Skip to main content

Fibroblast Growth Factor-2 in Angiogenesis

  • Chapter
Angiogenesis

Fibroblast growth factor-2 (FGF2) is a heparinbinding growth factor endowed with a potent angiogenic activity in vitro and in vivo. Due to their role in the neovascularization process, FGF2 and its receptors are viewed as targets for the development of antiangiogenic strategies to be exploited in cancer treatment.

FGF2-dependent neovascularization is the outcome of a complex network of interactions among FGF2 and a variety of free and extracellular matrix-associated molecules that modulate the bioavailability and biological activity of the growth factor. Also, to exert its angiogenic potential, FGF2 interacts with multiple endothelial cell surface receptors, including tyrosine kinase receptors, integrins, gangliosides, and heparan-sulfate proteoglycans. This complex network of extracellular interactions is mirrored intracellularly by the activation of various signal transduction pathways. Further complexity is added by the observation that FGF2 may act in synergy with other angiogenic growth factors and cytokines.

This chapter will focus on the mechanism of action of FGF2 in endothelial cells and its role in vasculogenesis and angiogenesis that occur under physiological and pathological conditions, including inflammation and tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shing Y, Folkman J, Sullivan R, et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 1984; 223:1296–9.

    PubMed  CAS  Google Scholar 

  2. Shing Y, Folkman J, Haudenschild C, et al. Angiogenesis is stimulated by a tumor-derived endothelial cell growth factor. J.Cell Biochem. 1985; 29:275–287.

    PubMed  CAS  Google Scholar 

  3. Bohlen P, Baird A, Esch F, et al. Isolation and partial molecular characterization of pituitary fibroblast growth factor. Proc Natl Acad Sci USA 1984; 81:5364–8.

    PubMed  CAS  Google Scholar 

  4. Presta M, Moscatelli D, Joseph-Silverstein J, et al. Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis, and migration. Mol Cell Biol 1986; 6:4060–6.

    PubMed  CAS  Google Scholar 

  5. Presta M, Dell’Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16:159–78.

    PubMed  CAS  Google Scholar 

  6. Florkiewicz RZ, Sommer A. Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci U S A 1989; 86:3978–81.

    PubMed  CAS  Google Scholar 

  7. Mignatti P, Morimoto T, Rifkin DB. Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J Cell Physiol 1992; 151:81–93.

    PubMed  CAS  Google Scholar 

  8. Bikfalvi A, Savona C, Perollet C, et al. New insights in the biology of fibroblast growth factor-2. Angiogenesis 1998; 1:155–73.

    PubMed  Google Scholar 

  9. Gualandris A, Urbinati C, Rusnati M, et al. Interaction of high-molecular-weight basic fibroblast growth factor with endothelium: biological activity and intracellular fate of human recombinant M(r) 24, 000 bFGF. J Cell Physiol 1994; 161:149–59.

    PubMed  CAS  Google Scholar 

  10. Taraboletti G, D’Ascenzo S, Borsotti P, et al. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 2002; 160:673–80.

    PubMed  CAS  Google Scholar 

  11. Fantl WJ, Escobedo JA, Martin GA, et al. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 1992; 69:413–423.

    PubMed  CAS  Google Scholar 

  12. Ornitz DM, Xu J, Colvin JS, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996; 271:15292–7.

    PubMed  CAS  Google Scholar 

  13. Javerzat S, Auguste P, Bikfalvi A. The role of fibroblast growth factors in vascular development. Trends Mol Med 2002; 8: 483–9.

    PubMed  CAS  Google Scholar 

  14. Dell’Era P, Belleri M, Stabile H, et al. Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells. Oncogene 2001; 20:2655–63.

    PubMed  Google Scholar 

  15. Rusnati M, Presta M. Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans. Biological implications in neovascularization. Int J Clin Lab Res 1996; 26:15–23.

    PubMed  CAS  Google Scholar 

  16. Lindahl U, Lidholt K, Spillmann D, et al. More to “heparin” than anticoagulation. Thromb Res 1994; 75:1–32.

    PubMed  CAS  Google Scholar 

  17. West DC, Rees CG, Duchesne L, et al. Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem 2005; 280:13457–64.

    PubMed  CAS  Google Scholar 

  18. Bonnet H, Filhol O, Truchet I, et al. Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 1996; 271:24781–7.

    PubMed  CAS  Google Scholar 

  19. Rusnati M, Urbinati C, Tanghetti E, et al. Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci USA 2002; 99:4367–72.

    PubMed  CAS  Google Scholar 

  20. Rusnati M, Tanghetti E, Dell’Era P, et al. alphavbeta3 integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Mol Biol Cell 1997; 8:2449–61.

    PubMed  CAS  Google Scholar 

  21. Rusnati M, Presta M. Extracellular angiogenic growth factor interactions: an angiogenesis interactome survey. Endothelium 2006; 13:93–111.

    PubMed  CAS  Google Scholar 

  22. Sahni A, Altland OD, Francis CW. FGF-2 but not FGF-1 binds fibrin and supports prolonged endothelial cell growth. J Thromb Haemost 2003; 1:1304–10.

    PubMed  CAS  Google Scholar 

  23. Lopez-Casillas F, Cheifetz S, Doody J, et al. Structure and expression of the membrane proteoglycan betaglycan, a component of the TGF-beta receptor system. Cell 1991; 67:785–95.

    PubMed  CAS  Google Scholar 

  24. Presta M, Maier JA, Rusnati M, et al. Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol 1989; 140:68–74.

    PubMed  CAS  Google Scholar 

  25. Folkman J, Klagsbrun M, Sasse J, et al. A heparin-binding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am J Pathol 1988; 130:393–400.

    PubMed  CAS  Google Scholar 

  26. Tanghetti E, Ria R, Dell’Era P, et al. Biological activity of substrate-bound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene 2002; 21:3889–97.

    PubMed  CAS  Google Scholar 

  27. Presta M, Rusnati M, Urbinati C, et al. Basic fibroblast growth factor bound to cell substrate promotes cell adhesion, proliferation, and protease production in cultured endothelial cells. Exs 1992; 61:205–9.

    PubMed  CAS  Google Scholar 

  28. Sahni A, Francis CW. Stimulation of endothelial cell proliferation by FGF-2 in the presence of fibrinogen requires alphavbeta3. Blood 2004; 104:3635–41.

    PubMed  CAS  Google Scholar 

  29. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16:139–49.

    PubMed  CAS  Google Scholar 

  30. Mohammadi M, Dikic I, Sorokin A, et al. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 1996; 16: 977–89.

    PubMed  CAS  Google Scholar 

  31. Dell’Era P, Mohammadi M, Presta M. Different tyrosine autophosphorylation requirements in fibroblast growth factor receptor-1 mediate urokinase-type plasminogen activator induction and mitogenesis. Mol Biol Cell 1999; 10:23–33.

    PubMed  Google Scholar 

  32. Larsson H, Klint P, Landgren E, et al. Fibroblast growth factor receptor-1-mediated endothelial cell proliferation is dependent on the Src homology (SH) 2/SH3 domain- containing adaptor protein Crk. J Biol Chem 1999; 274:25726–25734.

    PubMed  CAS  Google Scholar 

  33. Mohammadi M, Honegger AM, Rotin D, et al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol 1991; 11:5068–78.

    PubMed  CAS  Google Scholar 

  34. Cross MJ, Lu L, Magnusson P, et al. The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Mol Biol Cell 2002; 13:2881–93.

    PubMed  CAS  Google Scholar 

  35. Mohammadi M, Dionne CA, Li W, et al. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 1992; 358:681–4.

    PubMed  CAS  Google Scholar 

  36. Ong SH, Guy GR, Hadari YR, et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 2000; 20:979–89.

    PubMed  CAS  Google Scholar 

  37. Dhalluin C, Yan KS, Plotnikova O, et al. Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors. Mol Cell 2000; 6:921–9.

    PubMed  CAS  Google Scholar 

  38. Hadari YR, Kouhara H, Lax I, et al. Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation. Mol Cell Biol 1998; 18:3966–73.

    PubMed  CAS  Google Scholar 

  39. Ong SH, Hadari YR, Gotoh N, et al. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci USA 2001; 98:6074–9.

    PubMed  CAS  Google Scholar 

  40. Rieck PW, Cholidis S, Hartmann C. Intracellular signaling pathway of FGF-2-modulated corneal endothelial cell migration during wound healing in vitro. Exp Eye Res 2001; 73: 639–50.

    PubMed  CAS  Google Scholar 

  41. Giuliani R, Bastaki M, Coltrini D, et al. Role of endothelial cell extracellular signal-regulated kinase1/2 in urokinase-type plasminogen activator upregulation and in vitro angiogenesis by fibroblast growth factor-2. J Cell Sci 1999; 112:2597–606.

    PubMed  CAS  Google Scholar 

  42. Eliceiri BP, Klemke R, Stromblad S, et al. Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 1998; 140:1255–63.

    PubMed  CAS  Google Scholar 

  43. Horowitz A, Tkachenko E, Simons M. Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol 2002; 157:715–25.

    PubMed  CAS  Google Scholar 

  44. Chua CC, Rahimi N, Forsten-Williams K, et al. Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 2004; 94:316–23.

    PubMed  CAS  Google Scholar 

  45. Miljan EA, Bremer EG. Regulation of growth factor receptors by gangliosides. Sci STKE 2002; 2002:RE15.

    Google Scholar 

  46. Eliceiri BP. Integrin and growth factor receptor crosstalk. Circ Res 2001; 89:1104–10.

    PubMed  CAS  Google Scholar 

  47. Banga HS, Simons ER, Brass LF, et al. Activation of phospholipases A and C in human platelets exposed to epinephrine: role of glycoproteins IIb/IIIa and dual role of epinephrine. Proc Natl Acad Sci USA 1986; 83:9197–201.

    PubMed  CAS  Google Scholar 

  48. Peters KG, Marie J, Wilson E, et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 1992; 358:678–81.

    PubMed  CAS  Google Scholar 

  49. Vuori K, Ruoslahti E. Activation of protein kinase C precedes alpha 5 beta 1 integrin-mediated cell spreading on fibronectin. J Biol Chem 1993; 268:21459–62.

    PubMed  CAS  Google Scholar 

  50. Presta M, Maier JA, Ragnotti G. The mitogenic signaling pathway but not the plasminogen activator-inducing pathway of basic fibroblast growth factor is mediated through protein kinase C in fetal bovine aortic endothelial cells. J Cell Biol 1989; 109: 1877–84.

    PubMed  CAS  Google Scholar 

  51. Pelletier AJ, Bodary SC, Levinson AD. Signal transduction by the platelet integrin alpha IIb beta 3: induction of calcium oscillations required for protein-tyrosine phosphorylation and ligand-induced spreading of stably transfected cells. Mol Biol Cell 1992; 3:989–98.

    PubMed  CAS  Google Scholar 

  52. Schwartz MA. Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J Cell Biol 1993; 120:1003–10.

    PubMed  CAS  Google Scholar 

  53. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569–71.

    PubMed  CAS  Google Scholar 

  54. Kumar CC, Malkowski M, Yin Z, et al. Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v) beta3 and alpha(v) beta5 integrin receptor antagonist. Cancer Res 2001; 61:2232–8.

    PubMed  CAS  Google Scholar 

  55. Naim R, Chang RC, Sadick H, et al. Influence of hepatocyte growth factor/scatter factor (HGF/SF) on fibroblast growth factor-2 (FGF-2) levels in external auditory canal cholesteatoma (EACC) cell culture. In Vivo 2005; 19:599–603.

    PubMed  CAS  Google Scholar 

  56. Onimaru M, Yonemitsu Y, Tanii M, et al. Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs. Circ Res 2002; 91:923–30.

    PubMed  CAS  Google Scholar 

  57. Masaki I, Yonemitsu Y, Yamashita A, et al. Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 2002; 90: 966–73.

    PubMed  CAS  Google Scholar 

  58. Castellon R, Hamdi HK, Sacerio I, et al. Effects of angiogenic growth factor combinations on retinal endothelial cells. Exp Eye Res 2002; 74:523–35.

    PubMed  CAS  Google Scholar 

  59. Jeon O, Hwang KC, Yoo KJ, et al. Combined sustained delivery of basic fibroblast growth factor and administration of granulocyte colony-stimulating factor: synergistic effect on angiogenesis in mouse ischemic limbs. J Endovasc Ther 2006; 13:175–81.

    PubMed  Google Scholar 

  60. Cao R, Brakenhielm E, Pawliuk R, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003; 9: 604–13.

    PubMed  CAS  Google Scholar 

  61. Wang XT, Liu PY, Tang JB. PDGF gene therapy enhances expression of VEGF and bFGF genes and activates the NF- kappaB gene in signal pathways in ischemic flaps. Plast Reconstr Surg 2006; 117:129–37.

    PubMed  CAS  Google Scholar 

  62. Russo K, Ragone R, Facchiano AM, et al. Platelet-derived growth factor-BB and basic fibroblast growth factor directly interact in vitro with high affinity. J Biol Chem 2002; 277:1284–91.

    PubMed  CAS  Google Scholar 

  63. De Marchis F, Ribatti D, Giampietri C, et al. Platelet-derived growth factor inhibits basic fibroblast growth factor angiogenic properties in vitro and in vivo through its alpha receptor. Blood 2002; 99:2045–53.

    PubMed  CAS  Google Scholar 

  64. Yu J, Deuel TF, Kim HR. Platelet-derived growth factor (PDGF) receptor-alpha activates c-Jun NH2-terminal kinase-1 and antagonizes PDGF receptor-beta -induced phenotypic transformation. J Biol Chem 2000; 275:19076–82.

    PubMed  CAS  Google Scholar 

  65. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9:669–76.

    PubMed  CAS  Google Scholar 

  66. Tomanek RJ, Sandra A, Zheng W, et al. Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res 2001; 88:1135–41.

    PubMed  CAS  Google Scholar 

  67. Jih YJ, Lien WH, Tsai WC, et al. Distinct regulation of genes by bFGF and VEGF-A in endothelial cells. Angiogenesis 2001; 4:313–21.

    PubMed  CAS  Google Scholar 

  68. Ho M, Yang E, Matcuk G, et al. Identification of endothelial cell genes by combined database mining and microarray analysis. Physiol Genomics 2003; 13:249–62.

    PubMed  CAS  Google Scholar 

  69. Pepper MS, Mandriota SJ. Regulation of vascular endothelial growth factor receptor-2 (Flk-1) expression in vascular endothelial cells. Exp Cell Res 1998; 241:414–25.

    PubMed  CAS  Google Scholar 

  70. Tille JC, Wood J, Mandriota SJ, et al. Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther 2001; 299:1073–85.

    PubMed  CAS  Google Scholar 

  71. Auguste P, Gursel DB, Lemiere S, et al. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Cancer Res 2001; 61:1717–26.

    PubMed  CAS  Google Scholar 

  72. Seghezzi G, Patel S, Ren CJ, et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 1998; 141:1659–73.

    PubMed  CAS  Google Scholar 

  73. Kanda S, Miyata Y, Kanetake H. Fibroblast growth factor-2- mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J Biol Chem 2004; 279:4007–16.

    PubMed  CAS  Google Scholar 

  74. Gabler C, Plath-Gabler A, Killian GJ, et al. Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol. Reprod Domest Anim 2004; 39:321–7.

    PubMed  CAS  Google Scholar 

  75. Chang L, Kaipainen A, Folkman J. Lymphangiogenesis new mechanisms. Ann NY Acad Sci 2002; 979:111–9.

    PubMed  CAS  Google Scholar 

  76. Ferguson JE, 3rd, Kelley RW, Patterson C. Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler Thromb Vasc Biol 2005; 25:2246–54.

    PubMed  CAS  Google Scholar 

  77. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995; 11:73–91.

    PubMed  CAS  Google Scholar 

  78. Bikfalvi A, Klein S, Pintucci G, et al. Biological roles of fibroblast growth factor-2. Endocr Rev 1997; 18:26–45.

    PubMed  CAS  Google Scholar 

  79. Poole TJ, Finkelstein EB, Cox CM. The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 2001; 220:1–17.

    PubMed  CAS  Google Scholar 

  80. Kubota Y, Ito K. Chemotactic migration of mesencephalic neural crest cells in the mouse. Dev Dyn 2000; 217:170–9.

    PubMed  CAS  Google Scholar 

  81. Cox CM, Poole TJ. Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and patterns vessel formation in the quail embryo. Dev Dyn 2000; 218:371–82.

    PubMed  CAS  Google Scholar 

  82. Ribatti D, Vacca A, Roncali L, et al. The chick embryo chorioallantoic membrane as a model for in vivo research on anti-angiogenesis. Curr Pharm Biotechnol 2000; 1:73–82.

    PubMed  CAS  Google Scholar 

  83. Ribatti D, Presta M. The role of fibroblast growth factor-2 in the vascularization of the chick embryo chorioallantoic membrane. J Cell Mol Med 2002; 6:439–46.

    PubMed  CAS  Google Scholar 

  84. Parsons-Wingerter P, Elliott KE, Clark JI, et al. Fibroblast growth factor-2 selectively stimulates angiogenesis of small vessels in arterial tree. Arterioscler Thromb Vasc Biol 2000; 20:1250–6.

    PubMed  CAS  Google Scholar 

  85. Zhou M, Sutliff RL, Paul RJ, et al. Fibroblast growth factor 2 control of vascular tone. Nat Med 1998; 4:201–7.

    PubMed  CAS  Google Scholar 

  86. Tobe T, Ortega S, Luna JD, et al. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 1998; 153:1641–6.

    PubMed  CAS  Google Scholar 

  87. Ozaki H, Okamoto N, Ortega S, et al. Basic fibroblast growth factor is neither necessary nor sufficient for the development of retinal neovascularization. Am J Pathol 1998; 153:757–65.

    PubMed  CAS  Google Scholar 

  88. Fulgham DL, Widhalm SR, Martin S, et al. FGF-2 dependent angiogenesis is a latent phenotype in basic fibroblast growth factor transgenic mice. Endothelium 1999; 6:185–95.

    PubMed  CAS  Google Scholar 

  89. Miller DL, Ortega S, Bashayan O, et al. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 2000; 20:2260–8.

    PubMed  CAS  Google Scholar 

  90. Lee SH, Schloss DJ, Swain JL. Maintenance of vascular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem 2000; 275:33679–87.

    PubMed  CAS  Google Scholar 

  91. Leconte I, Fox JC, Baldwin HS, et al. Adenoviral-mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development. Dev Dyn 1998; 213:421–30.

    PubMed  CAS  Google Scholar 

  92. Hamaguchi I, Huang XL, Takakura N, et al. In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region. Blood 1999; 93:1549–56.

    PubMed  CAS  Google Scholar 

  93. Moroni E, Dell’Era P, Rusnati M, et al. Fibroblast growth factors and their receptors in hematopoiesis and hematological tumors. J Hematother Stem Cell Res 2002; 11:19–32.

    PubMed  CAS  Google Scholar 

  94. Faloon P, Arentson E, Kazarov A, et al. Basic fibroblast growth factor positively regulates hematopoietic development. Development 2000; 127:1931–41.

    PubMed  CAS  Google Scholar 

  95. Burger PE, Coetzee S, McKeehan WL, et al. Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells. Blood 2002; 100:3527–35.

    PubMed  CAS  Google Scholar 

  96. Fontaine V, Filipe C, Werner N, et al. Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization. Am J Pathol 2006; 169:1855–62.

    PubMed  CAS  Google Scholar 

  97. Gloe T, Sohn HY, Meininger GA, et al. Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v) beta3. J Biol Chem 2002; 277:23453–8.

    PubMed  CAS  Google Scholar 

  98. Hartnett ME, Garcia CM, D’Amore PA. Release of bFGF, an endothelial cell survival factor, by osmotic shock. Invest Ophthalmol Vis Sci 1999; 40:2945–51.

    PubMed  CAS  Google Scholar 

  99. Ziche M, Parenti A, Ledda F, et al. Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ Res 1997; 80:845–52.

    PubMed  CAS  Google Scholar 

  100. Shaw JP, Chuang N, Yee H, et al. Polymorphonuclear neutrophils promote rFGF-2-induced angiogenesis in vivo. J Surg Res 2003; 109:37–42.

    PubMed  CAS  Google Scholar 

  101. Fujii T, Yonemitsu Y, Onimaru M, et al. Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/ arteriogenic pathway. Arterioscler Thromb Vasc Biol 2006; 26:2483–9.

    PubMed  CAS  Google Scholar 

  102. Rusnati M, Camozzi M, Moroni E, et al. Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood 2004.

    Google Scholar 

  103. Kuwabara K, Ogawa S, Matsumoto M, et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 1995; 92:4606–10.

    PubMed  CAS  Google Scholar 

  104. Wang L, Xiong M, Che D, et al. The effect of hypoxia on expression of basic fibroblast growth factor in pulmonary vascular pericytes. J Tongji Med Univ 2000; 20:265–7.

    Article  PubMed  CAS  Google Scholar 

  105. Calvani M, Rapisarda A, Uranchimeg B, et al. Hypoxic induction of an HIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood 2006; 107:2705–12.

    PubMed  CAS  Google Scholar 

  106. Li J, Shworak NW, Simons M. Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1alpha-dependent regulation of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. J Cell Sci 2002; 115:1951–9.

    PubMed  CAS  Google Scholar 

  107. Gajdusek CM, Carbon S. Injury-induced release of basic fibroblast growth factor from bovine aortic endothelium. J Cell Physiol 1989; 139:570–9.

    PubMed  CAS  Google Scholar 

  108. Griffioen AW, Damen CA, Blijham GH, et al. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 1996; 88:667–73.

    PubMed  CAS  Google Scholar 

  109. Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer 2004; 40:1660–7.

    PubMed  CAS  Google Scholar 

  110. Moscatelli D, Presta M, Joseph-Silverstein J, et al. Both normal and tumor cells produce basic fibroblast growth factor. J Cell Physiol 1986; 129:273–6.

    PubMed  CAS  Google Scholar 

  111. Kandel J, Bossy-Wetzel E, Radvanyi F, et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66:1095–104.

    PubMed  CAS  Google Scholar 

  112. Wang Y, Becker D. Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 1997; 3:887–93.

    PubMed  CAS  Google Scholar 

  113. Baird A, Mormede P, Bohlen P. Immunoreactive fibroblast growth factor (FGF) in a transplantable chondrosarcoma: inhibition of tumor growth by antibodies to FGF. J Cell Biochem 1986; 30:79–85.

    PubMed  CAS  Google Scholar 

  114. Gross JL, Herblin WF, Dusak BA, et al. Effects of modulation of basic fibroblast growth factor on tumor growth in vivo. J Natl Cancer Inst 1993; 85:121–31.

    PubMed  Google Scholar 

  115. Hori A, Sasada R, Matsutani E, et al. Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 1991; 51:6180–4.

    PubMed  CAS  Google Scholar 

  116. Compagni A, Wilgenbus P, Impagnatiello MA, et al. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 2000; 60:7163–9.

    PubMed  CAS  Google Scholar 

  117. Czubayko F, Liaudet-Coopman ED, Aigner A, et al. A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nat Med 1997; 3:1137–40.

    PubMed  CAS  Google Scholar 

  118. Rak J, Kerbel RS. bFGF and tumor angiogenesis–back in the limelight? Nat Med 1997; 3:1083–4.

    PubMed  CAS  Google Scholar 

  119. Aigner A, Butscheid M, Kunkel P, et al. An FGF-binding protein (FGF-BP) exerts its biological function by parallel paracrine stimulation of tumor cell and endothelial cell proliferation through FGF-2 release. Int J Cancer 2001; 92:510–7.

    PubMed  CAS  Google Scholar 

  120. Polnaszek N, Kwabi-Addo B, Peterson LE, et al. Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res 2003; 63:5754–60.

    PubMed  CAS  Google Scholar 

  121. Coltrini D, Gualandris A, Nelli EE, et al. Growth advantage and vascularization induced by basic fibroblast growth factor overexpression in endometrial HEC-1-B cells: an export-dependent mechanism of action. Cancer Res 1995; 55:4729–38.

    PubMed  CAS  Google Scholar 

  122. Konerding MA, Fait E, Dimitropoulou C, et al. Impact of fibroblast growth factor-2 on tumor microvascular architecture. A tridimensional morphometric study. Am J Pathol 1998; 152:1607–16.

    PubMed  CAS  Google Scholar 

  123. Giavazzi R, Giuliani R, Coltrini D, et al. Modulation of tumor angiogenesis by conditional expression of fibroblast growth factor-2 affects early but not established tumors. Cancer Res 2001; 61:309–17.

    PubMed  CAS  Google Scholar 

  124. Cao R, Eriksson A, Kubo H, et al. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 2004; 94:664–70.

    PubMed  CAS  Google Scholar 

  125. Liaudet-Coopman ED, Schulte AM, Cardillo M, et al. A tetracycline-responsive promoter system reveals the role of a secreted binding protein for FGFs during the early phase of tumor growth. Biochem Biophys Res Commun 1996; 229:930–7.

    PubMed  CAS  Google Scholar 

  126. Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res. 1997; 57:3924–3928.

    PubMed  CAS  Google Scholar 

  127. Teicher BA. A systems approach to cancer therapy. (Antioncogenics + standard cytotoxics→mechanism(s) of interaction). Cancer Metastasis Rev 1996; 15:247–72.

    PubMed  CAS  Google Scholar 

  128. Chirivi RG, Garofalo A, Crimmin MJ, et al. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 1994; 58:460–4.

    PubMed  CAS  Google Scholar 

  129. Bergers G, Javaherian K, Lo KM, et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284:808–12.

    PubMed  CAS  Google Scholar 

  130. Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8:299–309.

    PubMed  CAS  Google Scholar 

  131. Rousseau B, Larrieu-Lahargue F, Javerzat S, et al. The tyrp1-Tag/tyrp1-FGFR1-DN bigenic mouse: a model for selective inhibition of tumor development, angiogenesis, and invasion into the neural tissue by blockade of fibroblast growth factor receptor activity. Cancer Res 2004; 64:2490–5.

    PubMed  CAS  Google Scholar 

  132. Zagzag D, Miller DC, Sato Y, et al. Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Res 1990; 50:7393–8.

    PubMed  CAS  Google Scholar 

  133. Nakamoto T, Chang CS, Li AK, et al. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res 1992; 52:571–7.

    PubMed  CAS  Google Scholar 

  134. Schulze-Osthoff K, Risau W, Vollmer E, et al. In situ detection of basic fibroblast growth factor by highly specific antibodies. Am J Pathol 1990; 137:85–92.

    PubMed  CAS  Google Scholar 

  135. Ohtani H, Nakamura S, Watanabe Y, et al. Immunocytochemical localization of basic fibroblast growth factor in carcinomas and inflammatory lesions of the human digestive tract. Lab Invest 1993; 68:520–7.

    PubMed  CAS  Google Scholar 

  136. Takahashi JA, Mori H, Fukumoto M, et al. Gene expression of fibroblast growth factors in human gliomas and meningiomas: demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues. Proc Natl Acad Sci USA 1990; 87:5710–4.

    PubMed  CAS  Google Scholar 

  137. Wesley UV, McGroarty M, Homoyouni A. Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res 2005; 65:1325–34.

    PubMed  CAS  Google Scholar 

  138. Fontijn D, Duyndam MC, van Berkel MP, et al. CD13/Aminopeptidase N overexpression by basic fibroblast growth factor mediates enhanced invasiveness of 1F6 human melanoma cells. Br J Cancer 2006; 94:1627–36.

    PubMed  CAS  Google Scholar 

  139. Yang C, Zeisberg M, Lively JC, et al. Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res 2003; 63:8312–7.

    PubMed  CAS  Google Scholar 

  140. Suyama K, Shapiro I, Guttman M, et al. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2002; 2:301–14.

    PubMed  CAS  Google Scholar 

  141. Poon RT, Fan ST, Wong J. Clinical implications of circulating angiogenic factors in cancer patients. J Clin Oncol 2001; 19:1207–25.

    PubMed  CAS  Google Scholar 

  142. Landriscina M, Cassano A, Ratto C, et al. Quantitative analysis of basic fibroblast growth factor and vascular endothelial growth factor in human colorectal cancer. Br J Cancer 1998; 78:765–70.

    PubMed  CAS  Google Scholar 

  143. Burian M, Quint C, Neuchrist C. Angiogenic factors in laryngeal carcinomas: do they have prognostic relevance? Acta Otolaryngol 1999; 119:289–92.

    PubMed  CAS  Google Scholar 

  144. Folkman J. Angiogenesis-dependent diseases. Semin Oncol 2001; 28:536–42.

    PubMed  CAS  Google Scholar 

  145. Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999; 5:1359–64.

    PubMed  CAS  Google Scholar 

  146. Ria R, Portaluri M, Russo F, et al. Serum levels of angiogenic cytokines decrease after antineoplastic radiotherapy. Cancer Lett 2004; 216:103–7.

    PubMed  CAS  Google Scholar 

  147. Nguyen M, Watanabe H, Budson AE, et al. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 1994; 86:356–61.

    PubMed  CAS  Google Scholar 

  148. Dirix LY, Vermeulen PB, Pawinski A, et al. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br J Cancer 1997; 76:238–43.

    PubMed  CAS  Google Scholar 

  149. Salgado R, Benoy I, Vermeulen P, et al. Circulating basic fibroblast growth factor is partly derived from the tumour in patients with colon, cervical and ovarian cancer. Angiogenesis 2004; 7:29–32.

    PubMed  CAS  Google Scholar 

  150. Rusnati M, Presta M. Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Current Pharma Design 2007; in press.

    Google Scholar 

  151. Giavazzi R, Sennino B, Coltrini D, et al. Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am J Pathol 2003; 162:1913–26.

    PubMed  CAS  Google Scholar 

  152. Hagedorn M, Bikfalvi A. Target molecules for anti-angiogenic therapy: from basic research to clinical trials. Crit Rev Oncol Hematol 2000; 34:89–110.

    PubMed  CAS  Google Scholar 

  153. Ziche M, Donnini S, Morbidelli L. Development of new drugs in angiogenesis. Curr Drug Targets 2004; 5:485–93.

    PubMed  CAS  Google Scholar 

  154. Patel SR, Jenkins J, Papadopolous N, et al. Pilot study of vitaxin–an angiogenesis inhibitor-in patients with advanced leiomyosarcomas. Cancer 2001; 92:1347–8.

    PubMed  CAS  Google Scholar 

  155. Posey JA, Khazaeli MB, DelGrosso A, et al. A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm 2001; 16:125–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Presta, M. et al. (2008). Fibroblast Growth Factor-2 in Angiogenesis. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics