102.

    PubMed  CAS  Google Scholar 

  8. Tsai YJ, Lee RK, Lin SP, Chen YH. Identification of a novel platelet-derived growth factor-like gene, fallotein, in the human reproductive tract. Biochim Biophys Acta 2000;1492(1):196–202.

    PubMed  CAS  Google Scholar 

  9. LaRochelle WJ, Jeffers M, McDonald WF, et al. PDGF-D, a new protease-activated growth factor. Nat Cell Biol 2001;3(5):517–21.

    PubMed  CAS  Google Scholar 

  10. Hamada T, Ui-Tei K, Imaki J, Miyata Y. Molecular cloning of SCDGF-B, a novel growth factor homologous to SCDGF/PDGF-C/fallotein. Biochem Biophys Res Commun 2001;280(3):733–7.

    PubMed  CAS  Google Scholar 

  11. Bergsten E, Uutela M, Li X, et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 2001;3(5):512–6.

    PubMed  CAS  Google Scholar 

  12. Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 2004;15(4):197–204.

    PubMed  CAS  Google Scholar 

  13. Reigstad LJ, Varhaug JE, Lillehaug JR. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. Febs J 2005;272(22):5723–41.

    PubMed  CAS  Google Scholar 

  14. Oefner C, D’Arcy A, Winkler FK, Eggimann B, Hosang M. Crystal structure of human platelet-derived growth factor BB. The EMBO Journal 1992;11:3921–6.

    PubMed  CAS  Google Scholar 

  15. Muller YA, Christinger HW, Keyt BA, de Vos AM. The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding. Structure 1997;5(10):1325–38.

    PubMed  CAS  Google Scholar 

  16. Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, de Vos AM. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci USA 1997;94(14):7192–7.

    PubMed  CAS  Google Scholar 

  17. Murray-Rust J, McDonald NQ, Blundell TL, et al. Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure 1993;1(2):153–9.

    PubMed  CAS  Google Scholar 

  18. Reigstad LJ, Sande HM, Fluge O, et al. Platelet-derived growth factor (PDGF)-C, a PDGF family member with a vascular endothelial growth factor-like structure. J Biol Chem 2003;278(19):17114–20.

    PubMed  CAS  Google Scholar 

  19. Raines EW, Ross R. Purification of human platelet-derived growth factor. Methods Enzymol 1985;109:749–73.

    PubMed  CAS  Google Scholar 

  20. Bork P, Beckmann G. The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 1993;231(2):539–45.

    PubMed  CAS  Google Scholar 

  21. Soker S, Fidder H, Neufeld G, Klagsbrun M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem 1996;271(10):5761–7.

    PubMed  CAS  Google Scholar 

  22. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92:735–45.

    PubMed  CAS  Google Scholar 

  23. Makinen T, Olofsson B, Karpanen T, et al. Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J Biol Chem 1999;274(30):21217–22.

    PubMed  CAS  Google Scholar 

  24. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J Biol Chem 2000;275(38):29922.

    PubMed  CAS  Google Scholar 

  25. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 2000;275(24):18040–5.

    PubMed  CAS  Google Scholar 

  26. Mamluk R, Gechtman Z, Kutcher ME, Gasiunas N, Gallagher J, Klagsbrun M. Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain. J Biol Chem 2002;277(27):24818–25.

    PubMed  CAS  Google Scholar 

  27. Dijkmans J, Xu J, Masure S, et al. Characterization of platelet-derived growth factor-C (PDGF-C): expression in normal and tumor cells, biological activity and chromosomal localization. Int J Biochem Cell Biol 2002;34(4):414–26.

    PubMed  CAS  Google Scholar 

  28. Gilbertson DG, Duff ME, West JW, et al. Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF alpha and beta receptor. J Biol Chem 2001;276(29):27406–14.

    PubMed  CAS  Google Scholar 

  29. Fredriksson L, Li H, Fieber C, Li X, Eriksson U. Tissue plasminogen activator is a potent activator of PDGF-CC. Embo J 2004;23(19):3793–802.

    PubMed  CAS  Google Scholar 

  30. Fredriksson L, Ehnman M, Fieber C, Eriksson U. Structural requirements for activation of latent platelet-derived growth factor CC by tissue plasminogen activator. J Biol Chem 2005;280(29):26856–62.

    PubMed  CAS  Google Scholar 

  31. Ustach CV, Kim HR. Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol Cell Biol 2005;25(14):6279–88.

    PubMed  CAS  Google Scholar 

  32. Lei H, Hovland P, Velez G, et al. A potential role for PDGF-C in experimental and clinical proliferative vitreoretinopathy. IOVS 2007;48(5):2335–42.

    Google Scholar 

  33. Heldin C-H, Westermark B. Platelet-derived growth factor: mechanism of action and possible in vivo function. Cell Regulation 1990;1:555–66.

    PubMed  CAS  Google Scholar 

  34. Raines EW, Bowen-Pope DF, Ross R. Peptide growth factors and their receptors; 1990.

    Google Scholar 

  35. Hubbard SR. Juxtamembrane autoinhibition in receptor tyrosine kinases. Nat Rev Mol Cell Biol 2004;5(6):464–71.

    PubMed  CAS  Google Scholar 

  36. Kazlauskas A, Durden DL, Cooper JA. Functions of the major tyrosine phosphorylation site of the PDGF receptor β subunit. Cell Regulation 1991;2:413–25.

    PubMed  CAS  Google Scholar 

  37. Fantl WJ, Escobedo JA, Williams LT. Mutations of the platelet-derived growth factor receptor that cause a loss of ligand-induced conformational change, subtle changes in kinase activity, and impaired ability to stimulate DNA synthesis. Mol Cell Biol 1989;9:4473–8.

    PubMed  CAS  Google Scholar 

  38. Cools J, Stover EH, Gilliland DG. Detection of the FIP1L1-PDGFRA fusion in idiopathic hypereosinophilic syndrome and chronic eosinophilic leukemia. Methods Mol Med 2006;125:177–87.

    PubMed  CAS  Google Scholar 

  39. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995;270(5234):296–9.

    PubMed  CAS  Google Scholar 

  40. Choi MH, Lee IK, Kim GW, et al. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 2005;435(7040):347–53.

    PubMed  CAS  Google Scholar 

  41. Bae YS, Sung JY, Kim OS, et al. Platelet-derived growth factor-induced H(2) O(2) production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem 2000;275(14):10527–31.

    PubMed  CAS  Google Scholar 

  42. Kazlauskas A. Receptor tyrosine kinases and their targets. Curr Opin Gen Dev 1994;4:5–14.

    CAS  Google Scholar 

  43. Heldin CH, Ostman A, Ronnstrand L. Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1998;1378(1):F79–113.

    PubMed  CAS  Google Scholar 

  44. Kovalenko MV, Kazlauskas A. Signaling by the platelet-derived growth factor receptor family. In: Bradshaw RA, Dennis EA, eds. Handbook of Cell Signaling: Elsevier; 2003:397–404.

    Google Scholar 

  45. Gould K, Hunter T. Platelet-derived growth factor induces multisite phosphorylation of pp60c-src and increases its protein tyrosine kinase activity. Mol Cell Biol 1988;8:3345–56.

    PubMed  CAS  Google Scholar 

  46. Kypta RM, Goldberg Y, Ulug ET, Courtneidge SA. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 1990;62:481–92.

    PubMed  CAS  Google Scholar 

  47. Mori S, Rönnstrand L, Yokote K, et al. Identification of two juxtamembrane autophosphorylation sites in the PDGF β-receptor: invovlement in the interaction with src family tyrosine kinases. EMBO J 1993;12:2257–64.

    PubMed  CAS  Google Scholar 

  48. Hooshmand-Rad R, Yokote K, Heldin CH, Claesson-Welsh L. PDGF alpha-receptor mediated cellular responses are not dependent on Src family kinases in endothelial cells. J Cell Sci 1998;111(Pt 5):607–14.

    PubMed  CAS  Google Scholar 

  49. Gelderloos JA, Rosenkranz S, Bazenet C, Kazlauskas A. A role for Src in signal relay by the platelet-derived growth factor alpha receptor. J Biol Chem 1998;273(10):5908–15.

    PubMed  CAS  Google Scholar 

  50. Klinghoffer RA, Sachsenmaier C, Cooper JA, Soriano P. Src family kinases are required for integrin but not PDGFR signal transduction. Embo J 1999;18(9):2459–71.

    PubMed  CAS  Google Scholar 

  51. DeMali KA, Kazlauskas A. Activation of Src family members is not required for the platelet-derived growth factor beta receptor to initiate mitogenesis. Mol Cell Biol 1998;18(4):2014–22.

    PubMed  CAS  Google Scholar 

  52. Blake RA, Broome MA, Liu X, et al. SU6656, a selective src family kinase inhibitor, used To probe growth factor signaling. Mol Cell Biol 2000;20(23):9018–27.

    PubMed  CAS  Google Scholar 

  53. Schlessinger J. How tyrosine kinases activate ras. Trends Biol Sci 1993;18:273–6.

    CAS  Google Scholar 

  54. Marshall CJ. Ras effectors. Curr Opin Cell Biol 1996;8(2): 197–204.

    PubMed  CAS  Google Scholar 

  55. Auger KR, Serunian SA, Soltoff SP, Libby P, Cantley LC. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 1989;57:167–75.

    PubMed  CAS  Google Scholar 

  56. Whiteford CC, Best C, Kazlauskas A, Ulug ET. D-3 phosphoinositide metabolism in PDGF-treated cell. Biochem J 1996;319:851–60.

    PubMed  CAS  Google Scholar 

  57. Jones SM, Klinghoffer R, Prestwich GD, Toker A, Kazlauskas A. PDGF induces an early and late wave of PI3-kinase activity, and only the late wave is required for progression through G1. Curr Biol 1999;9:512–21.

    PubMed  CAS  Google Scholar 

  58. Claesson-Welsh L. Platelet-derived growth factor receptor signals. J Biol Chem 1994;269:32023–6.

    PubMed  CAS  Google Scholar 

  59. Rosenkranz S, Kazlauskas A. Evidence for distinct signaling properties and biological responses induced by the PDGF receptor alpha and beta subtypes. Growth Factors 1999;16(3):201–16.

    PubMed  CAS  Google Scholar 

  60. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001;17:615–75.

    PubMed  CAS  Google Scholar 

  61. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7(8):606–19.

    PubMed  CAS  Google Scholar 

  62. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 1998;18(3):1379–87.

    PubMed  CAS  Google Scholar 

  63. Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. Embo J 1996;15(10):2442–51.

    PubMed  CAS  Google Scholar 

  64. Klinghoffer RA, Duckworth B, Valius M, Cantley L, Kazlauskas A. Platelet-derived growth factor-dependent activation of phosphatidylinositol 3-kinase is regulated by receptor binding of SH2-domain-containing proteins which influence Ras activity. Mol Cell Biol 1996;16:5905–14.

    PubMed  CAS  Google Scholar 

  65. Sun H, Charles CH, Lau LF, Tonks NK. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 1993;75:487–93.

    PubMed  CAS  Google Scholar 

  66. Kazlauskas A. The priming/completion paradigm to explain growth factor-dependent cell cycle progression. Growth Factors 2005;23(3):203–10.

    PubMed  CAS  Google Scholar 

  67. Kirschner MW. The biochemical nature of the cell cycle. Important Adv Oncol 1992:3–16.

    Google Scholar 

  68. King RW, Deshaies RJ, Peters JM, Kirschner MW. How proteolysis drives the cell cycle. Science 1996;274(5293):1652–9.

    PubMed  CAS  Google Scholar 

  69. Pardee AB. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci USA 1974;71(4):1286–90.

    PubMed  CAS  Google Scholar 

  70. Pardee AB. G1 Events and Regualtion of Cell Proliferation. Science 1989;240(November):603–8.

    Google Scholar 

  71. Zetterberg A, Larsson O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of swiss 3T3 cells. Proc Natl Acad Sci USA 1985;82:5365–9.

    PubMed  CAS  Google Scholar 

  72. Planas-Silva MD, Weinberg RA. The restriction point and control of cell proliferation. Curr Opin Cell Biol 1997;9(6): 768–72.

    PubMed  CAS  Google Scholar 

  73. Pledger WJ, Stiles CD, Antoniades HN, Scher CD. Induction of DNA synthesis in BALB/c 3T3 cells by serum components: reevaluation of the commitment process. Proc Natl Acad Sci USA 1977;74(10):4481–5.

    PubMed  CAS  Google Scholar 

  74. Pledger WJ, Stiles CD, Antoniades HN, Scher CD. An ordered sequence of events is required before BALB/c-3T3 cells become committed to DNA synthesis. Proc Natl Acad Sci USA 1978;75(6):2839–43.

    PubMed  CAS  Google Scholar 

  75. Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wyk JJ, Pledger WJ. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci USA 1979;76:1279–83.

    PubMed  CAS  Google Scholar 

  76. Jones SM, Kazlauskas A. Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol 2001;3(2):165–72.

    PubMed  CAS  Google Scholar 

  77. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005;310(5754):1646–53.

    PubMed  CAS  Google Scholar 

  78. Matsui T, Heidaran M, Miki T, et al. Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 1989;243:800–4.

    PubMed  CAS  Google Scholar 

  79. Soriano P. Abnormal kidney development and hematological disorders in PDGF β-receptor mutant mice. Genes Dev 1994;8:1888–96.

    PubMed  CAS  Google Scholar 

  80. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997;277(5323):242–5.

    PubMed  CAS  Google Scholar 

  81. Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001;153(3):543–53.

    PubMed  CAS  Google Scholar 

  82. Lindahl P, Hellstrom M, Kalen M, et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 1998;125(17):3313–22.

    PubMed  CAS  Google Scholar 

  83. Soriano P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 1997;124:2691–700.

    PubMed  CAS  Google Scholar 

  84. Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 2003;23(11):4013–25.

    PubMed  CAS  Google Scholar 

  85. Tallquist MD, Weismann KE, Hellstrom M, Soriano P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 2000;127(23):5059–70.

    PubMed  CAS  Google Scholar 

  86. Fruttiger M, Karlsson L, Hall AC, et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 1999;126(3):457–67.

    PubMed  CAS  Google Scholar 

  87. Morrison-Graham K, Schatteman GC, Bork T, Bowen-Pope DF, Weston JA. A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells. Development 1992;115:133–43.

    PubMed  CAS  Google Scholar 

  88. Boström H, Willetts K, Pekny M, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 1996;85:863–73.

    PubMed  Google Scholar 

  89. Karlsson L, Bondjers C, Betsholtz C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 1999;126(12):2611–21.

    PubMed  CAS  Google Scholar 

  90. Lindahl P, Betsholtz C. Not all myofibroblasts are alike: revisiting the role of PDGF-A and PDGF-B using PDGF-targeted mice. Curr Opin Nephrol Hypertens 1998;7(1):21–6.

    PubMed  CAS  Google Scholar 

  91. Tallquist M, Kazlauskas A. PDGF signaling in cells and mice. Cytokine Growth Factor Rev 2004;15(4):205–13.

    PubMed  CAS  Google Scholar 

  92. Klinghoffer RA, Mueting-Nelsen PF, Faerman A, Shani M, Soriano P. The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol Cell 2001;7(2):343–54.

    PubMed  CAS  Google Scholar 

  93. Fambrough D, McClure K, Kazlauskas A, Lander ES. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than distinct, sets of genes. Cell 1999;97:727–41.

    PubMed  CAS  Google Scholar 

  94. Schmahl J, Raymond CS, Soriano P. PDGF signaling specificity is mediated through multiple immediate early genes. Nat Genet 2006.

    Google Scholar 

  95. DiCorleto PE, Bowen-Pope DF. Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci USA 1983;80(7):1919–23.

    PubMed  CAS  Google Scholar 

  96. Collins T, Ginsburg D, Boss JM, Orkin SH, Pober JS. Cultured human endothelial cells express platelet-derived growth factor B chain: cDNA cloning and structural analysis. Nature 1985;316:748–50.

    PubMed  CAS  Google Scholar 

  97. Collins T, Pober JS, Gimbrone MA, Jr., et al. Cultured human endothelial cells express platelet-derived growth factor A chain. Am J Pathol 1987;126(1):7–12.

    PubMed  CAS  Google Scholar 

  98. Kazlauskas A, DiCorleto PE. Cultured endothelial cells do not respond to a platelet-derived growth-factor-like protein in an autocrine manner. Biochem Biophys Acta 1985;846:405–12.

    PubMed  CAS  Google Scholar 

  99. Heldin C-H, Westermark B, Wasteson A. Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia. Proc Natl Acad Sci USA 1981;78:3664–8.

    PubMed  CAS  Google Scholar 

  100. Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 1989;86(12):4544–8.

    PubMed  CAS  Google Scholar 

  101. Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 1998;141(3):805–14.

    PubMed  CAS  Google Scholar 

  102. Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 1999;84(3):298–305.

    PubMed  CAS  Google Scholar 

  103. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 1994;8:1875–87.

    PubMed  CAS  Google Scholar 

  104. Enge M, Bjarnegard M, Gerhardt H, et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. Embo J 2002;21(16):4307–16.

    PubMed  CAS  Google Scholar 

  105. Lindblom P, Gerhardt H, Liebner S, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 2003;17(15):1835–40.

    PubMed  CAS  Google Scholar 

  106. Maharaj AS, Saint-Geniez M, Maldonado AE, D’Amore PA. Vascular endothelial growth factor localization in the adult. Am J Pathol 2006;168(2):639–48.

    PubMed  CAS  Google Scholar 

  107. Jain RK. Molecular regulation of vessel maturation. Nat Med 2003;9(6):685–93.

    PubMed  CAS  Google Scholar 

  108. von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp Cell Res 2006;312(5):623–9.

    Google Scholar 

  109. Chantrain CF, Henriet P, Jodele S, et al. Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases. Eur J Cancer 2006;42(3):310–8.

    PubMed  CAS  Google Scholar 

  110. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 2003;112(8):1142–51.

    PubMed  CAS  Google Scholar 

  111. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003;111(9):1287–95.

    PubMed  CAS  Google Scholar 

  112. Shaheen RM, Tseng WW, Davis DW, et al. Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res 2001;61(4):1464–8.

    PubMed  CAS  Google Scholar 

  113. Pietras K, Rubin K, Sjoblom T, et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 2002;62(19):5476–84.

    PubMed  CAS  Google Scholar 

  114. Erber R, Thurnher A, Katsen AD, et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. Faseb J 2004;18(2):338–40.

    PubMed  CAS  Google Scholar 

  115. Uehara H, Kim SJ, Karashima T, et al. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst 2003;95(6):458–70.

    Article  PubMed  CAS  Google Scholar 

  116. Kim SJ, Uehara H, Yazici S, et al. Simultaneous blockade of platelet-derived growth factor-receptor and epidermal growth factor-receptor signaling and systemic administration of paclitaxel as therapy for human prostate cancer metastasis in bone of nude mice. Cancer Res 2004;64(12):4201–8.

    PubMed  CAS  Google Scholar 

  117. Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 2003;162(1):183–93.

    PubMed  Google Scholar 

  118. Darland DC, D’Amore PA. Blood vessel maturation: vascular development comes of age. J Clin Invest 1999;103(2):157–8.

    PubMed  CAS  Google Scholar 

  119. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999;103(2):159–65.

    PubMed  CAS  Google Scholar 

  120. Chantrain CF, Shimada H, Jodele S, et al. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 2004;64(5):1675–86.

    PubMed  CAS  Google Scholar 

  121. Spurbeck WW, Ng CY, Strom TS, Vanin EF, Davidoff AM. Enforced expression of tissue inhibitor of matrix metalloproteinase-3 affects functional capillary morphogenesis and inhibits tumor growth in a murine tumor model. Blood 2002;100(9):3361–8.

    PubMed  CAS  Google Scholar 

  122. Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998;125(9):1591–8.

    PubMed  CAS  Google Scholar 

  123. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002;160(3):985–1000.

