Skip to main content

Auroral Plasma Acceleration above Martian Magnetic Anomalies

  • Chapter
The Mars Plasma Environment

Abstract

Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines.

The typical, slanted arc structure of the Earth’s discrete aurora not only visualizes the inclination of the Earth’s magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma.

This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas — field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration — the localized crustal magnetizations at Mars (Acuña et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA’s Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth — characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The “inverted V“ energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars.

Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars — the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Acuña, M. J., Connerey, J., Ness, N., Lin, R., Mitchell, D., Cralsson, C., et al.: 1999, Science 284, 790.

    Article  ADS  Google Scholar 

  • Albert, R. D.: 1967, Phys. Rev. Lett. 18, 368.

    Article  ADS  Google Scholar 

  • André, M., Norqvist, P., Andersson, L., Eliasson, L., Eriksson, A. I., Blomberg, L., et al.: 1998, J. Geophys. Res. 103, 4199.

    Article  ADS  Google Scholar 

  • Barabash, S., Lundin, R., Andersson, H., et al.: 2004, The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission, In Mars-Express — The Scientific Payload, ESA-SP-1240.

    Google Scholar 

  • Bertaux, J.-L., Leblanc, F., Witasse, O., Quemerais, E., Lilensten, J., Stern, S.A., et al.: 2005, Nature 435, 9.

    Article  Google Scholar 

  • Brain D., Luhmann, J., Mitchell, D., and Lin, R.: 2005, Expected influence of crustal magnetic fields on the ASPERA3 ELS observations: Lessons learnt from MGS. Paper presented at 1st mars Express Science conference, 21–25 Feb, 2005.

    Google Scholar 

  • Brain, D. A., Halekas, J. S., Peticolas, L. M., Lin, R. P., Luhmann, J. G., Mitchell, D. L., et al.: 2006, Geophys. Res. Lett., 10.1029/2005GL024782.

    Google Scholar 

  • Calvert, W.: 1981, Geophys. Res. Lett. 8, 919.

    Article  ADS  Google Scholar 

  • Chaston, C. C., Peticolas, L. M., Carlson, C. W., McFadden, J. P., Mozer, F., Wilber, M., et al.: 2005, J. Geophys. Res. 110, A02211, doi: 10.1029/2004JA010483.

    Article  Google Scholar 

  • Chiu, Y. T., and Schulz, M.: 1978, J. Geophys. Res. 83, 629.

    Article  ADS  Google Scholar 

  • Collin, H. L., Sharp, R. D., and Shelley, E. G.: J. Geophys. Res. 89, 2185.

    Google Scholar 

  • Dubinin, E., Lundin, R., Koskinen, H., and Pissarenko, N.: 1993, J. Geophys. Res. 98, 3991.

    Article  ADS  Google Scholar 

  • Evans, D. S.: 1968, J. Geophys. Res. 73, 2315.

    Article  ADS  Google Scholar 

  • Evans, D. S.: 1974, J. Geophys. Res. 79, 2853.

    Article  ADS  Google Scholar 

  • Espley, J. R., Cloutier, P. A., Crider, D. H., Brain, D. A., and Acuña, M. H.: 2004, J. Geophys. Res., 2004AGUFMSA13A1120E.

    Google Scholar 

  • Frank, L. A. and Ackerson, K. L.: 1971, J. Geophys. Res. 76, 3612.

    Article  ADS  Google Scholar 

  • Guglielmi, A. and Lundin, R.: 2001, J. Geophys. Res. 106, 13219.

    Article  ADS  Google Scholar 

  • Gurnett, D. A. and Frank, L. A.: J. Geophys. Res. 78, 145.

    Google Scholar 

  • Iijima, T. and Potemra, T. A.: 1976, J. Geophys. Res. 81, 2165.

    Article  ADS  Google Scholar 

  • Kallio, E., Barabash, S., Luhmann, J. G., Koskinen, H., Lundin, R., and Norberg, O.: 1994, Geophys. Res. Lett. 99, 23547.

    Article  Google Scholar 

  • Klumpar, D. M., Peterson, W. K., and Shelley, E. G.: 1984, J. Geophys. Res. 89, 10779.

    Article  ADS  Google Scholar 

  • Krymskii, A. M., Breus, T. K., Ness, N. E., Acuña, M. H., Connerney, J. E. P., Crider, D. H., et al.: 2002, J. Geophys. Res. 107(A9), 1245, doi: 10.1029/2001JA000239.

    Article  Google Scholar 

  • Luhman, J. G. and Schwingenshuh, K.: 1990, J. Geophys. Res. 95, 939.

    Article  ADS  Google Scholar 

  • Luhmann, J. G. and Bauer, S. J.: 1992, AGU monograph 66, 417.

    Google Scholar 

  • Lundin, R., Zakharov, A., Pellinen, R., Hultqvist, B., Borg, H., Dubinin, E. M., et al.: 1989, Nature 341, 609.

    Article  ADS  Google Scholar 

  • Lundin, R. and Hultqvist, B.: 1989, J Geophys. Res. 94, 6665.

    Article  ADS  Google Scholar 

  • Lundin, R., Barabash, S., Andersson, H., Holmström, M., et al.: 2004, Science 305, 1933.

    Article  ADS  Google Scholar 

  • Lundin, R., Winningham, D., Barabash, S., et al.: 2006a, Science 311, 980.

    Article  ADS  Google Scholar 

  • Lundin, R., Winningham, D., Barabash, S., Frahm, R., and the ASPERA-3 team: 2006b, ICARUS, April 2006.

    Google Scholar 

  • Lyons, L. R., Koskinen, H. E. J., Blake, J. B., Egeland, A., Hirahara, M., Øieroset, M., et al.: 1999, Space Sci. Rev. 88, 85.

    Article  ADS  Google Scholar 

  • MacIlwain, C. E.: 1960, J. Geophys. Res. 65, 2727.

    Article  ADS  Google Scholar 

  • Mitchell, D. L., Lin, R. P., Mazelle, C., et al.: 2001, J. Geophys. Res. 106, 23419.

    Article  ADS  Google Scholar 

  • Moore, T. E., Lundin, R., Alcayde, D., Andre, M., Ganguli, S. B., Temerin, M., et al.: 1999, Space Sci. Rev. 88.

    Google Scholar 

  • Pérez-de Tejada, H.: 1987, J. Geophys. Res. 92, 4713.

    Article  ADS  Google Scholar 

  • Russell, C. T., Luhmann, J. G., Schwingenshuh, K., Riedler, W., and Yeroshenko, Ye: 1990, Geophys. Res. Lett. 17, 897.

    Article  ADS  Google Scholar 

  • Sharp, R. D., Johnson, R. G., and Shelley, E. G.: 1977, J. Geophys. Res. 82, 3324.

    Article  ADS  Google Scholar 

  • Shelley, E. G., Johnson, R. G., and Sharp, R. D.: Geophys. Res. Lett. 3, 654.

    Google Scholar 

  • Winningham, J. D., Frahm, R. A., Sharber, J. R., Coates, A. J., Linder, D. R., Soobiah, Y., et al., and the Aspera-3 Team: 2006, ICARUS, April issue.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lundin, R. et al. (2007). Auroral Plasma Acceleration above Martian Magnetic Anomalies. In: Russell, C.T. (eds) The Mars Plasma Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70943-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-70943-7_13

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70941-3

  • Online ISBN: 978-0-387-70943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics