Skip to main content

Device Simulation of SWNT-FETs

  • Chapter
  • First Online:
Carbon Nanotube Electronics

Part of the book series: Integrated Circuits and Systems ((ICIR))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, “Carbon nanotube electronics,” Proceedings of the IEEE, vol. 91, pp. 1772–1784, Nov, 2003.

    Google Scholar 

  2. P. L. McEuen, M. S. Fuhrer, and H. K. Park, “Single-walled carbon nanotube electronics,” IEEE Transactions on Nanotechnology, vol. 1, pp. 78–85, Mar, 2002.

    Article  Google Scholar 

  3. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, Jun 17, 1993.

    Article  Google Scholar 

  4. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes. London: Imperial College Press, 1998.

    Book  Google Scholar 

  5. J. Appenzeller, Y. M. Lin, J. Knoch, Z. H. Chen, and P. Avouris, “Comparing carbon nanotube transistors – The ideal choice: A novel tunneling device design,” IEEE Transactions on Electron Devices, vol. 52, pp. 2568–2576, Dec, 2005.

    Article  Google Scholar 

  6. M. P. Anantram, “Current-carrying capacity of carbon nanotubes,” Physical Review B, vol. 62, pp. R4837–R4840, Aug 15, 2000.

    Article  Google Scholar 

  7. G. Pennington and N. Goldsman, “Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes,” Physical Review B, vol. 68, pp. 045426, Jul 15, 2003.

    Article  Google Scholar 

  8. D. L. John, L. C. Castro, J. Clifford, and D. L. Pulfrey, “Electrostatics of coaxial Schottky-barrier nanotube field-effect transistors,” IEEE Transactions on Nanotechnology, vol. 2, pp. 175–180, Sep, 2003.

    Article  Google Scholar 

  9. K. Alam and R. Lake, “Performance of 2 nm gate length carbon nanotube field-effect transistors with source/drain underlaps,” Applied Physics Letters, vol. 87, Aug 15, 2005.

    Google Scholar 

  10. G. Flori, G. Iannaccone, and G. Klimeck, “Performance of carbon nanotube field-effect transistors with doped source and drain extensions and arbitrary geometry,” IEDM Technical Digest, vol. 2005, p. 529, 2005.

    Google Scholar 

  11. T. S. Xia, L. F. Register, and S. K. Banerjee, “Quantum transport in carbon nanotube transistors: Complex band structure effects,” Journal of Applied Physics, vol. 95, pp. 1597–1599, FEB 1, 2004.

    Article  Google Scholar 

  12. Y. Q. Xue and M. A. Ratner, “Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit,” Physical Review B, vol. 70, Nov, 2004.

    Google Scholar 

  13. J. Guo, M. Lundstrom, and S. Datta, “Performance projections for ballistic carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 80, pp. 3192–3194, Apr 29, 2002.

    Article  Google Scholar 

  14. P. J. Burke, “AC performance of nanoelectronics: towards a ballistic THz nanotube transistor,” Solid-State Electronics, vol. 48, pp. 1981–1986, Oct–Nov, 2004.

    Article  Google Scholar 

  15. A. Verma, M. Z. Kauser, and P. P. Ruden, “Effects of radial breathing mode phonons on charge transport in semiconducting zigzag carbon nanotubes,” Applied Physics Letters, vol. 87, Sep 19, 2005.

    Google Scholar 

  16. V. Perebeinos, J. Tersoff, and P. Avouris, “Electron–phonon interaction and transport in semiconducting carbon nanotubes,” Physical Review Letters, vol. 94, p. 027402, Mar 4, 2005.

    Article  Google Scholar 

  17. S. Datta, Electronic transport in mesoscopic systems. Cambridge, UK: Cambridge University Press, 1995.

    Google Scholar 

  18. S. Datta, “Nanoscale device modeling: the Green's function method,” Superlattices and Microstructures, vol. 28, pp. 253–278, Oct, 2000.

    Article  Google Scholar 

  19. S. Datta, Quantum transport: atom to transistor. Cambridge, UK, New York: Cambridge University Press, 2005.

    MATH  Google Scholar 

  20. R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and multiband modeling of quantum electron transport through layered semiconductor devices,” Journal of Applied Physics, vol. 81, pp. 7845–7869, Jun 15, 1997.

    Article  Google Scholar 

  21. J. Guo, S. Koswatta, N. Neophytou, and M. Lundstrom, “Carbon nanotube field-effect transistors,” International Journal of High Speed Electronics and Systems, vol. in press, 2006.

    Google Scholar 

  22. D. Tomanek, S. G. Louie, H. J. Mamin, D. W. Abraham, R. E. Thomson, E. Ganz, and J. Clarke, “Theory and observation of highly asymmetric atomic-structure in scanning-tunneling-microscopy images of graphite,” Physical Review B, vol. 35, pp. 7790–7793, May 15, 1987.

    Article  Google Scholar 

  23. J. Cerda and F. Soria, “Accurate and transferable extended Huckel-type tight-binding parameters,” Physical Review B, vol. 61, pp. 7965–7971, Mar 15, 2000.

    Article  Google Scholar 

  24. X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, “Hybridization effects and metallicity in small radius carbon nanotubes,” Physical Review Letters, vol. 72, pp. 1878–1881, Mar 21, 1994.

    Article  Google Scholar 

  25. A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel, and R. Venugopal, “Two-dimensional quantum mechanical modeling of nanotransistors,” Journal of Applied Physics, vol. 91, pp. 2343–2354, Feb 15, 2002.

    Article  Google Scholar 

  26. J. Guo, S. Datta, M. Lundstrom, and M. P. Anantram, “Toward multi-scale modeling of carbon nanotube transistors,” The International Journal on Multiscale Computer Engineering, vol. 2, pp. 257–277, 2004.

    Article  Google Scholar 

  27. N. Neophytou, D. Kienle, E. Polizzi, and M. P. Anantram, “Influence of defects on nanotube transistor performance,” Applied Physics Letters, vol. 88, Jun 12, 2006.

    Google Scholar 

  28. Z. H. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, and P. Avouris, “The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors,” Nano Letters, vol. 5, pp. 1497–1502, Jul, 2005.

    Article  Google Scholar 

  29. A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M. Lundstrom, and H. J. Dai, “Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays,” Nano Letters, vol. 4, pp. 1319–1322, Jul, 2004.

    Article  Google Scholar 

  30. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, “Carbon nanotubes as Schottky barrier transistors,” Physical Review Letters, vol. 89, p. 106801, Sep 2, 2002.

    Article  Google Scholar 

  31. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, “Field-modulated carrier transport in carbon nanotube transistors,” Physical Review Letters, vol. 89, p. 126801, Sep 16, 2002.

    Article  Google Scholar 

  32. A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, and H. J. Dai, “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics,” Nano Letters, vol. 4, pp. 447–450, Mar, 2004.

    Article  Google Scholar 

  33. J. Chen, C. Klinke, A. Afzali, and P. Avouris, “Self-aligned carbon nanotube transistors with charge transfer doping,” Applied Physics Letters, vol. 86, p. 123108, Mar 21, 2005.

    Article  Google Scholar 

  34. Y. M. Lin, J. Appenzeller, and P. Avouris, “Novel carbon nantoube FET design with tunable polarity,” IEDM Technical Digest, San Francisco, CA, pp. 687–690, Dec, 2004.

    Google Scholar 

  35. M. Radosavljevic, S. Heinze, J. Tersoff, and P. Avouris, “Drain voltage scaling in carbon nanotube transistors,” Applied Physics Letters, vol. 83, pp. 2435–2437, Sep 22, 2003.

    Article  Google Scholar 

  36. J. Guo, S. Datta, and M. Lundstrom, “A numerical study of scaling issues for Schottky-Barrier carbon nanotube transistors,” IEEE Transactions on Electron Devices, vol. 51, pp. 172–177, Feb, 2004.

    Article  Google Scholar 

  37. J. Guo, J. Wang, E. Polizzi, S. Datta, and M. Lundstrom, “Electrostatics of nanowire transistors,” IEEE Transactions on Nanotechnology, vol. 2, pp. 329–334, Dec, 2003.

    Article  Google Scholar 

  38. Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, and P. Avouris, “An integrated logic circuit assembled on a single carbon nanotube,” Science, vol. 311, p. 1735, Mar 24, 2006.

    Article  Google Scholar 

  39. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, pp. 654–657, Aug 7, 2003.

    Article  Google Scholar 

  40. J. Guo and M. S. Lundstrom, “A computational study of thin-body, double-gate, Schottky barrier MOSFETs,” IEEE Transactions on Electron Devices, vol. 49, pp. 1897–1902, Nov, 2002.

    Article  Google Scholar 

  41. T. Durkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” Journal of Physics-Condensed Matter, vol. 16, pp. R553–R580, May 12, 2004.

    Article  Google Scholar 

  42. X. J. Zhou, J. Y. Park, S. M. Huang, J. Liu, and P. L. McEuen, “Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors,” Physical Review Letters, vol. 95, p. 146805, Sep 30, 2005.

    Article  Google Scholar 

  43. Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Physical Review Letters, vol. 84, pp. 2941–2944, Mar 27, 2000.

    Article  Google Scholar 

  44. J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, “Electron–phonon scattering in metallic single-walled carbon nanotubes,” Nano Letters, vol. 4, pp. 517–520, Mar, 2004.

    Article  Google Scholar 

  45. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. J. Dai, “High-field quasiballistic transport in short carbon nanotubes,” Physical Review Letters, vol. 92, p. 106804, Mar 12, 2004.

    Article  Google Scholar 

  46. J. Guo, “A quantum-mechanical treatment of phonon scattering in carbon nanotube transistors,” Journal of Applied Physics, vol. 98, p. 063519, Sep 15, 2005.

    Article  Google Scholar 

  47. J. Guo and M. Lundstrom, “Role of phonon scattering in carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 86, p. 193103, May 9, 2005.

    Article  Google Scholar 

  48. S. Koswatta, S. Hasan, M. Lundstrom, M. P. Anantram, and D. E. Nikonov, “Ballisticity of nanotube FETs: role of phonon energy and gate bias,” availabe at http://arxiv.org/cond-mat/0511723, 2005.

  49. S. O. Koswatta, M. S. Lundstrom, M. P. Anantram, and D. E. Nikonov, “Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 87, Dec 19, 2005.

    Google Scholar 

  50. A. Svizhenko and M. P. Anantram, “Role of scattering in nanotransistors,” IEEE Transactions on Electron Devices, vol. 50, pp. 1459–1466, Jun, 2003.

    Article  Google Scholar 

  51. M. S. Fuhrer, B. M. Kim, T. Durkop, T. Brintlinger, and E. Cobas, “High mobility semiconducting nanotubes for nanoelectronics.,” Abstracts of Papers of the American Chemical Society, vol. 227, pp. U266–U266, Mar 28, 2004.

    Google Scholar 

  52. J. Appenzeller and D. J. Frank, “Frequency dependent characterization of transport properties in carbon nanotube transistors,” Applied Physics Letters, vol. 84, pp. 1771–1773, Mar 8, 2004.

    Article  Google Scholar 

  53. D. J. Frank and J. Appenzeller, “High-frequency response in carbon nanotube field-effect transistors,” IEEE Electron Device Letters, vol. 25, pp. 34–36, Jan, 2004.

    Article  Google Scholar 

  54. S. D. Li, Z. Yu, S. F. Yen, W. C. Tang, and P. J. Burke, “Carbon nanotube transistor operation at 2.6 GHz,” Nano Letters, vol. 4, pp. 753–756, Apr, 2004.

    Article  Google Scholar 

  55. X. Huo, M. Zhang, P. C. H. Chan, Q. Liang, and Z. K. Tang, “High-frequency S parameters characterization of back-gate carbon nantoube field-effect transistors,” IEDM Technical Digest, San Francisco, CA, pp. 691–694, Dec, 2004.

    Google Scholar 

  56. S. Rosenblatt, H. Lin, V. Sazonova, S. Tiwari, and P. L. McEuen, “Mixing at 50 GHz using a single-walled carbon nanotube transistor,” Applied Physics Letters, vol. 87, p. 153111, 2005.

    Article  Google Scholar 

  57. L. C. Castro, D. L. John, D. L. Pulfrey, M. Pourfath, A. Gehring, and K. H., “Method for predicting fT for carbon nanotube FETs,” IEEE Transactions on Nanotechnology, vol. 4, pp. 699–704, 2005.

    Article  Google Scholar 

  58. S. Hasan, S. Salahuddin, M. Vaidyanathan, and A. A. Alam, “High-frequency performance projections for ballistic carbon-nanotube transistors,” IEEE Transactions on Nanotechnology, vol. 5, pp. 14–22, Jan, 2006.

    Article  Google Scholar 

  59. J. Guo, S. Hasan, A. Javey, G. Bosman, and M. Lundstrom, “Assessment of high-frequency performance potential of carbon nanotube transistors,” IEEE Transactions on Nanotechnology, vol. 4, pp. 715–721, Nov, 2005.

    Article  Google Scholar 

  60. Y. Yoon, Y. Ouyang, and J. Guo, “Effect of phonon scattering on intrisic delay and cut-off frequency of CNTFETs,” in press, IEEE Transactions on Electron Devices, 2006.

    Google Scholar 

  61. A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, “Theory of ballistic nanotransistors,” IEEE Transactions on Electron Devices, vol. 50, pp. 1853–1864, Sep, 2003.

    Article  Google Scholar 

  62. J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET,” Science, vol. 300, pp. 783–786, May 2, 2003.

    Article  Google Scholar 

  63. M. Freitag, J. Chen, J. Tersoff, J. C. Tsang, Q. Fu, J. Liu, and P. Avouris, “Mobile ambipolar domain in carbon-nanotube infrared emitters,” Physical Review Letters, vol. 93, p. 076803, Aug 13, 2004.

    Article  Google Scholar 

  64. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and P. H. Avouris, “Photoconductivity of single carbon nanotubes,” Nano Letters, vol. 3, pp. 1067–1071, Aug, 2003.

    Article  Google Scholar 

  65. M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Letters, vol. 4, pp. 1063–1066, Jun, 2004.

    Article  Google Scholar 

  66. M. S. Arnold, J. E. Sharping, S. I. Stupp, P. Kumar, and M. C. Hersam, “Band gap photobleaching in isolated single-walled carbon nanotubes,” Nano Letters, vol. 3, pp. 1549–1554, Nov, 2003.

    Article  Google Scholar 

  67. F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Physical Review Letters, vol. 92, p. 177401, Apr 30, 2004.

    Article  Google Scholar 

  68. Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science, vol. 305, pp. 1273–1276, Aug 27, 2004.

    Article  Google Scholar 

  69. S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore, M. S. Strano, R. H. Hauge, R. E. Smalley, and X. Wei, “Optical signatures of the Aharonov–Bohm phase in single-walled carbon nanotubes,” Science, vol. 304, pp. 1129–1131, May 21, 2004.

    Article  Google Scholar 

  70. J. Guo, M. A. Alam, and Y. Yoon, “Theoretical investigation on photoconductivity of single intrinsic carbon nanotubes,” Applied Physics Letters, vol. 88, p. 133111, Mar 27, 2006.

    Article  Google Scholar 

  71. V. Perebeinos, J. Tersoff, and P. Avouris, “Scaling of excitons in carbon nanotubes,” Physical Review Letters, vol. 92, p. 257402, Jun 25, 2004.

    Article  Google Scholar 

  72. D. A. Stewart and F. Leonard, “Photocurrents in nanotube junctions,” Physical Review Letters, vol. 93, p. 107401, Sep 3, 2004.

    Article  Google Scholar 

  73. V. Perebeinos, J. Tersoff, and P. Avouris, “Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes,” Physical Review Letters, vol. 94, Jan 21, 2005.

    Google Scholar 

  74. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, “Nanotube molecular wires as chemical sensors,” Science, vol. 287, pp. 622–625, Jan 28, 2000.

    Article  Google Scholar 

  75. R. Chen, Y. Zhang, D. Wang, and H. Dai, “Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization,” Journal of the American Chemical Society, vol. 123, pp. 3838–3839, 2001.

    Article  Google Scholar 

  76. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon nanotube single-electron transistors at room temperature,” Science, vol. 293, pp. 76–79, Jul 6, 2001.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their collaborators, A. Javey, H. Dai, S. Datta, M. Alam, M. P. Anantram, S. Hasan, S. Koswatta, N. Neophytou, Y. Yoon, and Y. Ouyang, who contributed to the work described here.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guo, J., Lundstrom, M. (2009). Device Simulation of SWNT-FETs. In: Kong, J., Javey, A. (eds) Carbon Nanotube Electronics. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69285-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69285-2_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36833-7

  • Online ISBN: 978-0-387-69285-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics