Skip to main content

Src Family Tyrosine Kinases: Implications for Mammary Tumor Progression

  • Chapter
  • First Online:
Genetically Engineered Mice for Cancer Research

Abstract

This chapter reviews the role of c-Src tyrosine kinase in mammary tumor progression. In addition to highlighting the molecular mechanism by which c-Src is activated, we explore the evidence of supporting a role for c-Src in both murine and human breast cancers. In particular, this review highlights the use of mouse models to resect the role of c-Src in mammary tumor progression. These genetic analyses provide important insight into the role of c-Src signaling pathway in oncogene-induced mammary tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avizienyte E, Wyke AW et al (2002) Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 4(8):632–638

    PubMed  CAS  Google Scholar 

  • Bao J, Gur G et al (2003) Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc Natl Acad Sci USA 100(5):2438–2443

    Article  PubMed  CAS  Google Scholar 

  • Behrens J, Vakaet L et al (1993) Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 120(3):757–766

    Article  PubMed  CAS  Google Scholar 

  • Belsches AP, Haskell MD et al (1997) Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Front Biosci 2:d501–d518

    PubMed  CAS  Google Scholar 

  • Belsches-Jablonski AP, Biscardi JS et al (2001) Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene 20(12):1465–1475

    Article  PubMed  CAS  Google Scholar 

  • Berman-Golan D, Elson A (2007) Neu-mediated phosphorylation of protein tyrosine phosphatase epsilon is critical for activation of Src in mammary tumor cells. Oncogene 26(49):7028–7037

    Article  PubMed  CAS  Google Scholar 

  • Biscardi JS, Maa MC et al (1999) c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274(12):8335–8343

    Article  PubMed  CAS  Google Scholar 

  • Bjorge JD, Pang A et al (2000) Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J Biol Chem 275(52):41439–41446

    Article  PubMed  CAS  Google Scholar 

  • Boggon TJ, Eck MJ (2004) Structure and regulation of Src family kinases. Oncogene 23(48):7918–7927

    Article  PubMed  CAS  Google Scholar 

  • Bowman T, Broome MA et al (2001) Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 98(13):7319–7324

    Article  PubMed  CAS  Google Scholar 

  • Bromann PA, Korkaya H et al (2004) The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23(48):7957–7968

    Article  PubMed  CAS  Google Scholar 

  • Broome MA, Hunter T (1997) The PDGF receptor phosphorylates Tyr 138 in the c-Src SH3 domain in vivo reducing peptide ligand binding. Oncogene 14(1):17–34

    Article  PubMed  CAS  Google Scholar 

  • Brunton VG, Avizienyte E et al (2005) Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 65(4):1335–1342

    Article  PubMed  CAS  Google Scholar 

  • Cabodi S, Tinnirello A et al (2006) p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis. Cancer Res 66(9):4672–4680

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Tay A et al (1996) Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol 16(4):1595–1603

    PubMed  CAS  Google Scholar 

  • Carragher NO, Westhoff MA et al (2003) A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr Biol 13(16):1442–1450

    Article  PubMed  CAS  Google Scholar 

  • Carragher NO, Westhoff MA et al (2002) v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol Cell Biol 22(1):257–269

    Article  PubMed  CAS  Google Scholar 

  • Cartwright CA, Kamps MP et al (1989) pp 60c-src activation in human colon carcinoma. J Clin Invest 83(6):2025–2033

    Article  PubMed  CAS  Google Scholar 

  • Cary LA, Chang JF et al (1996) Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 109(Pt 7):1787–1794

    PubMed  CAS  Google Scholar 

  • Castano J, Solanas G et al (2007) Specific phosphorylation of p120-catenin regulatory domain differently modulates its binding to RhoA. Mol Cell Biol 27(5):1745–1757

    Article  PubMed  CAS  Google Scholar 

  • Chapman RS, Lourenco PC et al (1999) Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13(19):2604–2616

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Pengetnze Y et al (2005) Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Mol Cancer Ther 4(2):217–224

    PubMed  CAS  Google Scholar 

  • Chen WT, Chen JM et al (1985) Local degradation of fibronectin at sites of expression of the transforming gene product pp 60src. Nature 316(6024):156–158

    Article  PubMed  CAS  Google Scholar 

  • Chong YP, Mulhern TD et al (2005) C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) – endogenous negative regulators of Src-family protein kinases. Growth Factors 23(3):233–244

    Article  PubMed  CAS  Google Scholar 

  • Coll ML, Rosen K et al (2002) Increased Bcl-xL expression mediates v-Src-induced resistance to anoikis in intestinal epithelial cells. Oncogene 21(18):2908–2913

    Article  PubMed  CAS  Google Scholar 

  • Criscuoli ML, Nguyen M et al (2005) Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood 105(4):1508–1514

    Article  PubMed  CAS  Google Scholar 

  • Cursi S, Rufini A et al (2006) Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO J 25(9):1895–1905

    Article  PubMed  CAS  Google Scholar 

  • Daigo Y, Furukawa Y et al (1999) Absence of genetic alteration at codon 531 of the human c-src gene in 479 advanced colorectal cancers from Japanese and Caucasian patients. Cancer Res 59(17):4222–4224

    PubMed  CAS  Google Scholar 

  • Davidson D, Chow LM et al (1997) Chk, a Csk family tyrosine protein kinase, exhibits Csk-like activity in fibroblasts, but not in an antigen-specific T-cell line. J Biol Chem 272(2):1355–1362

    Article  PubMed  CAS  Google Scholar 

  • de Heer P, Koudijs MM et al (2008) Combined expression of the non-receptor protein tyrosine kinases FAK and Src in primary colorectal cancer is associated with tumor recurrence and metastasis formation. Eur J Surg Oncol 34(11):1253–1261

    Article  PubMed  Google Scholar 

  • Di Stefano P, Damiano L et al (2007) p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J 26(12):2843–2855

    Article  PubMed  CAS  Google Scholar 

  • Diaz N, Minton S et al (2006) Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 12(1):20–28

    Article  PubMed  CAS  Google Scholar 

  • Dimri M, Naramura M et al (2007) Modeling breast cancer-associated c-Src and EGFR overexpression in human MECs: c-Src and EGFR cooperatively promote aberrant three-dimensional acinar structure and invasive behavior. Cancer Res 67(9):4164–4172

    Article  PubMed  CAS  Google Scholar 

  • Duxbury MS, Ito H et al (2004) Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 10(7):2307–2318

    Article  PubMed  CAS  Google Scholar 

  • Eichhorn PJ, Creyghton MP et al (2007) A RNA interference screen identifies the protein phosphatase 2A subunit PR55gamma as a stress-sensitive inhibitor of c-SRC. PLoS Genet 3(12):e218

    Article  PubMed  CAS  Google Scholar 

  • Eliceiri BP, Paul R et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4(6):915–924

    Article  PubMed  CAS  Google Scholar 

  • Fincham VJ, Brunton VG et al (2000a) The SH3 domain directs acto-myosin-dependent targeting of v-Src to focal adhesions via phosphatidylinositol 3-kinase. Mol Cell Biol 20(17):6518–6536

    Article  PubMed  CAS  Google Scholar 

  • Fincham VJ, James M et al (2000b) Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. EMBO J 19(12):2911–2923

    Article  PubMed  CAS  Google Scholar 

  • Fincham VJ, Unlu M et al (1996) Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins. J Cell Biol 135(6 Pt 1):1551–1564

    Article  PubMed  CAS  Google Scholar 

  • Frame MC (2004) Newest findings on the oldest oncogene; how activated src does it. J Cell Sci 117(Pt 7):989–998

    Article  PubMed  CAS  Google Scholar 

  • Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124(4):619–626

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Krause G et al (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4(3):222–231

    Article  PubMed  CAS  Google Scholar 

  • Garcia R, Bowman TL et al (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20(20):2499–2513

    Article  PubMed  CAS  Google Scholar 

  • Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8(11):1223–1234

    Article  PubMed  CAS  Google Scholar 

  • Gavard J, Patel V et al (2008) Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14(1):25–36

    Article  PubMed  CAS  Google Scholar 

  • Gil-Henn H, Elson A (2003) Tyrosine phosphatase-epsilon activates Src and supports the transformed phenotype of Neu-induced mammary tumor cells. J Biol Chem 278(18):15579–15586

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AP, Metcalfe AD et al (2000) Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol 149(2):431–446

    Article  PubMed  CAS  Google Scholar 

  • Goi T, Shipitsin M et al (2000) An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J 19(4):623–630

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez L, Agullo-Ortuno MT et al (2006) Role of c-Src in human MCF7 breast cancer cell tumorigenesis. J Biol Chem 281(30):20851–20864

    Article  PubMed  CAS  Google Scholar 

  • Gould KL, Hunter T (1988) Platelet-derived growth factor induces multisite phosphorylation of pp 60c-src and increases its protein-tyrosine kinase activity. Mol Cell Biol 8(8):3345–3356

    PubMed  CAS  Google Scholar 

  • Granot-Attas S, Elson A (2004) Protein tyrosine phosphatase epsilon activates Yes and Fyn in Neu-induced mammary tumor cells. Exp Cell Res 294(1):236–243

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Pylayeva Y et al (2006) Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126(3):489–502

    Article  PubMed  CAS  Google Scholar 

  • Guy CT, Muthuswamy SK et al (1994) Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev 8(1):23–32

    Article  PubMed  CAS  Google Scholar 

  • Ha CH, Bennett AM et al (2008) A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem 283(11):7261–7270

    Article  PubMed  CAS  Google Scholar 

  • Han LY, Landen CN et al (2006) Antiangiogenic and antitumor effects of SRC inhibition in ovarian carcinoma. Cancer Res 66(17):8633–8639

    Article  PubMed  CAS  Google Scholar 

  • Hazan RB, Qiao R et al (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014:155–163

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Sakaguchi T et al (2007) Epidermal hyperplasia and papillomatosis in mice with a keratinocyte-restricted deletion of csk. Carcinogenesis 28(10):2074–2081

    Article  PubMed  CAS  Google Scholar 

  • Huck L, Pontier SM et al (2010) beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression. Proc Natl Acad Sci USA 107(35):15559–15564

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77(3):1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Imamoto A, Soriano P (1993) Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73(6):1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Irby R, Mao W et al (1997) Overexpression of normal c-Src in poorly metastatic human colon cancer cells enhances primary tumor growth but not metastatic potential. Cell Growth Differ 8(12):1287–1295

    PubMed  CAS  Google Scholar 

  • Irby RB, Mao W et al (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21(2):187–190

    Article  PubMed  CAS  Google Scholar 

  • Jay G, Shiu RP et al (1978) Identification of a transformation-specific protein induced by a Rous sarcoma virus. Cell 13(3):527–534

    Article  PubMed  CAS  Google Scholar 

  • Jiang LQ, Feng X et al (2006) Csk-binding protein (Cbp) negatively regulates epidermal growth factor-induced cell transformation by controlling Src activation. Oncogene 25(40):5495–5506

    Article  PubMed  CAS  Google Scholar 

  • Kaminski R, Zagozdzon R et al (2006) Role of SRC kinases in Neu-induced tumorigenesis: challenging the paradigm using Csk homologous kinase transgenic mice. Cancer Res 66(11):5757–5762

    Article  PubMed  CAS  Google Scholar 

  • Kaplan KB, Bibbins KB et al (1994) Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO J 13(20):4745–4756

    PubMed  CAS  Google Scholar 

  • Kaplan KB, Swedlow JR et al (1995) c-Src enhances the spreading of src−/− fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev 9(12):1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Kaplan KB, Swedlow JR et al (1992) Association of p60c-src with endosomal membranes in mammalian fibroblasts. J Cell Biol 118(2):321–333

    Article  PubMed  CAS  Google Scholar 

  • Kasahara K, Nakayama Y et al (2007) Rapid trafficking of c-Src, a non-palmitoylated Src-family kinase, between the plasma membrane and late endosomes/lysosomes. Exp Cell Res 313(12):2651–2666

    Article  PubMed  CAS  Google Scholar 

  • Klinghoffer RA, Sachsenmaier C et al (1999) Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 18(9):2459–2471

    Article  PubMed  CAS  Google Scholar 

  • Kmiecik TE, Shalloway D (1987) Activation and suppression of pp 60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Kotelevets L, van Hengel J et al (2001) The lipid phosphatase activity of PTEN is critical for stabilizing intercellular junctions and reverting invasiveness. J Cell Biol 155(7):1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Kypta RM, Goldberg Y et al (1990) Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62(3):481–492

    Article  PubMed  CAS  Google Scholar 

  • Laghi L, Bianchi P et al (2001) Lack of mutation at codon 531 of SRC in advanced colorectal cancers from Italian patients. Br J Cancer 84(2):196–198

    Article  PubMed  CAS  Google Scholar 

  • Lahlou H, Sanguin-Gendreau V et al (2007) Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci USA 104(51):20302–20307

    Article  PubMed  CAS  Google Scholar 

  • Lee LF, Guan J et al (2001) Neuropeptide-induced androgen independence in prostate cancer cells: roles of nonreceptor tyrosine kinases Etk/Bmx, Src, and focal adhesion kinase. Mol Cell Biol 21(24):8385–8397

    Article  PubMed  CAS  Google Scholar 

  • Li L, Guris DL et al (2003) Translocation of CrkL to focal adhesions mediates integrin-induced migration downstream of Src family kinases. Mol Cell Biol 23(8):2883–2892

    Article  PubMed  CAS  Google Scholar 

  • Liang F, Liang J et al (2007) PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. J Biol Chem 282(8):5413–5419

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Brodeur SR et al (1993) Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8(5):1119–1126

    PubMed  CAS  Google Scholar 

  • Lutz MP, Esser IB et al (1998) Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun 243(2):503–508

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Rong Y et al (2008) Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev 22(3):308–321

    Article  PubMed  CAS  Google Scholar 

  • Marcotte R, Zhou L et al (2009) c-Src associates with ErbB2 through an interaction between catalytic domains and confers enhanced transforming potential. Mol Cell Biol 29(21):5858–5871

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Igarashi K et al (2003) pp 60c-src activation in lung adenocarcinoma. Eur J Cancer 39(10):1447–1455

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Okada M et al (1998) pp 60c-src activation in hepatocellular carcinoma of humans and LEC rats. Hepatology 27(5):1257–1264

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Okada M et al (1999) Reduced C-terminal Src kinase (Csk) activities in hepatocellular carcinoma. Hepatology 29(2):379–384

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Jiang J et al (2003) Targeted expression of c-Src in epidermal basal cells leads to enhanced skin tumor promotion, malignant progression, and metastasis. Cancer Res 63(16):4819–4828

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Kiguchi K et al (2004) Development of transgenic mice that inducibly express an active form of c-Src in the epidermis. Mol Carcinog 40(4):189–200

    Article  PubMed  CAS  Google Scholar 

  • Mazurenko NN, Kogan EA et al (1992) Expression of pp 60c-src in human small cell and non-small cell lung carcinomas. Eur J Cancer 28(2–3):372–377

    Article  PubMed  CAS  Google Scholar 

  • McLachlan RW, Kraemer A et al (2007) E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell 18(8):3214–3223

    Article  PubMed  CAS  Google Scholar 

  • Muthuswamy SK, Muller WJ (1994) Activation of the Src family of tyrosine kinases in mammary tumorigenesis. Adv Cancer Res 64:111–123

    Article  PubMed  CAS  Google Scholar 

  • Muthuswamy SK, Muller WJ (1995) Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo. Oncogene 11(9):1801–1810

    PubMed  CAS  Google Scholar 

  • Nada S, Yagi T et al (1993) Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell 73(6):1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Nagle JA, Ma Z et al (2004) Involvement of insulin receptor substrate 2 in mammary tumor metastasis. Mol Cell Biol 24(22):9726–9735

    Article  PubMed  CAS  Google Scholar 

  • Nilbert M, Fernebro E (2000) Lack of activating c-SRC mutations at codon 531 in rectal cancer. Cancer Genet Cytogenet 121(1):94–95

    Article  PubMed  CAS  Google Scholar 

  • Niu G, Wright KL et al (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–2008

    Article  PubMed  CAS  Google Scholar 

  • Nowak D, Boehrer S et al (2007) Src kinase inhibitors induce apoptosis and mediate cell cycle arrest in lymphoma cells. Anticancer Drugs 18(9):981–995

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke DM, Nute EJ et al (1998) Inhibition of a naturally occurring EGFR oncoprotein by the p185neu ectodomain: implications for subdomain contributions to receptor assembly. Oncogene 16(9):1197–1207

    Article  PubMed  Google Scholar 

  • Oppermann H, Levinson AD et al (1979) Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proc Natl Acad Sci USA 76(4):1804–1808

    Article  PubMed  CAS  Google Scholar 

  • Ottenhoff-Kalff AE, Rijksen G et al (1992) Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res 52(17):4773–4778

    PubMed  CAS  Google Scholar 

  • Pengetnze Y, Steed M et al (2003) Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line. Biochem Biophys Res Commun 309(2):377–383

    Article  PubMed  CAS  Google Scholar 

  • Ponniah S, Wang DZ et al (1999) Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases Src and Fyn. Curr Biol 9(10):535–538

    Article  PubMed  CAS  Google Scholar 

  • Pontier SM, Huck L et al (2010) Integrin-linked kinase has a critical role in ErbB2 mammary tumor progression: implications for human breast cancer. Oncogene 29(23):3374–3385

    Article  PubMed  CAS  Google Scholar 

  • Purchio AF, Erikson E et al (1978) Identification of a polypeptide encoded by the avian sarcoma virus src gene. Proc Natl Acad Sci USA 75(3):1567–1571

    Article  PubMed  CAS  Google Scholar 

  • Radke K, Gilmore T et al (1980) Transformation by Rous sarcoma virus: a cellular substrate for transformation-specific protein phosphorylation contains phosphotyrosine. Cell 21(3):821–828

    Article  PubMed  CAS  Google Scholar 

  • Ralston R, Bishop JM (1985) The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor. Proc Natl Acad Sci USA 82(23):7845–7849

    Article  PubMed  CAS  Google Scholar 

  • Ranger JJ, Levy DE et al (2009) Identification of a Stat3-dependent Transcription regulatory Network involved in metastatic progression. Cancer Res 69(17):6823

    Article  PubMed  CAS  Google Scholar 

  • Rengifo-Cam W, Konishi A et al (2004) Csk defines the ability of integrin-mediated cell adhesion and migration in human colon cancer cells: implication for a potential role in cancer metastasis. Oncogene 23(1):289–297

    Article  PubMed  CAS  Google Scholar 

  • Rickles RJ, Botfield MC et al (1994) Identification of Src, Fyn, Lyn, PI3K and Abl SH3 domain ligands using phage display libraries. EMBO J 13(23):5598–5604

    PubMed  CAS  Google Scholar 

  • Rickles RJ, Botfield MC et al (1995) Phage display selection of ligand residues important for Src homology 3 domain binding specificity. Proc Natl Acad Sci USA 92(24):10909–10913

    Article  PubMed  CAS  Google Scholar 

  • Roskoski R Jr (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Bardelli A et al (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294(5545):1343–1346

    Article  PubMed  CAS  Google Scholar 

  • Sandilands E, Akbarzadeh S et al (2007) Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors. EMBO Rep 8(12):1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Sandilands E, Cans C et al (2004) RhoB and actin polymerization coordinate Src activation with endosome-mediated delivery to the membrane. Dev Cell 7(6):855–869

    Article  PubMed  CAS  Google Scholar 

  • Schedin P (2006) Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer 6(4):281–291

    Article  PubMed  CAS  Google Scholar 

  • Schedin P, O’Brien J et al (2007) Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia 12(1):71–82

    Article  PubMed  Google Scholar 

  • Schlaepfer DD, Hunter T (1996) Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 16(10):5623–5633

    PubMed  CAS  Google Scholar 

  • Schlessinger K, Levy DE (2005) Malignant transformation but not normal cell growth depends on signal transducer and activator of transcription 3. Cancer Res 65(13):5828–5834

    Article  PubMed  CAS  Google Scholar 

  • Sefton BM, Hunter T et al (1980a) Relationship of polypeptide products of the transforming gene of Rous sarcoma virus and the homologous gene of vertebrates. Proc Natl Acad Sci USA 77(4):2059–2063

    Article  PubMed  CAS  Google Scholar 

  • Sefton BM, Hunter T et al (1980b) Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 20(3):807–816

    Article  PubMed  CAS  Google Scholar 

  • Shor AC, Keschman EA et al (2007) Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res 67(6):2800–2808

    Article  PubMed  CAS  Google Scholar 

  • Sirvent A, Boureux A et al (2007) The tyrosine kinase Abl is required for Src-transforming activity in mouse fibroblasts and human breast cancer cells. Oncogene 26(52):7313–7323

    Article  PubMed  CAS  Google Scholar 

  • Slack JK, Adams RB et al (2001) Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 20(10):1152–1163

    Article  PubMed  CAS  Google Scholar 

  • Songyang Z, Shoelson SE et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72(5):767–778

    Article  PubMed  CAS  Google Scholar 

  • Soriano P, Montgomery C et al (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64(4):693–702

    Article  PubMed  CAS  Google Scholar 

  • Spector DH, Varmus HE et al (1978) Nucleotide sequences related to the transforming gene of avian sarcoma virus are present in DNA of uninfected vertebrates. Proc Natl Acad Sci USA 75(9):4102–4106

    Article  PubMed  CAS  Google Scholar 

  • Stein PL, Vogel H et al (1994) Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev 8(17):1999–2007

    Article  PubMed  CAS  Google Scholar 

  • Stein T, Morris JS et al (2004) Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 6(2):R75–R91

    Article  PubMed  CAS  Google Scholar 

  • Stover DR, Becker M et al (1995) Src phosphorylation of the epidermal growth factor receptor at novel sites mediates receptor interaction with Src and P85 alpha. J Biol Chem 270(26):15591–15597

    Article  PubMed  CAS  Google Scholar 

  • Stover DR, Furet P et al (1996) Modulation of the SH2 binding specificity and kinase activity of Src by tyrosine phosphorylation within its SH2 domain. J Biol Chem 271(21):12481–12487

    Article  PubMed  CAS  Google Scholar 

  • Su J, Muranjan M et al (1999) Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr Biol 9(10):505–511

    Article  PubMed  CAS  Google Scholar 

  • Su JL, Yang PC et al (2006) The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 9(3):209–223

    Article  PubMed  CAS  Google Scholar 

  • Sugimura M, Kobayashi K et al (2000) Mutation of the SRC gene in endometrial carcinoma. Jpn J Cancer Res 91(4):395–398

    Article  PubMed  CAS  Google Scholar 

  • Talamonti MS, Roh MS et al (1993) Increase in activity and level of pp 60c-src in progressive stages of human colorectal cancer. J Clin Invest 91(1):53–60

    Article  PubMed  CAS  Google Scholar 

  • Tan M, Li P et al (2005) ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res 65(5):1858–1867

    Article  PubMed  CAS  Google Scholar 

  • Tan M, Yao J et al (1997) Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res 57(6):1199–1205

    PubMed  CAS  Google Scholar 

  • Trevino JG, Summy JM et al (2006) Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol 168(3):962–972

    Article  PubMed  CAS  Google Scholar 

  • Ursini-Siegel J, Hardy WR et al (2008) ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 27(6):910–920

    Article  PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Sahin AA et al (2003) Heregulin and HER2 signaling selectively activates c-Src phosphorylation at tyrosine 215. FEBS Lett 543(1–3):76–80

    Article  PubMed  CAS  Google Scholar 

  • Veracini L, Franco M et al (2006) Two distinct pools of Src family tyrosine kinases regulate PDGF-induced DNA synthesis and actin dorsal ruffles. J Cell Sci 119(Pt 14):2921–2934

    Article  PubMed  CAS  Google Scholar 

  • Watson CJ (2009) Immune cell regulators in mouse mammary development and involution. J Anim Sci 87(13 Suppl):35–42

    PubMed  CAS  Google Scholar 

  • Webster MA, Cardiff RD et al (1995) Induction of mammary epithelial hyperplasias and mammary tumors in transgenic mice expressing a murine mammary tumor virus/activated c-src fusion gene. Proc Natl Acad Sci USA 92(17):7849–7853

    Article  PubMed  CAS  Google Scholar 

  • White DE, Kurpios NA et al (2004) Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6(2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Wiener JR, Windham TC et al (2003) Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol Oncol 88(1):73–79

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Beattie EC et al (1999) EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96(5):677–687

    Article  PubMed  CAS  Google Scholar 

  • Windham TC, Parikh NU et al (2002) Src activation regulates anoikis in human colon tumor cell lines. Oncogene 21(51):7797–7807

    Article  PubMed  CAS  Google Scholar 

  • Woods NT, Yamaguchi H et al (2007) Anoikis, initiated by Mcl-1 degradation and Bim induction, is deregulated during oncogenesis. Cancer Res 67(22):10744–10752

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Yuan X et al (2007) Loss of Hsp90 association up-regulates Src-dependent ErbB2 activity. Mol Cell Biol 27(1):220–228

    Article  PubMed  CAS  Google Scholar 

  • Yagi R, Waguri S et al (2007) C-terminal Src kinase controls development and maintenance of mouse squamous epithelia. EMBO J 26(5):1234–1244

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Woods NT et al (2008) SRC directly phosphorylates Bif-1 and prevents its interaction with Bax and the initiation of anoikis. J Biol Chem 283(27):19112–19118

    Article  PubMed  CAS  Google Scholar 

  • Yezhelyev MV, Koehl G et al (2004) Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Cancer Res 10(23):8028–8036

    Article  PubMed  CAS  Google Scholar 

  • Zhang SQ, Yang W et al (2004) Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13(3):341–355

    Article  PubMed  Google Scholar 

  • Zheng X, Resnick RJ et al (2008) Apoptosis of estrogen-receptor negative breast cancer and colon cancer cell lines by PTP alpha and src RNAi. Int J Cancer 122(9):1999–2007

    Article  PubMed  CAS  Google Scholar 

  • Zheng XM, Wang Y et al (1992) Cell transformation and activation of pp 60c-src by overexpression of a protein tyrosine phosphatase. Nature 359(6393):336–339

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Coad J et al (2008) SHP2 is up-regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. Histopathology 53(4):389–402

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Bjorge JD et al (2008) Decreased CHK protein levels are associated with Src activation in colon cancer cells. Oncogene 27(14):2027–2034

    Article  PubMed  CAS  Google Scholar 

  • Zrihan-Licht S, Deng B et al (1998) Csk homologous kinase, a novel signaling molecule, directly associates with the activated ErbB-2 receptor in breast cancer cells and inhibits their proliferation. J Biol Chem 273(7):4065–4072

    Article  PubMed  CAS  Google Scholar 

  • Zrihan-Licht S, Lim J et al (1997) Association of csk-homologous kinase (CHK) (formerly MATK) with HER-2/ErbB-2 in breast cancer cells. J Biol Chem 272(3):1856–1863

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marcotte, R., Muller, W.J. (2012). Src Family Tyrosine Kinases: Implications for Mammary Tumor Progression. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_16

Download citation

Publish with us

Policies and ethics