    PubMed  Google Scholar 

  124. Sims DE. The pericyte–a review. Tissue Cell 1986;18(2):153–74.

    PubMed  CAS  Google Scholar 

  125. Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 1961;66:366–78.

    PubMed  CAS  Google Scholar 

  126. Speiser P, Gittelsohn AM, Patz A. Studies on diabetic retinopathy. 3. Influence of diabetes on intramural pericytes. Arch Ophthalmol 1968;80(3):332–7.

    PubMed  CAS  Google Scholar 

  127. Arfken CL, Reno PL, Santiago JV, Klein R. Development of proliferative diabetic retinopathy in African-Americans and whites with type 1 diabetes. Diabetes Care 1998;21(5):792–5.

    PubMed  CAS  Google Scholar 

  128. Wilkinson-Berka JL, Babic S, De Gooyer T, et al. Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am J Pathol 2004;164(4):1263–73.

    PubMed  CAS  Google Scholar 

  129. Tanii M, Yonemitsu Y, Fujii T, et al. Diabetic microangiopathy in ischemic limb is a disease of disturbance of the platelet-derived growth factor-BB/protein kinase C axis but not of impaired expression of angiogenic factors. Circ Res 2006;98(1):55–62.

    PubMed  CAS  Google Scholar 

  130. Li X, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. J Clin Invest 2005;115(1):118–27.

    PubMed  CAS  Google Scholar 

  131. Cao R, Brakenhielm E, Pawliuk R, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003;9(5): 604–13.

    PubMed  CAS  Google Scholar 

  132. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 2005;7(9):870–9.

    PubMed  CAS  Google Scholar 

  133. Beitz JG, Kim I-S, Calabresi P, Frackelton ARJ. Human microvascular endothelial cells express receptors for platelet-derived growth factor. Proc Natl Acad Sci USA 1991;88:2021–5.

    PubMed  CAS  Google Scholar 

  134. Bar RS, Boes M, Booth BA, Dake BL, Henley S, Hart MN. The effects of platelet-derived growth factor in cultured microvessel endothelial cells. Endocrinology 1989;124(4):1841–8.

    PubMed  CAS  Google Scholar 

  135. Edelberg JM, Aird WC, Wu W, et al. PDGF mediates cardiac microvascular communication. J Clin Invest 1998;102(4):837–43.

    PubMed  CAS  Google Scholar 

  136. Koyama N, Watanabe S, Tezuka M, Morisaki N, Saito Y, Yoshida S. Migratory and proliferative effect of platelet-derived growth factor in rabbit retinal endothelial cells: evidence of an autocrine pathway of platelet-derived growth factor. J Cell Physiol 1994;158:1–6.

    PubMed  CAS  Google Scholar 

  137. Marx M, Perlmutter RA, Madri JA. Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. J Clin Invest 1994;93(1):131–9.

    PubMed  CAS  Google Scholar 

  138. Smits A, Hermansson M, Nister M, et al. Rat brain capillary endothelial cells express functional PDGF B-type receptors. Growth Factors 1989;2(1):1–8.

    PubMed  CAS  Google Scholar 

  139. Thommen R, Humar R, Misevic G, et al. PDGF-BB increases endothelial migration on cord movements during angiogenesis in vitro. J Cell Biochem 1997;64(3):403–13.

    PubMed  CAS  Google Scholar 

  140. Lindner V, Reidy MA. Platelet-derived growth factor ligand and receptor expression by large vessel endothelium in vivo. Am J Pathol 1995;146(6):1488–97.

    PubMed  CAS  Google Scholar 

  141. Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol 1994;125(4):917–28.

    PubMed  CAS  Google Scholar 

  142. Plate KH, Brier G, Farrell CL, Risau W. Platelet-derived growth factor receptor-β is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest 1992;67:529–34.

    PubMed  CAS  Google Scholar 

  143. Lei H, Velez G, Horland P, Hirose T, Kazlauskas A. Plasmin is the major protease responsible for processing PDGF-C in the vitreous of patients with proliferative vitreoretinopathy. IOVS 2008;49(1):42–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kazlauskas, A. (2008). Platelet-Derived Growth Factor. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics