Skip to main content

Human Sound Source Identification

  • Chapter
Auditory Perception of Sound Sources

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 29))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avanzini F, Rocchesso D (2001) Controlling material properties in physical models of sounding objects. In: Proceedings of the International Computer Music Conference, LaHabana, Cuba, pp.17–22.

    Google Scholar 

  • Bernstein LB, Green DM (1987) Detection of simple and complex changes of spectral shape. J Acoust Soc Am 82:1587–1592.

    Article  PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Carello C, Anderson KL, Kunkler-Peck AJ (1998) Perception of object length by sound. Psychol Sci 9:211–214.

    Article  Google Scholar 

  • Carello C, Wagman JB, Turvey MT (2003) Acoustical specification of object properties. In: Anderson J, Anderson B (eds) Moving Image Theory: Ecological Considerations. Carbondale, IL: Southern Illinois University Press, pp.79–104.

    Google Scholar 

  • Ellis DPW (1996) Prediction-driven computational auditory scene analysis. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

    Google Scholar 

  • Fantini DA, Viemeister NF (1987) Discrimination of frequency ratios. In: Yost WA, Watson CS (eds) Auditory Processing of Complex Sounds. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Flanagan JL, Saslow MG (1958) Pitch discrimination for synthetic vowels. J Acoust Soc Am 30:435–442.

    Article  Google Scholar 

  • Fletcher NH, Rossing TD (1991) The Physics of Musical Instruments. New York: Springer-Verlag.

    Google Scholar 

  • Freed DJ (1990) Auditory correlates of perceived mallet hardness for a set of recorded percussive sound events. J Acoust Soc Am 1:311–322.

    Article  Google Scholar 

  • Gaver WW (1988) Everyday listening and auditory icons. PhD thesis, University of California, San Diego.

    Google Scholar 

  • Gaver WW (1993a) What in the world do we hear? An ecological approach to auditory event perception. Ecol Psychol 5:1–29.

    Article  Google Scholar 

  • Gaver WW (1993b) How do we hear in the world? Explorations in ecological acoustics. Ecol Psychol 5:285–313.

    Article  Google Scholar 

  • Gibson JJ (1950) The Perception of the Visual World. Boston: Houghton Mifflin.

    Google Scholar 

  • Giordano BL (2003) Material categorization and hardness scaling in real and synthetic impact sounds. In: Rocchesso D, Fontana F (eds) The Sounding Object. Firenze: Mondo Estremo, pp.73–93.

    Google Scholar 

  • Giordano BL, McAdams S (2006) Material identification of real impact sounds: Effects of size variation in steel, glass, wood and Plexiglas plates. J Acoust Soc Am 119: 1171–1181.

    Google Scholar 

  • Giordano BL, Petrini K (2003) Hardness recognition in synthetic sounds. In: Proceedings of the Stockholm Music Acoustics Conference, Stockholm, Sweden.

    Google Scholar 

  • Grassi M (2005) Do we hear size or sound? Balls dropped on plates. Percept Psychophys, August 6–9, web publication. 67:274–284.

    PubMed  Google Scholar 

  • Green DM, Mason CR (1985) Auditory profile analysis: Frequency, phase, and Weber’s Law. J Acoust Soc Am 77:1155–1161.

    Google Scholar 

  • Green DM, Onsan ZA, Forrest TG (1987) Frequency effects in profile analysis and detecting complex spectra changes. J Acoust Soc Am 81:692–699.

    Article  PubMed  CAS  Google Scholar 

  • Handel S (1995) Timbre perception and auditory object identification. In: Moore BCJ (ed) Hearing. New York: Academic Press.

    Google Scholar 

  • Hartmann WM (1988) Pitch perception and the organization and integration of auditory entities. In: Edelman GW, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley & Sons, pp.425–459.

    Google Scholar 

  • Helmholtz H (1954) On the Sensations of Tone as a Physiological Basis for the Theory of Music. New York: Dover, pp.623–645.

    Google Scholar 

  • Hermes DJ (1998) Auditory material perception. IPO Annual Progress Report. 33:95–102.

    Google Scholar 

  • Järveläinen H, Tolonen T (2001) Perceptual tolerances for the decaying parameters in string instrument synthesis. J Audio Eng Soc 49(11).

    Google Scholar 

  • Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Annu Rev Psychol 55:271–301.

    Article  PubMed  Google Scholar 

  • Kinsler LE, Frey AR (1962) Fundamentals of Acoustics. New York: John Wiley & Sons, pp.55–78.

    Google Scholar 

  • Klatzky RL, Pai DK, Krotkov EP (2000) Perception of material from contact sounds. Presence Teleoperat Virt Environ 9:399–410.

    Article  Google Scholar 

  • Krotkov E, Klatzky R, Zumel N (1996) Robotic perception of material: Experiments with shape-invariant acoustic measures of material type. In: Khatib O, Salisbury K (eds) Experimental Robotics IV. New York: Springer-Verlag.

    Google Scholar 

  • Kunkler-Peck AJ, Turvey MT (2000) Hearing shape. J Exp Psychol [Hum Percept Perform] 26:279–294.

    Article  CAS  Google Scholar 

  • Lakatos S (2001) Loudness-independent cues to object striking force. J Acoust Soc Am 109:2289.

    Google Scholar 

  • Lakatos S, McAdams S, Causse R (1997) The representation of auditory source characteristics: simple geometric form. Percept Psychophys 59:1180–1190.

    PubMed  CAS  Google Scholar 

  • Luce D (1993) Sound and Hearing: A Conceptual Introduction. Lawrence Erlbaum.

    Google Scholar 

  • Lutfi RA (2000) Source uncertainty, decision weights, and internal noise as factors in auditory identification of a simple resonant source. Abstr Assoc Res Otolaryngol 23:171.

    Google Scholar 

  • Lutfi RA (2001) Auditory detection of hollowness. J Acoust Soc Am 110:1010–1019.

    Article  PubMed  CAS  Google Scholar 

  • Lutfi RA Liu CJ (2007) Individual differences in source identification from impact sounds. J Acoust Soc Am, in press 122:1017–1028.

    Article  Google Scholar 

  • Lutfi RA, Oh EL (1997) Auditory discrimination of material changes in a struck-clamped bar. J Acoust Soc Am 102:3647–3656.

    Article  PubMed  CAS  Google Scholar 

  • Lutfi RA, Oh E, Storm E, Alexander JM (2004) Classification and identification of recorded and synthesized impact sounds by practiced listeners, musicians and nonmusicians. J Acoust Soc Am 118:393–404.

    Article  Google Scholar 

  • Martin KD (1999) Sound-source recognition: A theory and computational model. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

    Google Scholar 

  • McAdams S (1993) Recognition of sound sources and events. In: McAdams S, Bigand E (eds) Thinking in Sound: The Cognitive Psychology of Human Audition. Oxford: Clarendon Press.

    Google Scholar 

  • McAdams S, Chaigne A, Roussarie V (2004) The psychomechanics of simulated sound sources: Material properties of impacted bars. J Acoust Soc Am 115:1306–1320.

    Article  PubMed  Google Scholar 

  • Micheals CF, Carello C (1981) Direct Perception. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Moore BCJ (1989) An Introduction to the Psychology of Hearing. New York: Academic Press.

    Google Scholar 

  • Moore BCJ, Glasberg BR, Shailer MJ (1984) Frequency and intensity differences limens for harmonics within complex tones. J Acoust Soc Am 75:1861–1867.

    Article  Google Scholar 

  • Moore BCJ, Peters RW, Glasberg BR (1985) Thresholds for the detection of inharmonicity in complex tones. J Acoust Soc Am 77:1861–1867.

    Article  PubMed  CAS  Google Scholar 

  • Morse PM, Ingard KU (1968) Theoretical Acoustics. Princeton, NJ: Princeton University Press, pp.175–191.

    Google Scholar 

  • Neuhoff JG (ed) (2004) Ecological Psychoacoustics. New York: Academic Press.

    Google Scholar 

  • Ottaviani L, Rocchesso D (2004) Auditory perception of 3D size: Experiments with synthetic resonators. ACM Transact Appl Percept 1:118–129.

    Article  Google Scholar 

  • Patterson RD, Allerhand M, Giguére C (1995) Time-domain modelling of peripheral auditory processing: A modular architecture and a software platform. J Acoust Soc Am 98:1890–1894.

    Article  PubMed  CAS  Google Scholar 

  • Perrott D (1984) Discrimination of the spatial distribution of concurrently active sound sources: Some experiments with stereophonic arrays. J Acoust Soc Am 76:1704–1712.

    Article  PubMed  CAS  Google Scholar 

  • Rocchesso D (2001) Acoustic cues for 3-D shape information. In: Proceedings of the 2001 International Conference on Auditory Display, Finland, July 29, 2001.

    Google Scholar 

  • Rocchesso D, Ottaviani L (2001) Can one hear the volume of a shape? In: IEEE Workshop Applications of Signal Processing to Audio and Acoustics. New Paltz, NY, pp.21–24.

    Google Scholar 

  • Schlauch RS, Ries DT, DiGiovanni JJ (2001) Duration discrimination and subjective duration for ramped and damped sounds. J Acoust Soc Am. 109:2880–2887.

    Article  PubMed  CAS  Google Scholar 

  • Scudrzyk E (1968) Simple and Complex Vibratory Systems. University Park, PA: Pennsylvania State University Press.

    Google Scholar 

  • Tucker S, Brown GJ (2003) Modelling the auditory perception of size, shape and material: Applications to the classification of transient sonar sounds. Presented at the 114th Audio Engineering Society Convention, Amsterdam, the Netherlands, March 22–25.

    Google Scholar 

  • Ullman S (1980) Against direct perception. Behav Brain Sci 3:151–213.

    Article  Google Scholar 

  • Van Heuvan VJ, Van Den Broecke MPR. (1979) Auditory discrimination of rise and decay times in tone and noise bursts. J Acoust Soc Am.66:1308–1315.

    Article  Google Scholar 

  • Wier CC, Jesteadt W, Green DM (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:178–184.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1989) Headphone simulation of free-field listening. II: Psychophysical validation. J Acoust Soc Am 85:868–878.

    Article  PubMed  CAS  Google Scholar 

  • Wildes R, Richards W (1988) Recovering material properties from sound. In: Richards W (ed) Natural Computation. Cambridge, MA: MIT Press, pp.356–363.

    Google Scholar 

  • Yost WA (1992) Auditory image perception and analysis. Hear Res 56:8–19.

    Article  Google Scholar 

  • Yost WA, Sheft S (1993) Auditory perception. In: Yost WA, Popper AN, Fay RR (eds) Human Psychophysics. New York: Springer-Verlag, pp.209–237.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lutfi, R.A. (2008). Human Sound Source Identification. In: Yost, W.A., Popper, A.N., Fay, R.R. (eds) Auditory Perception of Sound Sources. Springer Handbook of Auditory Research, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71305-2_2

Download citation

Publish with us

Policies and ethics