Skip to main content

Hypoxic Regulation of Angiogenesis by HIF-1

  • Chapter
Angiogenesis

Oxygen homeostasis and protection from episodes of low oxygen tension in human tissues is important for cell survival. There are a number of physiological and pathological scenarios that place the cell in hypoxic conditions warranting adaptation to the stressful environment.

In hypoxia, oxidative phosphorylation is deceased with subsequent reduction of ATP production. A responsive increase in glycolysis compensates for this ATP reduction to some degree, but many ATP-dependent processes such as protein translation are decreased in hypoxic cells. Despite this, the cell must adapt to the hypoxic environment via increased oxygen delivery systemically and locally, as well as protect itself from secondary effects of hypoxia, such as decreased pH. Therefore, in a background of decreased total protein translation, specific upregulation of protective mechanisms safeguard the cell from hypoxic stress. This process is primarily regulated by a transcription factor known as Hypoxia Inducible Factor, HIF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12, 5447–54 (1992).

    PubMed  CAS  Google Scholar 

  2. Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270, 1230–7 (1995).

    PubMed  CAS  Google Scholar 

  3. Semenza, G. L. et al. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int 51, 553–5 (1997).

    PubMed  CAS  Google Scholar 

  4. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92, 5510–4 (1995).

    PubMed  CAS  Google Scholar 

  5. Murre, C. et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537–44 (1989).

    PubMed  CAS  Google Scholar 

  6. Semenza, G. L., Koury, S. T., Nejfelt, M. K., Gearhart, J. D. & Antonarakis, S. E. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci USA 88, 8725–9 (1991).

    PubMed  CAS  Google Scholar 

  7. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl- 4-hydroxylases that modify HIF. Science 294, 1337–40 (2001).

    PubMed  CAS  Google Scholar 

  8. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    PubMed  CAS  Google Scholar 

  9. Ivan, M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–8 (2001).

    PubMed  CAS  Google Scholar 

  10. Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–72 (2001).

    PubMed  CAS  Google Scholar 

  11. Ruas, J. L., Poellinger, L. & Pereira, T. Role of CBP in regulating HIF-1-mediated activation of transcription. J Cell Sci 118, 301–11 (2005).

    PubMed  CAS  Google Scholar 

  12. Bracken, C. P., Whitelaw, M. L. & Peet, D. J. The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60, 1376–93 (2003).

    PubMed  CAS  Google Scholar 

  13. Pugh, C. W. & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9, 677–84 (2003).

    PubMed  CAS  Google Scholar 

  14. Hirota, K. & Semenza, G. L. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59, 15–26 (2006).

    PubMed  Google Scholar 

  15. Liu, L. & Simon, M. C. Regulation of transcription and translation by hypoxia. Cancer Biol Ther 3, 492–7 (2004).

    PubMed  CAS  Google Scholar 

  16. Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–41 (2004).

    PubMed  CAS  Google Scholar 

  17. Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G. L. & Van Obberghen, E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 277, 27975–81 (2002).

    PubMed  CAS  Google Scholar 

  18. Zhou, J., Schmid, T. & Brune, B. Tumor necrosis factor-alpha causes accumulation of a ubiquitinated form of hypoxia inducible factor-1alpha through a nuclear factor-kappaB-dependent pathway. Mol Biol Cell 14, 2216–25 (2003).

    PubMed  CAS  Google Scholar 

  19. Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F. & Maity, A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 276, 9519–25 (2001).

    PubMed  CAS  Google Scholar 

  20. Jiang, B. H., Agani, F., Passaniti, A. & Semenza, G. L. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57, 5328–35 (1997).

    PubMed  CAS  Google Scholar 

  21. Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. & Semenza, G. L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21, 3995–4004 (2001).

    PubMed  CAS  Google Scholar 

  22. Blancher, C., Moore, J. W., Talks, K. L., Houlbrook, S. & Harris, A. L. Relationship of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 60, 7106–13 (2000).

    PubMed  CAS  Google Scholar 

  23. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nat Med 10, 789–99 (2004).

    PubMed  CAS  Google Scholar 

  24. Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. Activation of the HIF pathway in cancer. Curr Opin Genet Dev 11, 293–9 (2001).

    PubMed  CAS  Google Scholar 

  25. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721–32 (2003).

    PubMed  CAS  Google Scholar 

  26. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23, 9361–74 (2003).

    PubMed  CAS  Google Scholar 

  27. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25, 5675–86 (2005).

    PubMed  CAS  Google Scholar 

  28. Maranchie, J. K. et al. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1, 247–55 (2002).

    PubMed  CAS  Google Scholar 

  29. Makino, Y., Kanopka, A., Wilson, W. J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277, 32405–8 (2002).

    PubMed  CAS  Google Scholar 

  30. Kaelin, W. G., Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2, 673–82 (2002).

    PubMed  CAS  Google Scholar 

  31. Wykoff, C. C., Pugh, C. W., Maxwell, P. H., Harris, A. L. & Ratcliffe, P. J. Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumour suppressor by mRNA differential expression profiling. Oncogene 19, 6297–305 (2000).

    PubMed  CAS  Google Scholar 

  32. Leek, R. D., Harris, A. L. & Lewis, C. E. Cytokine networks in solid human tumors: regulation of angiogenesis. J Leukoc Biol 56, 423–35 (1994).

    PubMed  CAS  Google Scholar 

  33. Leek, R. D. & Harris, A. L. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7, 177–89 (2002).

    PubMed  Google Scholar 

  34. Murdoch, C., Giannoudis, A. & Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–34 (2004).

    PubMed  CAS  Google Scholar 

  35. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–43 (1996).

    PubMed  CAS  Google Scholar 

  36. Lewis, J. S., Landers, R. J., Underwood, J. C., Harris, A. L. & Lewis, C. E. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192, 150–8 (2000).

    PubMed  CAS  Google Scholar 

  37. Burke, B. et al. Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 163, 1233–43 (2003).

    PubMed  CAS  Google Scholar 

  38. Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717–27 (2006).

    PubMed  CAS  Google Scholar 

  39. Leek, R. D., Lewis, C. E. & Harris, A. L. The role of macrophages in tumour angiogenesis (ed. Bicknell R, L. C.) (Oxford University Press, 1997).

    Google Scholar 

  40. Talks, K. L. et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157, 411–21 (2000).

    PubMed  CAS  Google Scholar 

  41. Krieg, M. et al. Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19, 5435–43 (2000).

    PubMed  CAS  Google Scholar 

  42. Wykoff, C. C. et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60, 7075–83 (2000).

    PubMed  CAS  Google Scholar 

  43. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–5 (1999).

    PubMed  CAS  Google Scholar 

  44. Ravi, R. et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14, 34–44 (2000).

    PubMed  CAS  Google Scholar 

  45. Zundel, W. et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14, 391–6 (2000).

    PubMed  CAS  Google Scholar 

  46. Blouw, B. et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4, 133–46 (2003).

    PubMed  CAS  Google Scholar 

  47. Brahimi-Horn, M. C. & Pouyssegur, J. The hypoxia-inducible factor and tumor progression along the angiogenic pathway. Int Rev Cytol 242, 157–213 (2005).

    PubMed  CAS  Google Scholar 

  48. Semenza, G. L. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8, S62–7 (2002).

    PubMed  CAS  Google Scholar 

  49. Bangoura, G., Yang, L. Y., Huang, G. W. & Wang, W. Expression of HIF-2alpha/EPAS1 in hepatocellular carcinoma. World J Gastroenterol 10, 525–30 (2004).

    PubMed  CAS  Google Scholar 

  50. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–68 (2002).

    PubMed  CAS  Google Scholar 

  51. Kung, A. L., Wang, S., Klco, J. M., Kaelin, W. G. & Livingston, D. M. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6, 1335–40 (2000).

    PubMed  CAS  Google Scholar 

  52. Maxwell, P. H. et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94, 8104–9 (1997).

    PubMed  CAS  Google Scholar 

  53. Korkolopoulou, P. et al. Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol 30, 267–78 (2004).

    PubMed  CAS  Google Scholar 

  54. Schindl, M. et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8, 1831–7 (2002).

    PubMed  CAS  Google Scholar 

  55. Theodoropoulos, V. E. et al. Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol 46, 200–8 (2004).

    PubMed  CAS  Google Scholar 

  56. Birner, P., Schindl, M., Obermair, A., Breitenecker, G. & Oberhuber, G. Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 7, 1661–8 (2001).

    PubMed  CAS  Google Scholar 

  57. Birner, P. et al. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 60, 4693–6 (2000).

    PubMed  CAS  Google Scholar 

  58. Lidgren, A. et al. The expression of hypoxia-inducible factor 1alpha is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11, 1129–35 (2005).

    PubMed  CAS  Google Scholar 

  59. Giatromanolaki, A. et al. DEC1 (STRA13) protein expression relates to hypoxia- inducible factor 1-alpha and carbonic anhydrase-9 overexpression in non-small cell lung cancer. J Pathol 200, 222–8 (2003).

    PubMed  CAS  Google Scholar 

  60. Giatromanolaki, A. et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85, 881–90 (2001).

    PubMed  CAS  Google Scholar 

  61. Kim, S. J. et al. Expression of HIF-1alpha, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer 49, 325–35 (2005).

    PubMed  Google Scholar 

  62. Volm, M. & Koomagi, R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 20, 1527–33 (2000).

    PubMed  CAS  Google Scholar 

  63. Koukourakis, M. I. et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 53, 1192–202 (2002).

    PubMed  CAS  Google Scholar 

  64. Generali, D. et al. Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res 12, 4562–8 (2006).

    PubMed  CAS  Google Scholar 

  65. Koukourakis, M. I. et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol 24, 727–35 (2006).

    PubMed  CAS  Google Scholar 

  66. Koukourakis, M. I. et al. Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res 61, 1830–2 (2001).

    PubMed  CAS  Google Scholar 

  67. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9, 617–28 (2005).

    PubMed  CAS  Google Scholar 

  68. Koshiji, M. et al. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. Embo J 23, 1949–56 (2004).

    PubMed  CAS  Google Scholar 

  69. Hickey, M. M. & Simon, M. C. Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol 76, 217–57 (2006).

    PubMed  CAS  Google Scholar 

  70. Weinstein, B. M. What guides early embryonic blood vessel formation? Dev Dyn 215, 2–11 (1999).

    PubMed  CAS  Google Scholar 

  71. Liu, Y., Cox, S. R., Morita, T. & Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77, 638–43 (1995).

    PubMed  CAS  Google Scholar 

  72. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16, 4604–13 (1996).

    PubMed  CAS  Google Scholar 

  73. Gerber, H. P., Condorelli, F., Park, J. & Ferrara, N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem 272, 23659–67 (1997).

    PubMed  CAS  Google Scholar 

  74. Levy, N. S., Chung, S., Furneaux, H. & Levy, A. P. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273, 6417–23 (1998).

    PubMed  CAS  Google Scholar 

  75. Stein, I. et al. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18, 3112–9 (1998).

    PubMed  CAS  Google Scholar 

  76. Nikitenko, L. L., Fox, S. B., Kehoe, S., Rees, M. C. & Bicknell, R. Adrenomedullin and tumour angiogenesis. Br J Cancer 94, 1–7 (2006).

    PubMed  CAS  Google Scholar 

  77. Garayoa, M. et al. Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol 14, 848–62 (2000).

    PubMed  CAS  Google Scholar 

  78. Higgins, D. F. et al. Hypoxic induction of Ctgf is directly mediated by Hif-1. Am J Physiol Renal Physiol 287, F1223–32 (2004).

    PubMed  CAS  Google Scholar 

  79. Hu, J., Discher, D. J., Bishopric, N. H. & Webster, K. A. Hypoxia regulates expression of the endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense strand. Biochem Biophys Res Commun 245, 894–9 (1998).

    PubMed  CAS  Google Scholar 

  80. Grimshaw, M. J., Naylor, S. & Balkwill, F. R. Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells. Mol Cancer Ther 1, 1273–81 (2002).

    PubMed  CAS  Google Scholar 

  81. Grant, K., Loizidou, M. & Taylor, I. Endothelin-1: a multifunctional molecule in cancer. Br J Cancer 88, 163–6 (2003).

    PubMed  CAS  Google Scholar 

  82. Grimshaw, M. J. et al. A role for endothelin-2 and its receptors in breast tumor cell invasion. Cancer Res 64, 2461–8 (2004).

    PubMed  CAS  Google Scholar 

  83. Fan, S. et al. Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 24, 1749–66 (2005).

    PubMed  CAS  Google Scholar 

  84. Tacchini, L., De Ponti, C., Matteucci, E., Follis, R. & Desiderio, M. A. Hepatocyte growth factor-activated NF-kappaB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines. Carcinogenesis 25, 2089–100 (2004).

    PubMed  CAS  Google Scholar 

  85. Maroni, P., Bendinelli, P., Matteucci, E. & Desiderio, M. A. HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-{kappa}B. Carcinogenesis 28, 267–79 (2007).

    PubMed  CAS  Google Scholar 

  86. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–61 (2003).

    PubMed  Google Scholar 

  87. Hara, S. et al. Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncol 42, 593–8 (2006).

    PubMed  CAS  Google Scholar 

  88. Karashima, T. et al. Nuclear factor-kappaB mediates angiogenesis and metastasis of human bladder cancer through the regulation of interleukin-8. Clin Cancer Res 9, 2786–97 (2003).

    PubMed  CAS  Google Scholar 

  89. Kim, K. S., Rajagopal, V., Gonsalves, C., Johnson, C. & Kalra, V. K. A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. J Immunol 177, 7211–24 (2006).

    PubMed  CAS  Google Scholar 

  90. Sainson, R. C. & Harris, A. L. Hypoxia-regulated differentiation: let’s step it up a Notch. Trends Mol Med 12, 141–3 (2006).

    PubMed  CAS  Google Scholar 

  91. Shi, W. & Harris, A. L. Notch signaling in breast cancer and tumor angiogenesis: cross-talk and therapeutic potentials. J Mammary Gland Biol Neoplasia 11, 41–52 (2006).

    PubMed  CAS  Google Scholar 

  92. Rittling, S. R. & Chambers, A. F. Role of osteopontin in tumour progression. Br J Cancer 90, 1877–81 (2004).

    PubMed  CAS  Google Scholar 

  93. Zhu, Y. et al. Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene 24, 6555–63 (2005).

    PubMed  CAS  Google Scholar 

  94. Le, Q. T. et al. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9, 59–67 (2003).

    PubMed  CAS  Google Scholar 

  95. Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198, 1391–402 (2003).

    PubMed  CAS  Google Scholar 

  96. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10, 858–64 (2004).

    PubMed  CAS  Google Scholar 

  97. Ito, D. et al. Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 24, 9456–69 (2004).

    PubMed  CAS  Google Scholar 

  98. Yeung, H. Y. et al. Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells. Endocrinology 146, 4951–60 (2005).

    PubMed  CAS  Google Scholar 

  99. Lal, A. et al. Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst 93, 1337–43 (2001).

    PubMed  CAS  Google Scholar 

  100. Sanchez-Elsner, T. et al. A cross-talk between hypoxia and TGF-beta orchestrates erythropoietin gene regulation through SP1 and Smads. J Mol Biol 336, 9–24 (2004).

    PubMed  CAS  Google Scholar 

  101. Schaffer, L. et al. Oxygen-regulated expression of TGF-beta 3, a growth factor involved in trophoblast differentiation. Placenta 24, 941–50 (2003).

    PubMed  CAS  Google Scholar 

  102. Jones, N., Iljin, K., Dumont, D. J. & Alitalo, K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2, 257–67 (2001).

    PubMed  CAS  Google Scholar 

  103. Yamakawa, M. et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93, 664–73 (2003).

    PubMed  CAS  Google Scholar 

  104. Orend, G. & Chiquet-Ehrismann, R. Tenascin-C induced signaling in cancer. Cancer Lett 244, 143–63 (2006).

    PubMed  CAS  Google Scholar 

  105. Lok, C. N. & Ponka, P. Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem 274, 24147–52 (1999).

    PubMed  CAS  Google Scholar 

  106. Jones, D. T., Trowbridge, I. S. & Harris, A. L. Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate. Cancer Res 66, 2749–56 (2006).

    PubMed  CAS  Google Scholar 

  107. Jacobson, K. A. & Gao, Z. G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5, 247–64 (2006).

    PubMed  CAS  Google Scholar 

  108. Kong, T., Westerman, K. A., Faigle, M., Eltzschig, H. K. & Colgan, S. P. HIF-dependent induction of adenosine A2B receptor in hypoxia. Faseb J 20, 2242–50 (2006).

    PubMed  CAS  Google Scholar 

  109. Coates, R. J., Weiss, N. S., Daling, J. R., Rettmer, R. L. & Warnick, G. R. Cancer risk in relation to serum copper levels. Cancer Res 49, 4353–6 (1989).

    PubMed  CAS  Google Scholar 

  110. Martin, F. et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105, 4613–9 (2005).

    PubMed  CAS  Google Scholar 

  111. Lowndes, S. A. & Harris, A. L. The role of copper in tumour angiogenesis. J Mammary Gland Biol Neoplasia 10, 299–310 (2005).

    PubMed  Google Scholar 

  112. Feldser, D. et al. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59, 3915–8 (1999).

    PubMed  CAS  Google Scholar 

  113. Erler, J. T. & Giaccia, A. J. Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66, 10238–41 (2006).

    PubMed  CAS  Google Scholar 

  114. Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–6 (2006).

    PubMed  CAS  Google Scholar 

  115. Hurwitz, H. Integrating the anti-VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer. Clin Colorectal Cancer 4 Suppl 2, S62–8 (2004).

    PubMed  CAS  Google Scholar 

  116. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350, 2335–42 (2004).

    PubMed  CAS  Google Scholar 

  117. Belani, C. P. & Ramalingam, S. Bevacizumab extends survival for patients with nonsquamous non-small-cell lung cancer. Clin Lung Cancer 6, 267–8 (2005).

    PubMed  Google Scholar 

  118. Kerr, C. Bevacizumab and chemotherapy improves survival in NSCLC. Lancet Oncol 6, 266 (2005).

    PubMed  Google Scholar 

  119. Lau, S. C., Rosa, D. D. & Jayson, G. Technology evaluation: VEGF Trap (cancer), Regeneron/sanofi-aventis. Curr Opin Mol Ther 7, 493–501 (2005).

    PubMed  Google Scholar 

  120. Kane, R. C. et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res 12, 7271–8 (2006).

    PubMed  CAS  Google Scholar 

  121. Sun, X. et al. Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther 8, 638–45 (2001).

    PubMed  CAS  Google Scholar 

  122. Sun, X. et al. Overexpression of von Hippel-Lindau tumor suppressor protein and antisense HIF-1alpha eradicates gliomas. Cancer Gene Ther 13, 428–35 (2006).

    PubMed  CAS  Google Scholar 

  123. Moeller, B. J. et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8, 99–110 (2005).

    PubMed  CAS  Google Scholar 

  124. Yeo, E. J. et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 95, 516–25 (2003).

    Article  PubMed  CAS  Google Scholar 

  125. Semenza, G. L. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 10, 267–80 (2006).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Charlesworth, P.J.S., Harris, A.L. (2008). Hypoxic Regulation of Angiogenesis by HIF-1. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics