Skip to main content

Thrombospondins: Endogenous Inhibitors of Angiogenesis

  • Chapter
Angiogenesis

The thrombospondin (TSP) gene family consists of five members, two of which, TSP1 and TSP2, have been shown to play important roles in the regulation of angiogenesis. While TSP1 and TSP2 are secreted into the extracellular environment, they do not play structural roles but rather function to regulate cellular behavior by interaction with numerous cell-surface receptors, proteases, cytokines, and other bioactive proteins. As a consequence, these TSPs are termed matricellular proteins. TSP1, but not TSP2, is capable of activating latent TGFβ, and can thereby stimulate the production of extracellular matrix. Matricellular TSPs inhibit angiogenesis both by causing apoptosis of endothelial cells (EC) and by inhibiting their proliferation. However, under some circumstances TSP1 has also been shown to be proangiogenic. TSPs interact with matrix metalloproteinases (MMPs) 2 and 9 and function as clearance factors by directing these MMPs to the scavenger receptor, LRP1, and thence to lysosomal degradation. As a consequence, TSPs function to regulate cell adhesion. TSP1 also inhibits nitric oxide-stimulation of EC proliferation by interaction with the CD47/integrin-associated protein receptor. Finally, by virtue of their ability to inhibit angiogenesis, TSPs have the potential to inhibit tumor growth and metastases, a property that may have clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JC, Monk R, Taylor, AL, et al. Characterisation of Drosophila thrombospondin defines an early origin of pentameric thrombospondins. J Mol Biol 2003; 328:479–94.

    PubMed  CAS  Google Scholar 

  2. McKenzie P, Chadalavada SC, Bohrer J, et al. Phylogenomic analysis of vertebrate thrombospondins reveals fish-specific paralogues, ancestral gene relationships and a tetrapod innovation. BMC Evol Biol 2006; 6:33–48.

    PubMed  Google Scholar 

  3. Sodersten F, Ekman S, Schmitz M, et al. Thrombospondin-4 and cartilage oligomeric matrix protein form heterooligomers in equine tendon. Connect Tissue Res 2006; 47:85–91.

    PubMed  CAS  Google Scholar 

  4. Lawler J, Derick LH, Connolly JE, et al. The structure of human platelet thrombospondin. J Biol Chem 1985; 260:3762–72.

    PubMed  CAS  Google Scholar 

  5. Tan K, Duquette M, Liu JH, et al. Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. J Cell Biol 2002; 159:373–82.

    PubMed  CAS  Google Scholar 

  6. Carlson CB, Bernstein DA, Annis DS, et al. Structure of the calcium-rich signature domain of human thrombospondin-2. Nat Struct Mol Biol 2005; 12:910–14.

    PubMed  CAS  Google Scholar 

  7. Bornstein P. Thrombospondins: structure and regulation of expression. FASEB J 1992; 6:3290–99.

    PubMed  CAS  Google Scholar 

  8. Adams JC. Thrombospondins: Multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol 2001; 17:25–51.

    PubMed  CAS  Google Scholar 

  9. Adams JC, Lawler J. The thrombospondins. Int J Biochem 2004; 36:961–68.

    CAS  Google Scholar 

  10. Svensson L, Aszodi A, Heinegard D, et al. Cartilage oligomeric matrix protein-deficient mice have normal skeletal development. Mol Cell Biol 2002; 22:4366–71.

    PubMed  CAS  Google Scholar 

  11. Briggs MD, Chapman KL. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum Mutat 2002; 19:465–78.

    PubMed  CAS  Google Scholar 

  12. Bornstein P. Thrombospondins as matricellular modulators of cell function. J Clin Invest 2001; 107:929–34.

    PubMed  CAS  Google Scholar 

  13. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Current Opin Cell Biol 2002; 14:608–16.

    CAS  Google Scholar 

  14. Christopherson KS, Ullian EM, Stokes CCA, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005; 120:421–33.

    PubMed  CAS  Google Scholar 

  15. Cáceres M, Suwyn C, Maddox M, et al. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. Cerebral Cortex 2007; 17:2312–21.

    PubMed  Google Scholar 

  16. Lawler J, Sunday M, Thibert V, et al. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest. 1998; 101: 982–92.

    PubMed  CAS  Google Scholar 

  17. Kyriakides TR, Zhu Y-H, Smith LT, et al. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 1998; 140: 419–30.

    PubMed  CAS  Google Scholar 

  18. Kyriakides TR, Tam JWY, Bornstein P. Accelerated wound healing in mice with a disruption of the thrombospondin 2 gene. J Invest Dermatol 1999; 113:782–87.

    PubMed  CAS  Google Scholar 

  19. Agah A, Kyriakides TR, Lawler J, et al. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am J Pathol 2002; 161:831–39.

    PubMed  CAS  Google Scholar 

  20. Mansfield PJ, Suchard SJ. Thrombospondin promotes both chemotaxis and haptotaxis in neutrophil-like HL-60 cells. J Immunol 1993; 150:1959–70.

    PubMed  CAS  Google Scholar 

  21. Mansfield PJ, Suchard SJ. Thrombospondin promotes chemotaxis and haptotaxis of human peripheral blood monocytes. J Immunol 1994; 153:4219–29.

    PubMed  CAS  Google Scholar 

  22. DiPietro LA, Nissen NN, Gamelli RL, et al. Thrombospondin 1 synthesis and function in wound repair. Am J Pathol 1996; 148:1851–60.

    PubMed  CAS  Google Scholar 

  23. Streit M, Velasco P, Riccardi L, et al. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J 2000; 19:3272–82.

    PubMed  CAS  Google Scholar 

  24. Kyriakides TR, Bornstein P. Matricellular proteins as modulators of wound healing and the foreign body response. Thromb Haemost 2003; 90:986–92.

    PubMed  CAS  Google Scholar 

  25. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 1998; 93:1159–70.

    PubMed  CAS  Google Scholar 

  26. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-beta by thromospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 2000; 11:59–69.

    PubMed  CAS  Google Scholar 

  27. Yang Z, Kyriakides TR, Bornstein P. Matricellular proteins as modulators of cell-matrix interactions: Adhesive defect in thrombospondin 2-null fibroblasts is a consequence of increased levels of matrix metalloproteinase-2. Mol Biol Cell 2000; 11:3353–64.

    PubMed  CAS  Google Scholar 

  28. Bein K, Simmons M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2: Regulation of metalloproteinase activity. J Biol Chem 2000; 275:32167–73.

    PubMed  CAS  Google Scholar 

  29. Chen H, Strickland DK, Mosher DF. Metabolism of thrombospondin 2: Binding and degradation by 3T3 cells and glycosaminoglycan-variant Chinese hamster ovary cells. J Biol Chem 1996; 271:15993–99.

    PubMed  CAS  Google Scholar 

  30. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 2001; 276:8403–08.

    PubMed  CAS  Google Scholar 

  31. Strickland DK, Kounnas MZ, Argraves WS. LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J 1995; 9:890–98.

    PubMed  CAS  Google Scholar 

  32. Agah A, Kyriakides TR, Bornstein, P. Proteolysis of cell-surface tissue transglutaminase by matrix metalloproteinase-2 contributes to the adhesive defect and matrix abnormalities in thrombospondin-2-null fibroblasts and mice. Am J Pathol 2005; 167:81–88.

    PubMed  CAS  Google Scholar 

  33. Lorand L, Graham RM. Transglutaminases: Crosslinking Enzymes with pleiotropic functions. Nat Rev Nat Cell Biol 2003; 4:140–55.

    CAS  Google Scholar 

  34. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990; 87: 6624–28.

    PubMed  CAS  Google Scholar 

  35. Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989; 56:345–55.

    PubMed  CAS  Google Scholar 

  36. DiPietro LA. Thrombospondin as a regulator of angiogenesis. In: Goldberg LD, Rosen EM, editors. Regulation of Angiogenesis. Basel: Birkhauser, 1997:295–14.

    Google Scholar 

  37. Dawson DW, Bouck NP. Thrombospondin as an inhibitor of angiogenesis. In: Teicher BA, editor. Antiangiogenic Agents in Cancer Therapy. Totowa: Humana Press, 1999:185–03.

    Google Scholar 

  38. Sheibani N, Frazier WA. Thrombospondin-1, PECAM-1, and regulation of angiogenesis. Histol Histopathol 1999: 14:285–94.

    PubMed  CAS  Google Scholar 

  39. Carpizo D, Iruela-Arispe ML. Endogenous regulators of angiogenesis – emphasis on proteins with thrombospondin – type I motifs. Cancer Metast Rev 2000; 19:159–65.

    CAS  Google Scholar 

  40. de Fraipont F, Nicholson AC, Feige J-J, et al. Thrombospondins and tumor antiogenesis. Trends Mol Med. 2001; 7: 401–07.

    PubMed  Google Scholar 

  41. Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 2002; 6:1–12.

    PubMed  CAS  Google Scholar 

  42. Armstrong LC, Bornstein P. Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 2003; 22:63–71.

    PubMed  CAS  Google Scholar 

  43. Ren B, Yee KO, Lawler J, Khosravi-Far R. Regulation of tumor angiogenesis by thrombospondin-1. Biochimica Biophysics Acta 2005; 1765:178–88.

    Google Scholar 

  44. Kim S-A, Kang J-H, Cho I, et al. Cell-type specific regulation of thrombospondin-1 expression and its promoter activity by regulatory agents. Exp Mol Med 2001; 33:117–23.

    PubMed  CAS  Google Scholar 

  45. Framson P, Bornstein P. A serum response element (SRE) and a binding site for NF-Y mediate the serum response of the human thrombospondin I gene. J Biol Chem 1993; 268:4989–96.

    PubMed  CAS  Google Scholar 

  46. Shingu T, Bornstein P. Overlapping Egr-1 and SPI sites function in the regulation of transcription of the mouse thrombospondin I gene. J Biol Chem 1994; 269: 32551–57.

    PubMed  CAS  Google Scholar 

  47. Slack JL, Bornstein P. Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Differ. 1994; 5:1373–80.

    PubMed  CAS  Google Scholar 

  48. Yang Q-W, Liu S, Tian Y, et al. Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Res 2003; 63:6299–10.

    PubMed  CAS  Google Scholar 

  49. Oue N, Matsumura S, Nakayama H, et al. Reduced expression of the TSP1 gene and its association with promoter hypermethylation in gastric carcinoma. Oncology 2003; 64:423–29.

    PubMed  CAS  Google Scholar 

  50. Volpert OV, Pili R, Sikder HA, et al. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2002; 2:473–83.

    PubMed  CAS  Google Scholar 

  51. Benezra R, Rafii S, Lyden D. The Id proteins and angiogenesis. Oncogene 2001; 20:8334–41.

    PubMed  CAS  Google Scholar 

  52. Phelan MW, Forman LW, Perrine SP, et al. Hypoxia increases thrombospondin-1 transcript and protein in cultured endothelial cells. J Lab Clin Med 1998; 132:519–29.

    PubMed  CAS  Google Scholar 

  53. Lopes N, Gregg D, Vasudevan S, et al. Thrombospondin 2 regulates cell proliferation induced by Rac1 redox-dependent signaling. Mol Cell Biol 2003; 23: 5401–08.

    PubMed  CAS  Google Scholar 

  54. Bornstein P. Thrombospondins as matricellular modulators of cell function. J Clin Invest 107:929–34.

    Google Scholar 

  55. Friedl P, Vischer P and Freyberg MA. The role of thrombospondin-1 in apoptosis. Cell Mol Life Sci. 2002; 59:1347–57.

    PubMed  CAS  Google Scholar 

  56. Bruel A, Touhami-Carrier M, Thomaidis A, et al. Thrombospondin-1 (TSP-1) and TSP-1-derived heparin-binding peptides induce promyelocytic leukemia cell differentiation and apoptosis. Anticancer Res 2005; 25:757–64.

    PubMed  CAS  Google Scholar 

  57. Graf R, Freyberg M, Kaiser D, et al. Mechanosensitive induction of apoptosis in fibroblasts is regulated by thrombospondin-1 and integrin associated protein (CD47). Apoptosis 2002; 7:493–98.

    PubMed  CAS  Google Scholar 

  58. Jimenez B, Volpert OV, Crawford SE, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Med. 2000; 6:41–48.

    PubMed  CAS  Google Scholar 

  59. Guo N-h, Krutzsch HC, Inman JK, et al. Thrombospondin I and type I repeat peptides of thrombospondin I specifically induce apoptosis of endothelial cells. Cancer Res. 1997; 57:1735–42.

    PubMed  CAS  Google Scholar 

  60. Nör, JE, Mitra RS, Sutorik MM, et al. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 2000; 37:209–18.

    PubMed  Google Scholar 

  61. Streit M, Riccardi L, Velasco P, et al. Thrombospondin-2: A potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci USA 1999; 96:14888–93.

    PubMed  CAS  Google Scholar 

  62. Hawighorst T, Oura H, Streit M, et al. Thrombospondin-1 selectively inhibits early-stage carcinogenesis and angiogenesis but not tumor lymphangiogenesis and lymphatic metastasis in transgenic mice. Oncogene 2002; 21:7945–56.

    PubMed  CAS  Google Scholar 

  63. Jiménez, B, Volpert OV, Reiher F, et al. c-Jun N-terminal kinase activation is required for the inhibition of neovascularization by thrombospondin-1. Oncogene 2001; 20:3443–48.

    PubMed  Google Scholar 

  64. Dawson DW, Pearce SFA, Zhong R, et al. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997; 138:707–17.

    PubMed  CAS  Google Scholar 

  65. Volpert OV, Zaichuk T, Zhou W, et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nature Med 2002; 8:349–57.

    PubMed  CAS  Google Scholar 

  66. Simantov R, Febbraio M, Silverstein RL. The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol 2005; 24:27–34.

    PubMed  CAS  Google Scholar 

  67. Simantov R, Febbraio M, Crombie R, et al. Histidine-rich glycoprotein inhibits the antiangiogenic effect of thrombospondin-1. J Clin Invest 2001; 107:45–52.

    PubMed  CAS  Google Scholar 

  68. Graf R, Apenberg S, Freyberg M, et al. A common mechanism for the mechanosensitive regulation of apoptosis in different cell types and for different mechanical stimuli. Apoptosis 2003; 8:531–38.

    PubMed  CAS  Google Scholar 

  69. Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 2001; 11:130–35.

    PubMed  CAS  Google Scholar 

  70. Margosio, B, Marchetti, D, Vergani, V, et al. Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2. Blood; 102: 4399–4406.

    Google Scholar 

  71. Greenaway J, Lawler J, Moorehead R, et al. Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1). J Cell Physiol 2007; 210:807–18.

    PubMed  CAS  Google Scholar 

  72. Armstrong, LC, Björkblom B, Hankenson KD, et al. Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 2002; 13:1893–05.

    PubMed  CAS  Google Scholar 

  73. Nicosia RF, Tuszynski GP. Matrix-bound thrombospondin promotes angiogenesis in vitro. J Cell Biol 1994;124:183–93.

    PubMed  CAS  Google Scholar 

  74. Qian X, Wang TN, Rothman VL, et al. Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res 1997; 235: 403–12.

    PubMed  CAS  Google Scholar 

  75. Taraboletti G, Morbidelli L, Donnini S, et al. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J. 2000; 14: 1674–76.

    PubMed  CAS  Google Scholar 

  76. Chandrasekaran L, He C-Z, Al-Barazi H, et al. Cell contact-dependent activation of α3β1 integrin modulates endothelial cell responses to thrombospondin-1. Mol Biol Cell 2000; 11: 2885–00.

    PubMed  CAS  Google Scholar 

  77. Lawler J. The functions of thrombospondin-1 and -2. Curr Opin Cell Biol 2000; 12:634–40.

    PubMed  CAS  Google Scholar 

  78. Annis DS, Murphy-Ullrich JE, Mosher DF. Function-blocking antithrombospondin-1 monoclonal antibodies. J Thromb Haemost 2006; 4:459–68.

    PubMed  CAS  Google Scholar 

  79. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 2001; 276:8403–08.

    PubMed  CAS  Google Scholar 

  80. Hahn-Dantona E, Ruiz JF, Bornstein P, et al. The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J Biol Chem 2001; 276:15498–03.

    PubMed  CAS  Google Scholar 

  81. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 2001; 98:12485–90.

    PubMed  CAS  Google Scholar 

  82. Krutzsch HC, Choe BJ, Sipes JM, et al. Identification of an α3β1 integrin recognition sequence in thrombospondin-1. J Biol Chem 1999; 274:24080–86.

    PubMed  CAS  Google Scholar 

  83. Calzada MJ, Sipes JM, Krutzsch HC, et al. Recognition of the N-terminal modules of thrombospondin-1 and thrombospondin-2 by α6β1 integrin. J Biol Chem 2003; 278: 40679–87.

    PubMed  CAS  Google Scholar 

  84. Elzie CA, Murphy-Ullrich JE. The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 2004; 36:1090–01.

    PubMed  CAS  Google Scholar 

  85. Schultz-Cherry S, Chen H, Mosher DF, et al. Regulation of transforming growth factor-β activation by discrete sequences of thrombospondin 1. J Biol Chem 1995; 270: 7304–10.

    PubMed  CAS  Google Scholar 

  86. Ribeiro SMF, Poczatek M, Schultz-Cherry S, et al. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-b. J Biol Chem 1999; 274:13586–93.

    PubMed  CAS  Google Scholar 

  87. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-β by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 2000; 11:59–69.

    PubMed  CAS  Google Scholar 

  88. Calzada MJ, Zhou L, Sipes JM, et al. α4β1 integrin mediates selective endothelial cell responses to thrombospondins 1 and 2 in vitro and modulates angiogenesis in vivo. Circ Res 2004; 94:462–70.

    PubMed  CAS  Google Scholar 

  89. Calzada MJ, Annis DS, Zeng B, et al. Identification of novel β1 integrin binding sites in the type 1 and type 2 repeats of thrombospondin-1. J Biol Chem 2004; 279:41734–43.

    PubMed  CAS  Google Scholar 

  90. Iruela-Arispe ML, Lombardo M, Krutzsch HC, et al. Inhibition of angiogenesis by thrombospondin-1 is mediated by independent regions within the type 1 repeats. Circulation 1999; 100:1423–31.

    PubMed  CAS  Google Scholar 

  91. Iruela-Arispe ML, Luque A, Lee N. Thrombospondin modules and angiogenesis. Int J Biochem Cell Biol 2004; 36:1070–78.

    PubMed  CAS  Google Scholar 

  92. Lee NV, Sato M, Annis DS, et al. ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO J 2006; 25:5270–83.

    PubMed  CAS  Google Scholar 

  93. Lawler J, Hynes RO. An integrin receptor on normal and thrombasthenic platelets that binds thrombospondin. Blood 1989; 74:2022–27.

    PubMed  CAS  Google Scholar 

  94. Hotchkiss KA, Chesterman CN, Hogg PJ. Catalysis of disulfide isomerization in thrombospondin 1 by protein disulfide isomerase. Biochemistry 1996; 35:9761–67.

    PubMed  CAS  Google Scholar 

  95. Kosfeld MD, Frazier WA. Identification of a new cell adhesion motif in two homologous peptides from the COOH-terminal cell binding domain of human thrombospondin. J Biol Chem 1993; 268:8808–14.

    PubMed  CAS  Google Scholar 

  96. Kanda S, Shono T, Tamasini-Johansson B, et al. Role of thrombospondin-1-derived peptide, 4N1K, in FGF-2-induced angiogenesis. Exp Cell Res 1999; 252:262–72.

    PubMed  CAS  Google Scholar 

  97. Frazier WA, Gao A-G, Dimitry J, et al. The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi. J Biol Chem 1999; 274:8554–60.

    PubMed  CAS  Google Scholar 

  98. Ridnour LA, Isenberg JS, Espey MG, et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA 2005; 102:13147–52.

    PubMed  CAS  Google Scholar 

  99. Isenberg JS, Ridnour LA, Perruccio EM, et al. Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci USA 2005; 102:13141–46.

    PubMed  CAS  Google Scholar 

  100. Isenberg JS, Ridnour LA, Dimitry J, et al. CD47 is necessary for inhibition of nitric oxide-strimulated vascular cell responses by thrombospondin-1. J Biol Chem 2006; 281:26069–80.

    PubMed  CAS  Google Scholar 

  101. Kvansakul M, Adams JC, Hohenester E. Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J 2004; 23:1223–33.

    PubMed  CAS  Google Scholar 

  102. Short SM, Derrien A, Narsimhan RP, et al. Inhibition of endothelial cell migration by thrombospondin-1 type 1 repeats is mediated by β1 integrins. J Cell Biol 2005; 168:643–53.

    PubMed  CAS  Google Scholar 

  103. Castle VP, Dixit VM, Polverini PJ. Thrombospondin-1 suppresses tumorigenesis and angiogenesis in serum- and anchorage-independent NIH 3T3 cells. Lab Invest 1997; 77:51–61.

    PubMed  CAS  Google Scholar 

  104. Folkman J. Angiogenesis. Annu Rev Med 2006; 57:1–18.

    PubMed  CAS  Google Scholar 

  105. Dorrell MI, Aguilar E, Scheppke L, Barnett FH, Friedlander M. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci USA 2007; 104:967–72.

    PubMed  CAS  Google Scholar 

  106. Roberts DD. Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J 1996; 10:1183–91.

    PubMed  CAS  Google Scholar 

  107. Tokunaga T, Nakamura M, Oshika Y, et al. Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer. Brit J Cancer 1999; 79:354–59.

    PubMed  CAS  Google Scholar 

  108. Lawler J, Detmar M. Tumor progression: the effects of thrombospondin-1 and -2. Int J Biochem Cell Biol 2004; 36:1038–45.

    PubMed  CAS  Google Scholar 

  109. de Fraipont F, Nicholson AC, Feige J-J, et al. Thrombospondins and tumor angiogenesis. Trends Mol Med 2001; 7:401–07.

    PubMed  Google Scholar 

  110. Tuszynski GP, Nicosia RF. The role of thrombospondin-1 in tumor progression and angiogenesis. BioEssays 1996; 18:71–76.

    PubMed  CAS  Google Scholar 

  111. Sargiannidou I, Qiu C, Tuszynski GP. Mechanisms of thrombospondin-1 – mediated metastasis and angiogenesis. Semin Thromb Hemost 2004; 30:127–36.

    PubMed  CAS  Google Scholar 

  112. Streit M, Velasco P, Brown LF, et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol 1999; 155:441–52.

    PubMed  CAS  Google Scholar 

  113. Sreit M, Stephen AE, Hawighorst T, et al. Systemic inhibition of tumor growth and angiogenesis by thrombospondin-2 using cell-based antiangiogenic gene therapy. Cancer Res. 2002; 62:2004–12.

    Google Scholar 

  114. Isenberg JS, Hyodo F, Matsumoto K-I, et al. Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood, in press.

    Google Scholar 

  115. Dameron KM, Volpert OV, Tainsky MA, et al. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265:1582–84.

    PubMed  CAS  Google Scholar 

  116. Bouck N. P53 and angiogenesis. Biochim Biophys Acta 1996; 1287:63–66.

    PubMed  Google Scholar 

  117. Nishimori H, Shiratsuchi T, Urano T, et al. A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 1997; 15:2145–50.

    PubMed  CAS  Google Scholar 

  118. Hsu SC, Volpert OV, Steck PA, et al. Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 1996; 56:5684–91.

    PubMed  CAS  Google Scholar 

  119. Kaur B, Brat DJ, Devi NS, et al. Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 2005; 24: 3632–42.

    PubMed  CAS  Google Scholar 

  120. Hamano Y, Sugimoto H, Soubasakos MA, et al. Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide- mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 2004; 64:1570–74.

    PubMed  CAS  Google Scholar 

  121. Damber J-E, Vallbo C, Albertsson P, et al. The anti-tumour effect of low-dose continuous chemotherapy may partly be mediated by thrombospondin. Cancer Chemother Pharmacol 2006; 58:354–60.

    PubMed  CAS  Google Scholar 

  122. Hahn W, Ho S-H, Jeong J-G, et al. Viral vector-mediated transduction of a modified thrombospondin-2 cDNA inhibits tumor growth and angiogenesis. Gene Therapy 2004; 11:739–45.

    PubMed  CAS  Google Scholar 

  123. Aghi M, Rabkin SD, Martuza RL. Angiogenic response caused by oncolytic herpes simplex virus-induced reduced thrombospondin expression can be prevented by specific viral mutations or by administering a thrombospondin-derived peptide. Cancer Res 2007; 67:440–44.

    PubMed  CAS  Google Scholar 

  124. Haviv F, Bradley MF, Kalvin DM, et al. Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: Design, synthesis, and optimization of pharmacokinetics and biological activities. J Med Chem 2005; 48:2838–46.

    PubMed  CAS  Google Scholar 

  125. Hoekstra R, de Vos FYFL, Eskens FALM, et al. Phase I study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with 5-fluorouracil and leucovorin: A safe combination. Eur J Cancer 2006; 42:467–72.

    PubMed  CAS  Google Scholar 

  126. Rusk A, McKeegan E, Haviv F, et al. Preclinical evaluation of antiangiogenic thrombospondin-1 peptide mimetics, ABT-526 and ABT-510, in companion dogs with naturally occurring cancers. Clin Cancer Res 2006; 12:7444–55.

    PubMed  CAS  Google Scholar 

  127. Rusk A, Cozzi E, Stebbins M, et al. Cooperative activity of cytotoxic chemotherapy with antiangiogenic thrombospondin-1 peptides, ABT-526 in pet dogs with relapsed lymphoma. Clin Cancer Res 2006; 12:7456–64.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bornstein, P. (2008). Thrombospondins: Endogenous Inhibitors of Angiogenesis. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics