Skip to main content

Overview of Designing Genetically Engineered Mouse (GEM) Models

  • Chapter
  • First Online:
Genetically Engineered Mice for Cancer Research

Abstract

It is very important to spend time and effort on vector design considerations when planning to make a GEM. The vector designer will ask what information is desired from the genetically modified animal, and an engineering scheme will be devised. It is strongly recommended that the investigator consult experienced GEM vector producers with all the information that is desired from the GEM. The investigator will be apprised of the feasibility of each design consideration, and usually learns of additional design elements that may expand the information that can be obtained from the GEM and that can in turn expand the overall research yield. Our experience is that the extra time, effort, and care that is put into the coordination of GEM design with research objectives saves much time and effort in the long run. In addition, we have found that careful GEM design consideration will greatly improve the success of GEM production. In this chapter, we discuss gene targeting design considerations that should be made before initiating production of the engineered mouse strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almind K, Kulkarni RN, Lannon SM, Kahn CR (2003) Identification of interactive loci linked to insulin and leptin in mice with genetic insulin resistance. Diabetes 52:1535–1543

    Article  PubMed  CAS  Google Scholar 

  • Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89:655–667

    Article  PubMed  CAS  Google Scholar 

  • Askew GR, Doetschman T, Lingrel JB (1993) Site-directed point mutations in embryonic stem cells: a gene-targeting tag-and-exchange strategy. Mol Cell Biol 13:4115–4124

    PubMed  CAS  Google Scholar 

  • Bhattacharyya R, Bhaumik M, Raju TS, Stanley P (2002) Truncated, inactive N-acetylglucosa-minyltransferase III (GlcNAc-TIII) induces neurological and other traits absent in mice that lack GlcNAc-TIII. J Biol Chem 277:26300–26309

    Article  PubMed  CAS  Google Scholar 

  • Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  PubMed  CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  PubMed  CAS  Google Scholar 

  • Brinster RL (1974) The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 140:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Carver BS, Pandolfi PP (2006) Mouse modeling in oncologic preclinical and translational research. Clin Cancer Res 12:5305–5311

    Article  PubMed  CAS  Google Scholar 

  • Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779

    Article  PubMed  CAS  Google Scholar 

  • Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, Fischbeck K, Dolle P, Koenig M (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9:1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388

    Article  PubMed  CAS  Google Scholar 

  • Daniel D, Chiu C, Giraudo E, Inoue M, Mizzen LA, Chu NR, Hanahan D (2005) CD4+ T cell-mediated antigen-specific immunotherapy in a mouse model of cervical cancer. Cancer Res 65:2018–2025

    Article  PubMed  CAS  Google Scholar 

  • Dekker M, Brouwers C, te-Riele H (2003) Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res 31:e27

    Article  PubMed  Google Scholar 

  • Den Z, Cheng X, Merched-Sauvage M, Koch PJ (2006) Desmocollin 3 is required for pre-implantation development of the mouse embryo. J Cell Sci 119:482–489

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Capecchi MR (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol Cell Biol 12:3365–3371

    PubMed  CAS  Google Scholar 

  • Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578

    Article  PubMed  CAS  Google Scholar 

  • Doetschman T, Maeda N, Smithies O (1988) Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci USA 85:8583–8587

    Article  PubMed  CAS  Google Scholar 

  • Doetschman T (1994) Gene transfer in embryonic stem cells. In: Pinkert CA (ed) Transgenic animal technology: a laboratory handbook. Academic, New York, pp 115–146

    Google Scholar 

  • Doetschman T (1999) Interpretation of phenotype in genetically engineered mice. Lab Anim Sci 49:137–143

    PubMed  CAS  Google Scholar 

  • Evans MJ (1972) The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratoma cells. J Embryol Exp Morphol 28:163–176

    PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  • Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633

    PubMed  CAS  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384

    Article  PubMed  CAS  Google Scholar 

  • Gossler A, Doetschman T, Korn R, Serfling E, Kemler R (1986) Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc Natl Acad Sci USA 83:9065–9069

    Article  PubMed  CAS  Google Scholar 

  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51:975–985

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1989) Transgenic mice as probes into complex systems. Science 246:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • Hasty P, Ramirez-Solis R, Krumlauf R, Bradley A (1991a) Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 350:243–246

    Article  PubMed  CAS  Google Scholar 

  • Hasty P, Rivera-Perez J, Bradley A (1991b) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11:5586–5591

    PubMed  CAS  Google Scholar 

  • Hide T, Hatakeyama J, Kimura-Yoshida C, Tian E, Takeda N, Ushio Y, Shiroishi T, Aizawa S, Matsuo I (2002) Genetic modifiers of otocephalic phenotypes in Otx2 heterozygous mutant mice. Development 129:4347–4357

    PubMed  CAS  Google Scholar 

  • Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295

    Article  PubMed  CAS  Google Scholar 

  • Huang LS, Voyiaziakis E, Markenson DF, Sokol KA, Hayek T, Breslow JL (1995) apo B gene knockout in mice results in embryonic lethality in homozygotes and neural tube defects, male infertility, and reduced HDL cholesterol ester and apo A-I transport rates in heterozygotes. J Clin Invest 96:2152–2161

    Article  PubMed  CAS  Google Scholar 

  • Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286

    Article  PubMed  CAS  Google Scholar 

  • Hung KE, Faca V, Song K, Sarracino DA, Richard LG, Krastins B, Forrester S, Porter A, Kunin A, Mahmood U, Haab BB, Hanash SM, Kucherlapati R (2009) Comprehensive proteome analysis of an Apc mouse model uncovers proteins associated with intestinal tumorigenesis. Cancer Prev Res 2:224–233

    Article  CAS  Google Scholar 

  • Jackson-Grusby L (2002) Modeling cancer in mice. Oncogene 21:5504–5514

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci USA 73:1260–1264

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R (1988) Transgenic animals. Science 240:1468–1474

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA 71:1250–1254

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Anderson MS, Bronson R, Mathis D, Benoist C (2005) Modifier loci condition autoimmunity provoked by Aire deficiency. J Exp Med 202:805–815

    Article  PubMed  CAS  Google Scholar 

  • Johnson RS, Sheng M, Greenberg ME, Kolodner RD, Papaioannou VE, Spiegelman BM (1989) Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science 245:1234–1236

    Article  PubMed  CAS  Google Scholar 

  • Jonkers J, Berns A (2002) Conditional mouse models of sporadic cancer. Nat Rev Cancer 2:251–265

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Rajewsky K, Radbruch A (1993) Shutdown of class switch recombination by deletion of a switch region control element. Science 259:984–987

    Article  PubMed  CAS  Google Scholar 

  • Kallapur S, Ormsby I, Doetschman T (1999) Strain dependency of TGFbeta1 function during embryogenesis. Mol Reprod Dev 52:341–349

    Article  PubMed  CAS  Google Scholar 

  • Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, First NL, Maeda N, Smithies O (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci USA 86:8927–8931

    Article  PubMed  CAS  Google Scholar 

  • Koller BH, Smithies O (1992) Altering genes in animals by gene targeting. Annu Rev Immunol 10:705–730

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    Article  PubMed  CAS  Google Scholar 

  • Lamb BT, Sisodia SS, Lawler AM, Slunt HH, Kitt CA, Kearns WG, Pearson PL, Price DL, Gearhart JD (1993) Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nat Genet 5:22–30

    Article  PubMed  CAS  Google Scholar 

  • Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352

    Article  PubMed  CAS  Google Scholar 

  • Mansour SL (1990) Gene targeting in murine embryonic stem cells: introduction of specific alterations into the mammalian genome. Genet Anal Tech Appl 7:219–227

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  • McLin JP, Steward O (2006) Comparison of seizure phenotype and neurodegeneration induced by systemic kainic acid in inbred, outbred, and hybrid mouse strains. Eur J Neurosci 24:2191–2202

    Article  PubMed  Google Scholar 

  • Moens CB, Auerback AB, Conlon RA, Joyner AL, Rossant J (1992) A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Develop 6:691–704

    Google Scholar 

  • Moll UM, Slade N (2004) p63 and p73: roles in development and tumor formation. Mol Cancer Res 2:371–386

    PubMed  CAS  Google Scholar 

  • Muyrers JP, Zhang Y, Stewart AF (2001) Techniques: Recombinogenic engineering – new options for cloning and manipulating DNA. Trends Biochem Sci 26:325–331

    Article  PubMed  CAS  Google Scholar 

  • Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27:1555–1557

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou VE, McBurney MW, Gardner RL, Evans MJ (1975) Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258:70–73

    Article  PubMed  CAS  Google Scholar 

  • Pham CT, MacIvor DM, Hug BA, Heusel JW, Ley TJ (1996) Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci USA 93:13090–13095

    Article  PubMed  CAS  Google Scholar 

  • Rajewsky K, Gu H, Kuhn R, Betz UA, Muller W, Roes J, Schwenk F (1996) Conditional gene targeting. J Clin Invest 98:600–603

    Article  PubMed  CAS  Google Scholar 

  • Robertson E, Bradley A, Kuehn M, Evans M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448

    Article  PubMed  CAS  Google Scholar 

  • Sanford LP, Kallapur S, Ormsby I, Doetschman T (2001) Influence of genetic background on knockout mouse phenotypes. Methods Mol Biol 158:217–225

    PubMed  CAS  Google Scholar 

  • Seidl KJ, Bottaro A, Vo A, Zhang J, Davidson L, Alt FW (1998) An expressed neo(r) cassette provides required functions of the 1gamma2b exon for class switching. Int Immunol 10:1683–1692

    Article  PubMed  CAS  Google Scholar 

  • Shaw AT, Kirsch DG, Jacks T (2005) Future of early detection of lung cancer: the role of mouse models. Clin Cancer Res 11:4999s–5003s

    Article  PubMed  CAS  Google Scholar 

  • Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27

    Article  PubMed  CAS  Google Scholar 

  • Stevens LC (1960) Embryonic potency of embryoid bodies derived from a transplantable testicular teratoma of the mouse. Dev Biol 2:285–297

    Article  PubMed  CAS  Google Scholar 

  • Stevens LC, Little CC (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci USA 40:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Storb U (2001) Insertion of phosphoglycerine kinase (PGK)-neo 5′ of Jlambda1 dramatically enhances VJlambda1 rearrangement. J Exp Med 193:699–712

    Article  PubMed  CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  PubMed  CAS  Google Scholar 

  • Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW (1989) Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56:313–321

    Article  PubMed  CAS  Google Scholar 

  • Torres RM, Kühn R (1997) Laboratory protocols for conditional gene targeting. Oxford University Press, Oxford

    Google Scholar 

  • Tuveson DA, Jacks T (2002) Technologically advanced cancer modeling in mice. Curr Opin Genet Dev 12:105–110

    Article  PubMed  CAS  Google Scholar 

  • Valancius V, Smithies O (1991) Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol Cell Biol 11:1402–1408

    PubMed  CAS  Google Scholar 

  • van Deursen J, Wieringa B (1992) Targeting of the creatine kinase M gene in embryonic stem cells using isogenic and nonisogenic vectors. Nucleic Acids Res 20:3815–3820

    Article  PubMed  Google Scholar 

  • Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108:135–144

    Article  PubMed  Google Scholar 

  • Vazquez JC, Nogues C, Rucker EB, Piedrahita JA (1998) Factors affecting the efficiency of introducing precise genetic changes in ES cells by homologous recombination: tag-and-exchange versus the Cre-loxp system. Transgenic Res 7:181–193

    Article  PubMed  CAS  Google Scholar 

  • Wagner TE, Hoppe PC, Jollick JD, Scholl DR, Hodinka RL, Gault JB (1981) Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their ­offspring. Proc Natl Acad Sci USA 78:6376–6380

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sarov M, Rientjes J, Fu J, Hollak H, Kranz H, Xie W, Stewart AF, Zhang Y (2006) An improved recombineering approach by adding RecA to lambda Red recombination. Mol Biotechnol 32:43–53

    Google Scholar 

  • Zhang H, Hasty P, Bradley A (1994) Targeting frequency for deletion vectors in embryonic stem cells. Mol Cell Biol 14:2404–2410

    PubMed  CAS  Google Scholar 

  • Zheng H, Wilson JH (1990) Gene targeting in normal and amplified cell lines. Nature 344:170–173

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Rowley DL, Mi QS, Sefcovic N, Matthes HW, Kieffer BL, Donovan DM (2001) Murine inter-strain polymorphisms alter gene targeting frequencies at the mu opioid receptor locus in embryonic stem cells. Mamm Genome 12:772–778

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Doetschman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Doetschman, T., Sanford, L.P. (2012). Overview of Designing Genetically Engineered Mouse (GEM) Models. In: Green, J., Ried, T. (eds) Genetically Engineered Mice for Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69805-2_1

Download citation

Publish with us

Policies and ethics