Skip to main content

Mitochondrial DNA Damage and Repair

  • Chapter
Mitochondria

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

  • 2298 Accesses

Abstract

One of the unique features of mitochondria is that these organelles possess their own DNA (mtDNA). The mitochondrial genome, like any DNA is subject to continuous attack on its integrity from both endogenous and exogenous sources. In order to understand the consequences of such an attack, one must consider key aspects of mtDNA organization and maintenance. Mammalian cells contain one to several thousand copies of mtDNA per cell, which are characterized as being enclosed in multiple mitochondria at 1 to 11 copies per organelle (Cavelier et al. 2000). Human mtDNA is a circular negatively supercoiled double-stranded molecule that is 16,569 bp long (Figure 15.1). It encodes 13 polypeptides, 22 tRNAs and 2 rRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR, Cheadle JP (2002) Inherited variants of MYH associated with somatic G:C—T:A mutations in colorectal tumors. Nat Genet 30: 227–232

    PubMed  CAS  Google Scholar 

  • Allen JA, Coombs MM Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA (1980) Nature 287: 244–245

    PubMed  CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90: 7915–7922

    PubMed  CAS  Google Scholar 

  • Anderson CT, Friedberg EC (1980) The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res 8: 875–888

    PubMed  CAS  Google Scholar 

  • Anson RM, Hudson E, Bohr VA (2000) Mitochondrial endogenous oxidative damage has been overestimated. FASEB J 14: 355–360

    PubMed  CAS  Google Scholar 

  • Asagoshi K, Yamada T, Okada Y, Terato H, Ohyama Y, Seki S, Ide H (2000) Recognition of formamidopyrimidine by Escherichia coli and mammalian thymine glycol glycosylases. Distinctive paired base effects and biological and mechanistic implications. J Biol Chem 275: 24781–24786

    PubMed  CAS  Google Scholar 

  • Aspinwall R, Rothwell DG, Roldan-Arjona T, Anselmino C, Ward CJ, Cheadle J P, Sampson JR, Lindahl T, Harris PC, Hickson ID (1997) Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci USA 94: 109–114

    PubMed  CAS  Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4: 289–333

    PubMed  CAS  Google Scholar 

  • Backer JM, Weinstein IB (1980) Mitochondrial DNA is a major cellular target for a dihydrodiol-epoxide derivative of benzo[a]pyrene. Science 209: 297–299

    PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1999) Endogenous oxidative damage of mtDNA. Mutat Res 424: 51–58

    PubMed  CAS  Google Scholar 

  • Bjelland S, Seeberg E (2003) Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res 531: 37–80

    PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Pinz KG, Perez-Jannotti RM (2001) Enzymology of mitochondrial base excision repair. Prog Nucleic Acid Res Mol Biol 68: 257–271

    PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Wang Y, Shen EL, Kobayashi R (2003) Protein components of mitochondrial DNA nucleoids in higher eukaryotes. Mol Cell Proteomics 2: 1205–1216

    PubMed  CAS  Google Scholar 

  • Bohr VA, Stevnsner T, de Souza-Pinto NC (2002) Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286: 127–134

    PubMed  CAS  Google Scholar 

  • Boiteux S, Radicella JP (2000) The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 377: 1–8

    PubMed  CAS  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967–1971

    PubMed  CAS  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29: 222–230

    PubMed  CAS  Google Scholar 

  • Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL, Sauvaigo S (1999) Hydroxyl radicals and DNA base damage. Mutat Res 424: 9–21

    PubMed  CAS  Google Scholar 

  • Cavelier L, Johannisson A, Gyllensten U (2000) Analysis of mtDNA copy number and composition of single mitochondrial particles using flow cytometry and PCR. Exp Cell Res 259: 79–85

    PubMed  CAS  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—-T and A—-C substitutions. J Biol Chem 267: 166–172

    PubMed  CAS  Google Scholar 

  • Christmann M, Tomicic MT, Roos WP, Kaina B (2003) Mechanisms of human DNA repair: an update. Toxicology 193: 3–34

    PubMed  CAS  Google Scholar 

  • Clayton DA, Doda JN, Friedberg EC (1974) The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 71: 2777–2781

    PubMed  CAS  Google Scholar 

  • Collins AR, Cadet J, Moller L, Poulsen HE, Vina J (2004) Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch Biochem Biophys 423: 57–65

    PubMed  CAS  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17: 1195–1214

    PubMed  CAS  Google Scholar 

  • Copeland WC, Longley MJ (2003) DNA polymerase gamma in mitochondrial DNA replication and repair. Scientific World Journal 3: 34–44

    PubMed  CAS  Google Scholar 

  • Copeland WC, Wachsman JT, Johnson FM, Penta JS (2002) Mitochondrial DNA alterations in cancer. Cancer Invest 20: 557–569

    PubMed  CAS  Google Scholar 

  • Croteau DL, Stierum RH, Bohr VA (1999) Mitochondrial DNA repair pathways. Mutat Res 434: 137–148

    PubMed  CAS  Google Scholar 

  • de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, Seeberg E, Klungland A, Bohr VA (2001) Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. Cancer Res 61: 5378–5381

    PubMed  Google Scholar 

  • DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348: 2656–2668

    PubMed  CAS  Google Scholar 

  • Dizdaroglu M (2005) Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res 591:45–59

    PubMed  CAS  Google Scholar 

  • Dizdaroglu M (1998) Mechanisms of free radical damage to DNA. In: O. I. H. Aruoma (ed.), DNA & Free Radicals: Techniques, Mechanisms & Applications, pp. 3–26. Saint Lucia: OICA International

    Google Scholar 

  • Dobson AW, Grishko V, LeDoux SP, Kelley MR, Wilson GL, Gillespie MN (2002) Enhanced mtDNA repair capacity protects pulmonary artery endothelial cells from oxidant-mediated death. Am J Physiol Lung Cell Mol Physiol 283: L205–210

    PubMed  CAS  Google Scholar 

  • Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL (2000) Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem 275: 37518–37523

    PubMed  CAS  Google Scholar 

  • Doroshow JH, Davies KJ (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261: 3068–3074

    PubMed  CAS  Google Scholar 

  • Driggers WJ, LeDoux SP, Wilson GL (1993) Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J Biol Chem 268: 22042–22045

    PubMed  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95

    PubMed  CAS  Google Scholar 

  • Druzhyna NM, Hollensworth SB, Kelley MR, Wilson GL, Ledoux SP (2003) Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia 42: 370–378

    PubMed  Google Scholar 

  • Durham SE, Krishnan KJ, Betts J, Birch-Machin MA (2003) Mitochondrial DNA damage in non-melanoma skin cancer. Br J Cancer 88: 90–95

    PubMed  CAS  Google Scholar 

  • ESCODD (2002) Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis 23: 2129–2133

    Google Scholar 

  • ESCODD (2003) Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med 34: 1089–1099

    Google Scholar 

  • Fishel ML, Seo YR, Smith ML, Kelley MR (2003) Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing. Cancer Res 63: 608615

    PubMed  CAS  Google Scholar 

  • Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287: 2017–2019

    PubMed  CAS  Google Scholar 

  • Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN (2003) Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14: 1583–1596

    PubMed  CAS  Google Scholar 

  • Geromel V, Kadhom N, Cebalos-Picot I, Ouari O, Polidori A, Munnich A, Rotig A, Rustin P (2001) Superoxide-induced massive apoptosis in cultured skin fibroblasts harboring the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the ATPase-6 gene of the mitochondrial DNA. Hum Mol Genet 10: 1221–1228

    PubMed  CAS  Google Scholar 

  • Graziewicz MA, Day BJ, Copeland WC (2002) The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids Res 30: 2817–2824

    PubMed  CAS  Google Scholar 

  • Grollman AP, Moriya M (1993) Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet 9: 246–249

    PubMed  CAS  Google Scholar 

  • Gross NJ, Getz GS, Rabinowitz M (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J Biol Chem 244: 1552–1562

    PubMed  CAS  Google Scholar 

  • Hamilton ML, Guo Z, Fuller CD, Van Remmen H, Ward WF, Austad SN, Troyer DA, Thompson I, Richardson AA (2001) Reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res 29: 2117–2126

    PubMed  CAS  Google Scholar 

  • Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo, HC, Ames BN (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci USA 95: 288-293

    PubMed  CAS  Google Scholar 

  • Hilbert TP, Chaung W, Boorstein RJ, Cunningham RP, Teebor GW (1997) Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease III. J Biol Chem 272: 6733–6740

    PubMed  CAS  Google Scholar 

  • Hollensworth SB, Shen C, Sim JE, Spitz DR, Wilson GL, LeDoux SP (2000) Glial cell type-specific responses to menadione-induced oxidative stress. Free Radic Biol Med 28: 1161–1174

    PubMed  CAS  Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA (1998) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717–719

    Google Scholar 

  • Ikeda S, Biswas T, Roy R, Izumi T, Boldogh I, Kurosky A, Sarker AH, Seki S, Mitra S (1998) Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. J Biol Chem 273: 21585–21593

    PubMed  CAS  Google Scholar 

  • Jones S, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, Sampson JR, Cheadle JP (2002) Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C–>T:A mutations. Hum Mol Genet 11: 2961–2967

    PubMed  CAS  Google Scholar 

  • Kaguni LS (2004) DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem 73: 293–320

    PubMed  CAS  Google Scholar 

  • Kang D, Hamasaki N (2005) Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem 12: 429–441

    PubMed  CAS  Google Scholar 

  • Kang D, Nishida J, Iyama A, Nakabeppu Y, Furuichi M, Fujiwara T, Sekiguchi M, Takeshige K (1995) Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J Biol Chem 270: 14659–14665

    PubMed  CAS  Google Scholar 

  • Karahalil B, de Souza-Pinto NC, Parsons JL, Elder RH, Bohr VA (2003) Compromised incision of oxidized pyrimidines in liver mitochondria of mice deficient in NTH1 and OGG1 glycosylases. J Biol Chem 278: 33701–33707

    PubMed  CAS  Google Scholar 

  • Khrapko K, Coller HA, Andre PC, Li XC, Hanekamp JS, Thilly WG (1997) Mitochondrial mutational spectra in human cells and tissues. Proc Natl Acad Sci USA 94: 13798–13803

    PubMed  CAS  Google Scholar 

  • Klein JC, Bleeker MJ, Saris CP, Roelen HC, Brugghe HF, van den Elst H, van der Marel GA, van Boom JH, Westra JG, Kriek E, Berens AJM (1992) Repair and replication of plasmids with site-specific 8-oxodG and 8-AAFdG residues in normal and repair-deficient human cells. Nucleic Acids Res 20: 4437–4443

    PubMed  CAS  Google Scholar 

  • Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 96: 13300–13305

    PubMed  CAS  Google Scholar 

  • Korhonen JA, Pham XH, Pellegrini M, Falkenberg M (2004) Reconstitution of a minimal mtDNA replisome in vitro. Embo J 23: 2423–2429

    PubMed  CAS  Google Scholar 

  • Krokan HE, Otterlei M, Nilsen H, Kavli B, Skorpen F, Andersen S, Skjelbred C, Akbari M, Aas PA, Slupphaug G (2001) Properties and functions of human uracil-DNA glycosylase from the UNG gene. Prog Nucleic Acid Res Mol Biol 68: 365–386

    PubMed  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309: 481–484

    PubMed  CAS  Google Scholar 

  • Kunishige M, Mitsui T, Akaike M, Kawajiri M, Shono M, Kawai H, Matsumoto T (2003) Overexpressions of myoglobin and antioxidant enzymes in ragged-red fibers of skeletal muscle from patients with mitochondrial encephalomyopathy. Muscle Nerve 28: 484–492

    PubMed  CAS  Google Scholar 

  • Lakshmipathy U, Campbell C (2001) Antisense-mediated decrease in DNA ligase III expression results in reduced mitochondrial DNA integrity. Nucleic Acids Res 29: 668–676

    PubMed  CAS  Google Scholar 

  • Lakshmipathy U, Campbell C (2000) Mitochondrial DNA ligase III function is independent of Xrcc1. Nucleic Acids Res 28: 3880–3886

    PubMed  CAS  Google Scholar 

  • Lakshmipathy U, Campbell C (1999) The human DNA ligase III gene encodes nuclear and mitochondrial proteins. Mol Cell Biol 19: 3869–3876

    PubMed  CAS  Google Scholar 

  • Le Page F, Margot A, Grollman AP, Sarasin A, Gentil A (1995) Mutagenicity of a unique 8-oxoguanine in a human Ha-ras sequence in mammalian cells. Carcinogenesis 16: 2779–2784

    PubMed  Google Scholar 

  • LeDoux SP, Driggers WJ, Hollensworth BS, Wilson GL (1999) Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat Res 434: 149–159

    PubMed  CAS  Google Scholar 

  • Ledoux SP, Shen CC, Grishko VI, Fields PA, Gard AL, Wilson GL (1998) Glial cell-specific differences in response to alkylation damage. Glia 24: 304–312

    PubMed  CAS  Google Scholar 

  • LeDoux SP, Wilson GL, Beecham EJ, Stevnsner T, Wassermann K, Bohr VA (1992) Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis 13: 1967–1973

    PubMed  CAS  Google Scholar 

  • Legros F, Malka F, Frachon P, Lombes A, Rojo M (2004) Organization and dynamics of human mitochondrial DNA. J Cell Sci 117: 2653–2662

    PubMed  CAS  Google Scholar 

  • Lestienne P, Ponsot G (1988) Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. Lancet 1: 885

    PubMed  CAS  Google Scholar 

  • Lim KS, Jeyaseelan K, Whiteman M, Jenner A, Halliwell B (2005) Oxidative damage in mitochondrial DNA is not extensive. Ann N Y Acad Sci 1042: 210–220

    PubMed  CAS  Google Scholar 

  • Longley MJ, Prasad R, Srivastava DK, Wilson SH, Copeland WC (1998) Identification of 5’-deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. Proc Natl Acad Sci USA 95: 12244–12248

    PubMed  CAS  Google Scholar 

  • Lu CY, Wang EK, Lee HC, Tsay HJ, Wei YH (2003) Increased expression of manganese-superoxide dismutase in fibroblasts of patients with CPEO syndrome. Mol Genet Metab 80: 321–329

    PubMed  CAS  Google Scholar 

  • Lu R, Nash HM, Verdine GLA (1997) Mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Curr Biol 7: 397–407

    PubMed  CAS  Google Scholar 

  • Luna L, Bjoras M, Hoff E, Rognes T, Seeberg E (2000) Cell-cycle regulation, intracellular sorting and induced overexpression of the human NTH1 DNA glycosylase involved in removal of formamidopyrimidine residues from DNA. Mutat Res 460: 95–104

    PubMed  CAS  Google Scholar 

  • Magana-Schwencke N, Henriques J A, Chanet R, Moustacchi E The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. Proc Natl Acad Sci U S A 79: 1722–1726, 1982

    PubMed  CAS  Google Scholar 

  • Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D (2003) Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci USA 100: 1838-1843

    PubMed  CAS  Google Scholar 

  • Martinez GR, Loureiro AP, Marques SA, Miyamoto S, Yamaguchi LF, Onuki J, Almeida EA, Garcia CC, Barbosa LF, Medeiros MH, Di Mascio P (2003) Oxidative and alkylating damage in DNA. Mutat Res 544: 115–127

    PubMed  CAS  Google Scholar 

  • Miyaki M, Yatagai K, Ono T (1977) Strand breaks of mammalian mitochondrial DNA induced by carcinogens. Chem Biol Interact 17: 321–329

    PubMed  CAS  Google Scholar 

  • Moriya M (1993) Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C–>T.A transversions in simian kidney cells. Proc Natl Acad Sci USA 90: 1122-1126

    PubMed  CAS  Google Scholar 

  • Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP (1991) Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res 254: 281–288

    CAS  Google Scholar 

  • Nakabeppu Y (2001) Molecular genetics and structural biology of human MutT homolog, MTH1. Mutat Res 477: 59–70

    PubMed  CAS  Google Scholar 

  • Nakabeppu Y (2001) Regulation of intracellular localization of human MTH1, OGG1, and MYH proteins for repair of oxidative DNA damage. Prog Nucleic Acid Res Mol Biol 68: 75–94

    PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Tsuchimoto D, Ichinoe A, Ohno M, Ide Y, Hirano S, Yoshimura D, Tominaga Y, Furuichi M, Sakumi K (2004) Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei. Ann N Y Acad Sci 1011: 101–111

    PubMed  CAS  Google Scholar 

  • Neubert D, Hopfenmuller W, Fuchs G (1981) Manifestation of carcinogenesis as a stochastic process on the basis of an altered mitochondrial genome. Arch Toxicol 48: 89–125

    PubMed  CAS  Google Scholar 

  • Nilsen H, Rosewell I, Robins P, Skjelbred CF, Andersen S, Slupphaug G, Daly G, Krokan HE, Lindahl T, Barnes DE (2000) Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol Cell 5: 1059–1065

    PubMed  CAS  Google Scholar 

  • Niranjan BG, Bhat NK, Avadhani NG (1982) Preferential attack of mitochondrial DNA by aflatoxin B1 during hepatocarcinogenesis. Science 215: 73–75

    PubMed  CAS  Google Scholar 

  • Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, Sugimachi K, Nakabeppu Y (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Biol Cell 10: 1637–1652

    PubMed  CAS  Google Scholar 

  • Ocampo MT, Chaung W, Marenstein DR, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW (2002) Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol Cell Biol 22: 6111-6121

    PubMed  CAS  Google Scholar 

  • Ohtsubo T, Nishioka K, Imaiso Y, Iwai S, Shimokawa H, Oda H, Fujiwara T, Nakabeppu Y (2000) Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res 28: 1355–1364

    PubMed  CAS  Google Scholar 

  • Parker A, Gu Y, Lu AL (2000) Purification and characterization of a mammalian homolog of Escherichia coli MutY mismatch repair protein from calf liver mitochondria. Nucleic Acids Res 28: 3206–3215

    PubMed  CAS  Google Scholar 

  • Pavlov YI, Minnick DT, Izuta S, Kunkel TA (1994) DNA replication fidelity with 8-oxodeoxyguanosine triphosphate. Biochemistry 33: 4695–4701

    PubMed  CAS  Google Scholar 

  • Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7: 97–110

    PubMed  CAS  Google Scholar 

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, Lim S, Issa MM, Flanders WD, Hosseini SH, Marshall FF, Wallace DC (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102: 719–724

    PubMed  CAS  Google Scholar 

  • Pettepher CC, LeDoux SP, Bohr VA, Wilson GL (1991) Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J Biol Chem 266: 3113–3117

    PubMed  CAS  Google Scholar 

  • Pinz KG, Bogenhagen DF (2000) Characterization of a catalytically slow AP lyase activity in DNA polymerase gamma and other family A DNA polymerases. J Biol Chem 275: 12509–12514

    PubMed  CAS  Google Scholar 

  • Pinz KG, Bogenhagen DF (1998) Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol Cell Biol 18: 1257–1265

    PubMed  CAS  Google Scholar 

  • Pinz KG, Shibutani S, Bogenhagen DF (1995) Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage. J Biol Chem 270: 9202–9206

    PubMed  CAS  Google Scholar 

  • Pirsel M, Bohr VA (1993) Methyl methanesulfonate adduct formation and repair in the DHFR gene and in mitochondrial DNA in hamster cells. Carcinogenesis 14: 2105–2108

    PubMed  CAS  Google Scholar 

  • Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20: 291–293

    PubMed  CAS  Google Scholar 

  • Rachek LI, Grishko VI, Alexeyev MF, Pastukh VV, LeDoux SP, Wilson, GL (2004) Endonuclease III and endonuclease VIII conditionally targeted into mitochondria enhance mitochondrial DNA repair and cell survival following oxidative stress. Nucleic Acids Res 32: 3240–3247

    PubMed  CAS  Google Scholar 

  • Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL (2002) Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem 277: 44932–44937

    PubMed  CAS  Google Scholar 

  • Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25: 502–508

    PubMed  CAS  Google Scholar 

  • Richter C, Park JW, Ames BN (1998) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467

    Google Scholar 

  • Rossi SC, Gorman N, Wetterhahn KE (1988) Mitochondrial reduction of the carcinogen chromate: formation of chromium(V). Chem Res Toxicol 1: 101–107

    PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39–85

    PubMed  CAS  Google Scholar 

  • Sawyer DE, Van Houten B (1999) Repair of DNA damage in mitochondria. Mutat Res 434: 161–176

    PubMed  CAS  Google Scholar 

  • Scharer OD (2003) Chemistry and biology of DNA repair. Angew Chem Int Ed Engl 42: 2946–2974

    PubMed  Google Scholar 

  • Senturker S, Dizdaroglu M (1999) The effect of experimental conditions on the levels of oxidatively modified bases in DNA as measured by gas chromatography-mass spectrometry: how many modified bases are involved? Prepurification or not? Free Radic Biol Med 27: 370–380

    PubMed  CAS  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66: 409–435

    PubMed  CAS  Google Scholar 

  • Shokolenko IN, Alexeyev MF, LeDoux SP, Wilson GL (2005) TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair (Amst) 4: 511–518

    CAS  Google Scholar 

  • Shokolenko IN, Alexeyev MF, Robertson FM, LeDoux SP, Wilson GL (2003) The expression of Exonuclease III from E. coli in mitochondria of breast cancer cells diminishes mitochondrial DNA repair capacity and cell survival after oxidative stress. DNA Repair (Amst) 2: 471–482

    CAS  Google Scholar 

  • Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RK, Bisgaard ML, Orntoft TF, Aaltonen LA, Hodgson SV, Thomas HJ, Tomlinson IP (2003) Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N Engl J Med 348: 791–799

    PubMed  Google Scholar 

  • Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett 274: 1–8

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24: 7779–7788

    PubMed  CAS  Google Scholar 

  • Steenken S (1997) Electron transfer in DNA? Competition by ultra-fast proton transfer? Biol Chem 378: 1293–1297

    PubMed  CAS  Google Scholar 

  • Stierum RH, Dianov GL, Bohr VA (1999) Single-nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts. Nucleic Acids Res 27: 3712–3719

    PubMed  CAS  Google Scholar 

  • Szczesny B, Hazra TK, Papaconstantinou J, Mitra S, Boldogh I (2003) Age-dependent deficiency in import of mitochondrial DNA glycosylases required for repair of oxidatively damaged bases. Proc Natl Acad Sci USA 100: 10670–10675

    PubMed  CAS  Google Scholar 

  • Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410: 103–123

    PubMed  CAS  Google Scholar 

  • Takao M, Aburatani H, Kobayashi K, Yasui A (1998) Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res 26: 2917–2922

    PubMed  CAS  Google Scholar 

  • Takao M, Kanno S, Shiromoto T, Hasegawa R, Ide H, Ikeda S, Sarker AH, Seki S, Xing JZ, Le XC, Weinfeld M, Kobayashi K, Miyazaki J, Muijtjens M, Hoeijmakers JH, van der Horst G, Yasui A (2002) Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. Embo J 21: 3486–3493

    PubMed  CAS  Google Scholar 

  • Takayama S, Muramatsu M (1969) Incorporation of tritiated dimethylnitrosamine into subcellular fractions of mouse liver after long term administration of dimethylnitrosamine. Z Krebsforsch 73: 172–179

    PubMed  CAS  Google Scholar 

  • Tomasi A, Albano E, Banni S, Botti B, Corongiu F, Dessi MA, Iannone A, Vannini V, Dianzani MU (1987) Free-radical metabolism of carbon tetrachloride in rat liver mitochondria. A study of the mechanism of activation. Biochem J 246: 313–317

    PubMed  CAS  Google Scholar 

  • Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24: 7771–7778

    PubMed  CAS  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom, R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423

    PubMed  CAS  Google Scholar 

  • Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, Kawate H, Nakao K, Nakamura K, Ide F, Kura S, Nakabeppu Y, Katsuki M, Ishikawa T, Sekiguchi M (2001) Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA 98: 11456–11461

    PubMed  CAS  Google Scholar 

  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16: 29–37

    PubMed  Google Scholar 

  • Wadia JS, Dowdy SF (2005) Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev 57: 579–596

    PubMed  CAS  Google Scholar 

  • Wallace DCA (2005) Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine. Annu Rev Genet 39:359–407

    PubMed  CAS  Google Scholar 

  • Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ (1988) 2nd, Nikoskelainen E K Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242: 1427–1430

    PubMed  CAS  Google Scholar 

  • Wallace SS (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150: S60–79

    PubMed  CAS  Google Scholar 

  • Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29: 7024–7032

    PubMed  CAS  Google Scholar 

  • Wunderlich V, Schutt M, Bottger M, Graffi A (1970) Preferential alkylation of mitochondrial deoxyribonucleic acid by N-methyl-N-nitrosourea. Biochem J 118: 99–109

    PubMed  CAS  Google Scholar 

  • Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94: 514–519

    PubMed  CAS  Google Scholar 

  • Yakubovskaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF (2006) Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem 281: 374–382

    PubMed  CAS  Google Scholar 

  • Yang MY, Bowmaker M, Reyes A, Vergani L, Angeli P, Gringeri E, Jacobs H T, Holt IJ (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111: 495–505

    PubMed  CAS  Google Scholar 

  • Yoneda M, Katsumata K, Hayakawa M, Tanaka M, Ozawa T (1995) Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun 209: 723–729

    PubMed  CAS  Google Scholar 

  • Zastawny TH, Dabrowska M, Jaskolski T, Klimarczyk M, Kulinski L, Koszela A, Szczesniewicz M, Sliwinska M, Witkowski P, Olinski R (1998) Comparison of oxidative base damage in mitochondrial and nuclear DNA. Free Radic Biol Med 24: 722–725

    PubMed  CAS  Google Scholar 

  • Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW, Stevens M, Denniger G, Zassenhaus HP (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 57: 147–157

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shokolenko, I.N., Ledoux, S.P., Wilson, G.L. (2007). Mitochondrial DNA Damage and Repair. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_15

Download citation

Publish with us

Policies and ethics