Skip to main content

Angiopoietins and Tie Receptors

  • Chapter
Angiogenesis

The Tie1 and Tie2 receptor tyrosine kinases and the angiopoietin growth factor ligands, Ang1-4, are essential for vascular maturation. Targeted deletion of any of the Tie1,Tie2 or Ang1 genes in mice results in embryonic lethality during embryonic days 9.5–13.5. The receptors are expressed mainly in endothelial cells, while Ang1 is produced by perivascular cells and thought to stabilize quiescent endothelium. In contrast, Ang2 is secreted by endothelial cells in angiogenic vasculature, such as in tumors, leading to destabilization of the endothelium. Ang1 multimers stimulate the phosphorylation of Tie1 and Tie2, while Ang2 functions as a context-dependent agonist/antagonist for Tie2. Ang1 has promising vascular protective effects as an anti-permeability, anti-inflammatory and cell survival factor, but it can also induce vessel remodelling. The angiopoietin-Tie signalling pathway may be a therapeutically useful target in the treatment of a number of diseases, including oedema, endotoxaemia, transplant arteriosclerosis and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Partanen, J. et al. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol 12, 1698–1707 (1992).

    PubMed  CAS  Google Scholar 

  2. Dumont, D.J., Yamaguchi, T.P., Conlon, R.A., Rossant, J. & Breitman, M.L. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7, 1471–1480 (1992).

    PubMed  CAS  Google Scholar 

  3. Dumont, D.J., Gradwohl, G.J., Fong, G.H., Auerbach, R. & Breitman, M.L. The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8, 1293–1301 (1993).

    PubMed  CAS  Google Scholar 

  4. Iwama, A. et al. Molecular cloning and characterization of mouse TIE and TEK receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem Biophys Res Commun 195, 301–309 (1993).

    CAS  Google Scholar 

  5. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    PubMed  CAS  Google Scholar 

  6. Davis, S. et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161–1169 (1996).

    PubMed  CAS  Google Scholar 

  7. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    PubMed  CAS  Google Scholar 

  8. Kim, I. et al. Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3. FEBS Lett 443, 353–356 (1999).

    PubMed  CAS  Google Scholar 

  9. Valenzuela, D.M. et al. Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 96, 1904–1909 (1999).

    PubMed  CAS  Google Scholar 

  10. Lee, H.J. et al. Biological characterization of angiopoietin-3 and angiopoietin-4. Faseb J 18, 1200–1208 (2004).

    PubMed  CAS  Google Scholar 

  11. Dumont, D.J. et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8, 1897–1909 (1994).

    PubMed  CAS  Google Scholar 

  12. Puri, M.C., Rossant, J., Alitalo, K., Bernstein, A. & Partanen, J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. Embo J 14, 5884–5891 (1995).

    PubMed  CAS  Google Scholar 

  13. Sato, T.N. et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 367, 70–74 (1995).

    Google Scholar 

  14. Puri, M.C., Partanen, J., Rossant, J. & Bernstein, A. Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126, 4569–4580 (1999).

    PubMed  CAS  Google Scholar 

  15. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    PubMed  CAS  Google Scholar 

  16. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    PubMed  CAS  Google Scholar 

  17. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    PubMed  CAS  Google Scholar 

  18. Teichert-Kuliszewska, K. et al. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49, 659–670 (2001).

    PubMed  CAS  Google Scholar 

  19. Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3, 411–423 (2002).

    PubMed  CAS  Google Scholar 

  20. Bogdanovic, E., Nguyen, V.P. & Dumont, D.J. Activation of Tie2 by angiopoietin-1 and angiopoietin-2 results in their release and receptor internalization. J Cell Sci 119, 3551–3560 (2006).

    PubMed  CAS  Google Scholar 

  21. Daly, C. et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci USA 103, 15491–15496 (2006).

    PubMed  CAS  Google Scholar 

  22. Davis, S. et al. Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering. Nat Struct Biol 10, 38–44 (2003).

    PubMed  CAS  Google Scholar 

  23. Kim, K.T. et al. Oligomerization and multimerization is critical for angiopoietin-1 to bind and phosphorylate tie2. J Biol Chem 280, 20126–20131 (2005).

    PubMed  CAS  Google Scholar 

  24. Saharinen, P. et al. Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol 169, 239–243 (2005).

    PubMed  CAS  Google Scholar 

  25. Brindle, N.P., Saharinen, P. & Alitalo, K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98, 1014–1023 (2006).

    PubMed  CAS  Google Scholar 

  26. Eklund, L. & Olsen, B.R. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312, 630–641 (2006).

    PubMed  CAS  Google Scholar 

  27. Cho, C.H. et al. COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci USA 101, 5547–5552 (2004).

    PubMed  CAS  Google Scholar 

  28. Koblizek, T.I., Weiss, C., Yancopoulos, G.D., Deutsch, U. & Risau, W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8, 529–532  (1998).

    PubMed  CAS  Google Scholar 

  29. Zhang, Z.G., Zhang, L., Croll, S.D. & Chopp, M. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 113, 683–687 (2002).

    PubMed  CAS  Google Scholar 

  30. Cho, C.H. et al. Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci USA 101, 5553–5558 (2004).

    PubMed  CAS  Google Scholar 

  31. Kim, I. et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circ Res 86, 24–29 (2000).

    PubMed  CAS  Google Scholar 

  32. Jones, P.F. Not just angiogenesis–wider roles for the angiopoietins. J Pathol 201, 515–527 (2003).

    PubMed  CAS  Google Scholar 

  33. Mandriota, S.J. et al. Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischemia. Am J Pathol 156, 2077–2089 (2000).

    PubMed  CAS  Google Scholar 

  34. Fiedler, U. et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103, 4150–4156 (2004).

    PubMed  CAS  Google Scholar 

  35. Fiedler, U. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12, 235–239 (2006).

    PubMed  CAS  Google Scholar 

  36. Huang, Y.Q., Li, J.J. & Karpatkin, S. Identification of a family of alternatively spliced mRNA species of angiopoietin-1. Blood 95, 1993–1999 (2000).

    PubMed  CAS  Google Scholar 

  37. Kim, I. et al. Characterization and expression of a novel alternatively spliced human angiopoietin-2. J Biol Chem 275, 18550–18556 (2000).

    PubMed  CAS  Google Scholar 

  38. Yamakawa, M. et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93, 664–673 (2003).

    PubMed  CAS  Google Scholar 

  39. Xu, Y. & Yu, Q. Angiopoietin-1, unlike angiopoietin-2, is incorporated into the extracellular matrix via its linker peptide region. J Biol Chem 276, 34990–34998 (2001).

    PubMed  CAS  Google Scholar 

  40. Xu, Y., Liu, Y.J. & Yu, Q. Angiopoietin-3 is tethered on the cell surface via heparan sulfate proteoglycans. J Biol Chem 279, 41179–41188 (2004).

    PubMed  CAS  Google Scholar 

  41. Korhonen, J. et al. Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. Blood 80, 2548–2555 (1992).

    PubMed  CAS  Google Scholar 

  42. Kaipainen, A. et al. Enhanced expression of the tie receptor tyrosine kinase mesenger RNA in the vascular endothelium of metastatic melanomas. Cancer Res 54, 6571–6577 (1994).

    PubMed  CAS  Google Scholar 

  43. Korhonen, J., Polvi, A., Partanen, J. & Alitalo, K. The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9, 395–403 (1994).

    PubMed  CAS  Google Scholar 

  44. Dumont, D.J. et al. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 203, 80–92 (1995).

    PubMed  CAS  Google Scholar 

  45. Hashiyama, M. et al. Predominant expression of a receptor tyrosine kinase, TIE, in hematopoietic stem cells and B cells. Blood 87, 93–101 (1996).

    PubMed  CAS  Google Scholar 

  46. Yano, M. et al. Expression and function of murine receptor tyrosine kinases, TIE and TEK, in hematopoietic stem cells. Blood 89, 4317–4326 (1997).

    PubMed  CAS  Google Scholar 

  47. Chen-Konak, L. et al. Transcriptional and post-translation regulation of the Tie1 receptor by fluid shear stress changes in vascular endothelial cells. Faseb J 17, 2121–2123 (2003).

    PubMed  CAS  Google Scholar 

  48. Porat, R.M. et al. Specific induction of tie1 promoter by disturbed flow in atherosclerosis-prone vascular niches and flow-obstructing pathologies. Circ Res 94, 394–401 (2004).

    PubMed  CAS  Google Scholar 

  49. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    PubMed  CAS  Google Scholar 

  50. Shewchuk, L.M. et al. Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail. Structure 8, 1105–1113 (2000).

    PubMed  CAS  Google Scholar 

  51. Barton, W.A. et al. Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Nat Struct Mol Biol 13, 524–532 (2006).

    PubMed  CAS  Google Scholar 

  52. Fiedler, U. et al. Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats. J Biol Chem 278, 1721–1727 (2003).

    PubMed  CAS  Google Scholar 

  53. Barton, W.A., Tzvetkova, D. & Nikolov, D.B. Structure of the angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition. Structure 13, 825–832 (2005).

    PubMed  CAS  Google Scholar 

  54. Patan, S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56, 1–21 (1998).

    PubMed  CAS  Google Scholar 

  55. Partanen, J. et al. Cell autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary growth and endothelial cell survival during murine development. Development 122, 3013–3021 (1996).

    PubMed  CAS  Google Scholar 

  56. Puri, M.C. & Bernstein, A. Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis. Proc Natl Acad Sci USA 100, 12753–12758 (2003).

    PubMed  CAS  Google Scholar 

  57. Vikkula, M. et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87, 1181–1190 (1996).

    PubMed  CAS  Google Scholar 

  58. Calvert, J.T. et al. Allelic and locus heterogeneity in inherited venous malformations. Hum Mol Genet 8, 1279–1289 (1999).

    PubMed  CAS  Google Scholar 

  59. Korpelainen, E.I., Karkkainen, M., Gunji, Y., Vikkula, M. & Alitalo, K. Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18, 1–8 (1999).

    PubMed  CAS  Google Scholar 

  60. Morris, P.N. et al. Functional analysis of a mutant form of the receptor tyrosine kinase Tie2 causing venous malformations. J Mol Med 83, 58–63 (2005).

    PubMed  CAS  Google Scholar 

  61. Morris, P.N., Dunmore, B.J. & Brindle, N.P. Mutant Tie2 causing venous malformation signals through Shc. Biochem Biophys Res Commun 346, 335–338 (2006).

    PubMed  CAS  Google Scholar 

  62. Suri, C. et al. Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471 (1998).

    PubMed  CAS  Google Scholar 

  63. Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514 (1999).

    PubMed  CAS  Google Scholar 

  64. Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6, 460–463 (2000).

    PubMed  CAS  Google Scholar 

  65. Nambu, H. et al. Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood-retinal barrier. Gene Ther 11, 865–873 (2004).

    PubMed  CAS  Google Scholar 

  66. Joussen, A.M. et al. Suppression of diabetic retinopathy with angiopoietin-1. Am J Pathol 160, 1683–1693 (2002).

    PubMed  CAS  Google Scholar 

  67. Nykanen, A.I. et al. Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation 107, 1308–1314 (2003).

    PubMed  Google Scholar 

  68. Witzenbichler, B., Westermann, D., Knueppel, S., Schultheiss, H.P. & Tschope, C. Protective role of angiopoietin-1 in endotoxic shock. Circulation 111, 97–105 (2005).

    PubMed  CAS  Google Scholar 

  69. Zhao, Y.D., Campbell, A.I., Robb, M., Ng, D. & Stewart, D.J. Protective role of angiopoietin-1 in experimental pulmonary hypertension. Circ Res 92, 984–991 (2003).

    PubMed  CAS  Google Scholar 

  70. Jung, H., Gurunluoglu, R., Scharpf, J. & Siemionow, M. Adenovirus-mediated angiopoietin-1 gene therapy enhances skin flap survival. Microsurgery 23, 374–380 (2003).

    PubMed  Google Scholar 

  71. Morisada, T. et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood 105, 4649–4656 (2005).

    PubMed  CAS  Google Scholar 

  72. Tammela, T. et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 105, 4642–4648 (2005).

    PubMed  CAS  Google Scholar 

  73. Shimoda, H. et al. Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res 328, 329–337 (2007).

    PubMed  CAS  Google Scholar 

  74. Holash, J., Wiegand, S.J. & Yancopoulos, G.D. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356–5362 (1999).

    PubMed  CAS  Google Scholar 

  75. Zagzag, D. et al. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159, 391–400 (1999).

    PubMed  CAS  Google Scholar 

  76. Ahmad, S.A. et al. The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 61, 1255–1259 (2001).

    PubMed  CAS  Google Scholar 

  77. Oliner, J. et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6, 507–516 (2004).

    PubMed  CAS  Google Scholar 

  78. Tait, C.R. & Jones, P.F. Angiopoietins in tumours: the angiogenic switch. J Pathol 204, 1–10 (2004).

    PubMed  CAS  Google Scholar 

  79. Tanaka, S., Wands, J.R. & Arii, S. Induction of angiopoietin-2 gene expression by COX-2: a novel role for COX-2 inhibitors during hepatocarcinogenesis. J Hepatol 44, 233–235 (2006).

    PubMed  CAS  Google Scholar 

  80. Perry, B.N. et al. Pharmacologic blockade of angiopoietin-2 is efficacious against model hemangiomas in mice. J Invest Dermatol 126, 2316–2322 (2006).

    PubMed  CAS  Google Scholar 

  81. Lin, P. et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 95, 8829–8834 (1998).

    PubMed  CAS  Google Scholar 

  82. Hangai, M. et al. Systemically expressed soluble Tie2 inhibits intraocular neovascularization. Hum Gene Ther 12, 1311–1321 (2001).

    PubMed  CAS  Google Scholar 

  83. Das, A. et al. Angiopoietin/Tek interactions regulate mmp-9 expression and retinal neovascularization. Lab Invest 83, 1637–1645 (2003).

    PubMed  CAS  Google Scholar 

  84. Baffert, F. et al. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res 94, 984–992 (2004).

    PubMed  CAS  Google Scholar 

  85. Ward, N.L., Van Slyke, P. & Dumont, D.J. Functional inhibition of secreted angiopoietin: a novel role for angiopoietin 1 in coronary vessel patterning. Biochem Biophys Res Commun 323, 937–946 (2004).

    PubMed  CAS  Google Scholar 

  86. Cho, C.H. et al. Long-term and sustained COMP-Ang1 induces long-lasting vascular enlargement and enhanced blood flow. Circ Res 97, 86–94 (2005).

    PubMed  CAS  Google Scholar 

  87. Thurston, G. et al. Angiopoietin 1 causes vessel enlargement, without angiogenic sprouting, during a critical developmental period. Development 132, 3317–3326 (2005).

    PubMed  CAS  Google Scholar 

  88. Thistlethwaite, P.A. et al. Human angiopoietin gene expression is a marker for severity of pulmonary hypertension in patients undergoing pulmonary thromboendarterectomy. J Thorac Cardiovasc Surg 122, 65–73 (2001).

    PubMed  CAS  Google Scholar 

  89. Sullivan, C.C. et al. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc Natl Acad Sci USA 100, 12331–12336 (2003).

    PubMed  CAS  Google Scholar 

  90. Peters, K.G. et al. Functional significance of Tie2 signaling in the adult vasculature. Recent Prog Horm Res 59, 51–71 (2004).

    PubMed  CAS  Google Scholar 

  91. Kontos, C.D. et al. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 18, 4131–4140 (1998).

    PubMed  CAS  Google Scholar 

  92. Fujikawa, K. et al. Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253, 663–672 (1999).

    PubMed  CAS  Google Scholar 

  93. Papapetropoulos, A. et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275, 9102–9105 (2000).

    PubMed  CAS  Google Scholar 

  94. Babaei, S. et al. Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide. Am J Pathol 162, 1927–1936 (2003).

    PubMed  CAS  Google Scholar 

  95. Harfouche, R. et al. Angiopoietin-1 activates both anti- and proapoptotic mitogen-activated protein kinases. Faseb J 17, 1523–1525 (2003).

    PubMed  CAS  Google Scholar 

  96. Saito, M., Hamasaki, M. & Shibuya, M. Induction of tube formation by angiopoietin-1 in endothelial cell/fibroblast co-culture is dependent on endogenous VEGF. Cancer Sci 94, 782–790 (2003).

    PubMed  CAS  Google Scholar 

  97. DeBusk, L.M., Hallahan, D.E. & Lin, P.C. Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. Exp Cell Res 298, 167–177 (2004).

    PubMed  CAS  Google Scholar 

  98. Jones, N. & Dumont, D.J. The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17, 1097–1108 (1998).

    PubMed  CAS  Google Scholar 

  99. Master, Z. et al. Dok-R plays a pivotal role in angiopoietin-1-dependent cell migration through recruitment and activation of Pak. Embo J 20, 5919–5928 (2001).

    PubMed  CAS  Google Scholar 

  100. Jones, N. et al. A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function. Mol Cell Biol 23, 2658–2668 (2003).

    PubMed  CAS  Google Scholar 

  101. Huang, L., Turck, C.W., Rao, P. & Peters, K.G. GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene 11, 2097–2103 (1995).

    PubMed  CAS  Google Scholar 

  102. Jones, N. et al. Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 274, 30896–30905 (1999).

    PubMed  CAS  Google Scholar 

  103. Audero, E. et al. Adaptor ShcA protein binds tyrosine kinase Tie2 receptor and regulates migration and sprouting but not survival of endothelial cells. J Biol Chem 279, 13224–13233 (2004).

    PubMed  CAS  Google Scholar 

  104. Hughes, D.P., Marron, M.B. & Brindle, N.P. The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2. Circ Res 92, 630–636 (2003).

    PubMed  CAS  Google Scholar 

  105. Tachibana, K., Jones, N., Dumont, D.J., Puri, M.C. & Bernstein, A. Selective role of a distinct tyrosine residue on Tie2 in heart development and early hematopoiesis. Mol Cell Biol 25, 4693–4702 (2005).

    PubMed  CAS  Google Scholar 

  106. Fachinger, G., Deutsch, U. & Risau, W. Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene 18, 5948–5953 (1999).

    PubMed  CAS  Google Scholar 

  107. Carlson, T.R., Feng, Y., Maisonpierre, P.C., Mrksich, M. & Morla, A.O. Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem 276, 26516–26525 (2001).

    PubMed  CAS  Google Scholar 

  108. Cascone, I., Napione, L., Maniero, F., Serini, G. & Bussolino, F. Stable interaction between {alpha}5{beta}1 integrin and tie2 tyrosine kinase receptor regulates endothelial cell response to ang-1. J Cell Biol 170, 993–1004 (2005).

    PubMed  CAS  Google Scholar 

  109. Dallabrida, S.M., Ismail, N., Oberle, J.R., Himes, B.E. & Rupnick, M.A. Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res 96, e8–24 (2005).

    PubMed  CAS  Google Scholar 

  110. Weber, C.C. et al. Effects of protein and gene transfer of the angiopoietin-1 fibrinogen-like receptor-binding domain on endothelial and vessel organization. J Biol Chem 280, 22445–22453 (2005).

    PubMed  CAS  Google Scholar 

  111. McCarthy, M.J. et al. Potential roles of metalloprotease mediated ectodomain cleavage in signaling by the endothelial receptor tyrosine kinase Tie-1. Lab Invest 79, 889–895 (1999).

    PubMed  CAS  Google Scholar 

  112. Marron, M., Hughes, D.P., Edge, M.D., Forder, C.L. & Brindle, N. Evidence for heterotypic interaction between the receptor tyrosine kinases TIE-1 and TIE-2. J Biol Chem 275, 39741–39746 (2000).

    PubMed  CAS  Google Scholar 

  113. Tsiamis, A.C., Morris, P.N., Marron, M.B. & Brindle, N.P. Vascular endothelial growth factor modulates the Tie-2:Tie-1 receptor complex. Microvasc Res 63, 149–158 (2002).

    PubMed  CAS  Google Scholar 

  114. Yabkowitz, R. et al. Regulation of tie receptor expression on human endothelial cells by protein kinase C-mediated release of soluble tie. Blood 90, 706–715 (1997).

    PubMed  CAS  Google Scholar 

  115. Voskas, D. et al. A cyclosporine-sensitive psoriasis-like disease produced in Tie2 transgenic mice. Am J Pathol 166, 843–855 (2005).

    PubMed  CAS  Google Scholar 

  116. Du, L. et al. Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348, 500–509 (2003).

    PubMed  CAS  Google Scholar 

  117. Yu, Y., Varughese, J., Brown, L.F., Mulliken, J.B. & Bischoff, J. Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. Am J Pathol 159, 2271–2280 (2001).

    PubMed  CAS  Google Scholar 

  118. Wang, H., Zhang, Y., Toratani, S. & Okamoto, T. Transformation of vascular endothelial cells by a point mutation in the Tie2 gene from human intramuscular haemangioma. Oncogene 23, 8700–8704 (2004).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saharinen, P., Eklund, L., Alitalo, K. (2008). Angiopoietins and Tie Receptors. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics