Skip to main content

Mechanotransduction of Shear-stress at the Mitochondria

  • Chapter
Mitochondria

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

Abstract

Endothelial cells in situ experience a variety of physical forces caused by hemodynamics. Tensile stress (a perpendicular force of pressure and stretch) affects mostly the smooth muscle cells, and shear-stress (a tangential, frictional force) affects specifically the endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abumiya T, Sasaguri T, Taba Y, Miwa Y, Miyagi M (2002) Shear stressinduces expression of vascular endothelial growth factor receptorFlk-1/KDR through the CT-rich Sp1 binding site. Arterioscler ThrombVasc Biol 22: 907–13

    Article  CAS  Google Scholar 

  • Al-Mehdi A, Shuman H, Fisher AB (1994) Fluorescence microtopography of oxidative stress in lung ischemia-reperfusion. Lab Invest 70: 579–87

    CAS  PubMed  Google Scholar 

  • Al-Mehdi AB, Ischiropoulos H, Fisher AB (1996) Endothelial celloxidant generation during K(+)-induced membrane depolarization. JCell Physiol 166: 274–80

    Article  CAS  PubMed  Google Scholar 

  • Al-Mehdi AB, Shuman H, Fisher AB (1997a) Intracellular generation ofreactive oxygen species during nonhypoxic lung ischemia. Am JPhysiol 272: L294–300

    CAS  PubMed  Google Scholar 

  • Al-Mehdi AB, Shuman H, Fisher AB (1997b) Oxidant generation with K(+)-induced depolarization in the isolated perfused lung. Free Radic Biol Med 23: 47–56

    Article  CAS  PubMed  Google Scholar 

  • Al-Mehdi AB, Song C, Tozawa K, Fisher AB (2000a) Ca2+- andphosphatidylinositol 3-kinase-dependent nitric oxide generation inlung endothelial cells in situ with ischemia. J Biol Chem 275: 39807–10

    Article  CAS  PubMed  Google Scholar 

  • Al-Mehdi AB, Zhao G, Dodia C, Tozawa K, Costa K, Muzykantov V, Ross C, Blecha F, Dinauer M, Fisher AB (1998a) Endothelial NADPH oxidaseas the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83: 730–7

    CAS  PubMed  Google Scholar 

  • Al-Mehdi AB, Zhao G, Fisher AB (1998b) ATP-independent membranedepolarization with ischemia in the oxygen-ventilated isolated ratlung. Am J Respir Cell Mol Biol 18: 653–61

    CAS  PubMed  Google Scholar 

  • Al-Mehdi AB, Zhao G, Tozawa K, Fisher AB (2000b)Depolarization-associated iron release with abrupt reduction inpulmonary endothelial shear stress in situ. Antioxid Redox Signal 2: 335–45

    Article  CAS  PubMed  Google Scholar 

  • Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT (2004)Mitochondrial requirement for endothelial responses to cyclicstrain: implications for mechanotransduction. Am J Physiol Lung CellMol Physiol 287: L486–96

    Article  CAS  Google Scholar 

  • Boldogh IR, Pon LA (2006) Interactions of mitochondria with theactin cytoskeleton. Biochim Biophys Acta

    Google Scholar 

  • Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling ofhuman aortic endothelial cells exposed to disturbed flow and steadylaminar flow. Physiol Genomics 9: 27–41

    CAS  PubMed  Google Scholar 

  • Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, ChienS (2001) DNA microarray analysis of gene expression in endothelialcells in response to 24-h shear stress. Physiol Genomics 7: 55–63

    Article  CAS  PubMed  Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519–60

    CAS  PubMed  Google Scholar 

  • Davies PF, Dewey CF, Jr., Bussolari SR, Gordon EJ, Gimbrone MA, Jr.(1984) Influence of hemodynamic forces on vascular endothelialfunction. In vitro studies of shear stress and pinocytosis in bovineaortic cells. J Clin Invest 73: 1121–9

    Article  CAS  PubMed  Google Scholar 

  • Davies PF, Tripathi SC (1993) Mechanical stress mechanisms and thecell. An endothelial paradigm. Circ Res 72: 239–45

    CAS  PubMed  Google Scholar 

  • Davies PF, Zilberberg J, Helmke BP (2003) Spatial microstimuli inendothelial mechanosignaling. Circ Res 92: 359–70

    Article  CAS  PubMed  Google Scholar 

  • Dewey CF, Jr., Bussolari SR, Gimbrone MA, Jr., Davies PF (1981) Thedynamic response of vascular endothelial cells to fluid shearstress. J Biomech Eng 103: 177–85

    Article  PubMed  Google Scholar 

  • Fisher AB, Al-Mehdi AB, Manevich Y (2002) Shear stress andendothelial cell activation. Crit Care Med 30: S192–7

    Article  CAS  PubMed  Google Scholar 

  • Fisher AB, Al-Mehdi AB, Wei Z, Song C, Manevich Y (2003) Lungischemia: endothelial cell signaling by reactive oxygen species. Aprogress report. Adv Exp Med Biol 510: 343–7

    CAS  PubMed  Google Scholar 

  • Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA,Jr. (2001) Biomechanical activation of vascular endothelium as adeterminant of its functional phenotype. Proc Natl Acad Sci U S A98: 4478–85

    Article  CAS  PubMed  Google Scholar 

  • Hsieh HJ, Cheng CC, Wu ST, Chiu JJ, Wung BS, Wang DL (1998) Increaseof reactive oxygen species (ROS) in endothelial cells by shear flowand involvement of ROS in shear-induced c-fos expression. J CellPhysiol 175: 156–62

    CAS  Google Scholar 

  • James NL, Harrison DG, Nerem RM (1995) Effects of shear onendothelial cell calcium in the presence and absence of ATP. Faseb J9: 968–73

    CAS  PubMed  Google Scholar 

  • Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelasticproperties of vimentin compared with other filamentous biopolymernetworks. J Cell Biol 113: 155–60

    Article  CAS  PubMed  Google Scholar 

  • Kallmann BA, Wagner S, Hummel V, Buttmann M, Bayas A, Tonn JC, Rieckmann P (2002) Characteristic gene expression profile of primary human cerebral endothelial cells. Faseb J 16: 589–91

    CAS  PubMed  Google Scholar 

  • Kudo S, Morigaki R, Saito J, Ikeda M, Oka K, Tanishita K (2000) Shear-stress effect on mitochondrial membrane potential and albuminuptake in cultured endothelial cells. Biochem Biophys Res Commun 270: 616–21

    Article  CAS  PubMed  Google Scholar 

  • Lansman JB (1988) Endothelial mechanosensors. Going with the flow.Nature 331: 481–2

    CAS  Google Scholar 

  • Liao XD, Wang XH, Jin HJ, Chen LY, Chen Q (2004) Mechanical stretchinduces mitochondria-dependent apoptosis in neonatal ratcardiomyocytes and G2/M accumulation in cardiac fibroblasts. CellRes 14: 16–26

    CAS  Google Scholar 

  • Malek AM, Izumo S (1996) Mechanism of endothelial cell shape changeand cytoskeletal remodeling in response to fluid shear stress. JCell Sci 109 ( Pt 4): 713–26

    CAS  Google Scholar 

  • Mashour GA, Boock RJ (1999) Effects of shear stress on nitric oxidelevels of human cerebral endothelial cells cultured in an artificialcapillary system. Brain Res 842: 233–8

    Article  CAS  PubMed  Google Scholar 

  • McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG,Chittur KK (2001) DNA microarray reveals changes in gene expressionof shear stressed human umbilical vein endothelial cells. Proc NatlAcad Sci USA 98: 8955–60

    Article  CAS  Google Scholar 

  • Parthasarathi K, Ichimura H, Quadri S, Issekutz A, Bhattacharya J(2002) Mitochondrial reactive oxygen species regulate spatialprofile of proinflammatory responses in lung venular capillaries. JImmunol 169: 7078–86

    CAS  Google Scholar 

  • Peters DG, Zhang XC, Benos PV, Heidrich-O’Hare E, Ferrell RE (2002)Genomic analysis of the immediate/early response to shear stress inhuman coronary artery endothelial cells. Physiol Genomics

    Google Scholar 

  • Resnick N, Gimbrone MA, Jr. (1995) Hemodynamic forces are complexregulators of endothelial gene expression. FASEB J 9: 874–82

    CAS  PubMed  Google Scholar 

  • Song C, Al-Mehdi AB, Fisher AB (2001) An immediate endothelial cellsignaling response to lung ischemia. Am J Physiol Lung Cell MolPhysiol 281: L993–1000

    CAS  Google Scholar 

  • Stamatas GN, McIntire LV (2001) Rapid flow-induced responses inendothelial cells. Biotechnol Prog 17: 383–402

    Article  CAS  PubMed  Google Scholar 

  • Stamenovic D (2005) Microtubules may harden or soften cells,depending of the extent of cell distension. J Biomech 38: 1728–32

    Article  PubMed  Google Scholar 

  • Tozawa K, Al-Mehdi AB, Muzykantov V, Fisher AB (1999) In situimaging of intracellular calcium with ischemia in lung subpleuralmicrovascular endothelial cells. Antioxid Redox Signal 1: 145–54

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Al-Mehdi AB, Fisher AB (2001) Signaling pathway for nitricoxide generation with simulated ischemia in flow-adapted endothelialcells. Am J Physiol Heart Circ Physiol 281: H2226–32

    CAS  PubMed  Google Scholar 

  • Wei Z, Costa K, Al-Mehdi AB, Dodia C, Muzykantov V, Fisher AB (1999) Simulated ischemia in flow-adapted endothelial cells leads togeneration of reactive oxygen species and cell signaling. Circ Res 85: 682–9

    CAS  PubMed  Google Scholar 

  • Wei Z, Manevich Y, Al-Mehdi AB, Chatterjee S, Fisher AB (2004) Ca2+ flux through voltage-gated channels with flow cessation inpulmonary microvascular endothelial cells. Microcirculation 11: 517–26

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Al-Mehdi, AB. (2007). Mechanotransduction of Shear-stress at the Mitochondria. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_7

Download citation

Publish with us

Policies and ethics