Skip to main content

Immunotherapy of AML

  • Chapter
  • First Online:
Acute Myelogenous Leukemia

Part of the book series: Cancer Treatment and Research ((CTAR,volume 145))

Abstract

The applications of chemotherapy for the treatment of AML have been unchanged over the past three decades, with only 30% of patients demonstrating disease-free survival (DFS) [118]. Despite achieving CR following induction chemotherapy, the majority of patients relapse and succumb to their disease [6]. In view of the limitations encountered by cytarabine/anthracycline based regimes, attention has shifted to immunotherapy as a means to treat AML and provide significant long-term DFS. This chapter will discuss the role of the immune system and recent advances in immunotherapy for the treatment of AML, focusing on cellular and non-cellular approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adida C, Haioun C, Gaulard P, et al. Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood. 2000;96:1921–1925.

    CAS  PubMed  Google Scholar 

  2. Alyea EP, Soiffer RJ, Canning C, et al. Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood. 1998;91:3671–3680.

    CAS  PubMed  Google Scholar 

  3. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    Article  CAS  PubMed  Google Scholar 

  4. Barnes DW, Loutit JF. Treatment of murine leukaemia with x-rays and homologous bone marrow. II. Br J Haematol. 1957;3:241–252.

    Article  CAS  PubMed  Google Scholar 

  5. Bellantuono I, Gao L, Parry S, et al. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood. 2002;100:3835–3837.

    Article  CAS  PubMed  Google Scholar 

  6. Bennett JM, Young ML, Andersen JW, et al. Long-term survival in acute myeloid leukemia: the Eastern Cooperative Oncology Group experience. Cancer. 1997;80:2205–2209.

    Article  CAS  PubMed  Google Scholar 

  7. Blaise D, Attal M, Pico JL, et al. The use of a sequential high dose recombinant interleukin 2 regimen after autologous bone marrow transplantation does not improve the disease free survival of patients with acute leukemia transplanted in first complete remission. Leuk Lymphoma. 1997;25:469–478.

    CAS  PubMed  Google Scholar 

  8. Blaise D, Attal M, Reiffers J, et al. Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur Cytokine Netw. 2000;11:91–98.

    CAS  PubMed  Google Scholar 

  9. Borden EC, Hogan TF, Voelkel JG. Comparative antiproliferative activity in vitro of natural interferons alpha and beta for diploid and transformed human cells. Cancer Res. 1982;42:4948–4953.

    CAS  PubMed  Google Scholar 

  10. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89:3503–3521.

    CAS  PubMed  Google Scholar 

  11. Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE. The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res. 2006;35:263–278.

    Article  CAS  PubMed  Google Scholar 

  12. Boyer MW, Vallera DA, Taylor PA, et al. The role of B7 costimulation by murine acute myeloid leukemia in the generation and function of a CD8+ T-cell line with potent in vivo graft-versus-leukemia properties. Blood. 1997;89:3477–3485.

    CAS  PubMed  Google Scholar 

  13. Braud VM, Allan DS, O'Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391:795–799.

    Article  CAS  PubMed  Google Scholar 

  14. Brossart P, Schneider A, Dill P, et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res. 2001;61:6846–6850.

    CAS  PubMed  Google Scholar 

  15. Brouwer E, Stegeman CA, Huitema MG, Limburg PC, Kallenberg CG. T cell reactivity to proteinase 3 and myeloperoxidase in patients with Wegener's granulomatosis (WG). Clin Exp Immunol. 1994;98:448–453.

    Article  CAS  PubMed  Google Scholar 

  16. Buggins AG, Lea N, Gaken J, et al. Effect of costimulation and the microenvironment on antigen presentation by leukemic cells. Blood. 1999;94:3479–3490.

    CAS  PubMed  Google Scholar 

  17. Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, Hirst WJ. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol. 2001;167:6021–6030.

    CAS  PubMed  Google Scholar 

  18. Burnett AK, Wheatley K, Goldstone AH, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br J Haematol. 2002;118:385–400.

    Article  PubMed  Google Scholar 

  19. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100:4325–4336.

    Article  CAS  PubMed  Google Scholar 

  20. Cassileth PA, Harrington DP, Appelbaum FR, et al. Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission [see comment]. N Engl J Med 1649;339:1649–1656.

    Google Scholar 

  21. Chan L, Hardwick NR, Guinn BA, et al. An immune edited tumour versus a tumour edited immune system: Prospects for immune therapy of acute myeloid leukaemia. Cancer Immunol Immunother. 2006;55:1017–1024.

    Article  CAS  PubMed  Google Scholar 

  22. Chomienne C, Ballerini P, Balitrand N, et al. The retinoic acid receptor alpha gene is rearranged in retinoic acid-sensitive promyelocytic leukemias. Leukemia. 1990;4:802–807.

    CAS  PubMed  Google Scholar 

  23. Claret EJ, Alyea EP, Orsini E, et al. Characterization of T cell repertoire in patients with graft-versus-leukemia after donor lymphocyte infusion. J Clin Invest. 1997;100:855–866.

    Article  CAS  PubMed  Google Scholar 

  24. Collins RH, Jr, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15:433–444.

    PubMed  Google Scholar 

  25. Datta AR, Barrett AJ, Jiang YZ, et al. Distinct T cell populations distinguish chronic myeloid leukaemia cells from lymphocytes in the same individual: a model for separating GVHD from GVL reactions. Bone Marrow Transplant. 1994;14:517–524.

    CAS  PubMed  Google Scholar 

  26. Dengler R, Munstermann U, al-Batran S, et al. Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br J Haematol. 1995;89:250–257.

    Article  CAS  PubMed  Google Scholar 

  27. Dickinson AM, Wang XN, Sviland L, et al. In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med. 2002;8:410–414.

    Article  CAS  PubMed  Google Scholar 

  28. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998.

    Article  CAS  PubMed  Google Scholar 

  29. Entwistle J, Zhang S, Yang B, et al. Characterization of the murine gene encoding the hyaluronan receptor RHAMM. Gene 1995;163:233–238.

    Article  CAS  PubMed  Google Scholar 

  30. Exley M, Garcia J, Wilson SB, et al. CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes. Immunology. 2000;100:37–47.

    Article  CAS  PubMed  Google Scholar 

  31. Fais F, Morabito F, Stelitano C, et al. CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates alpha-galactosylceramide presentation to natural killer T lymphocytes. Int J Cancer. 2004;109:402–411.

    Article  CAS  PubMed  Google Scholar 

  32. Falkenburg JH, van de Corput L, Marijt EW, Willemze R. Minor histocompatibility antigens in human stem cell transplantation. Exp Hematol 2003;31:743–751.

    Article  CAS  PubMed  Google Scholar 

  33. Ferrara JL, Deeg HJ. Graft-versus-host disease. N Engl J Med. 1991;324:667–674.

    Article  CAS  PubMed  Google Scholar 

  34. Fowler DH, Breglio J, Nagel G, Eckhaus MA, Gress RE. Allospecific CD8+ Tc1 and Tc2 populations in graft-versus-leukemia effect and graft-versus-host disease. J Immunol. 1996;157:4811–4821.

    CAS  PubMed  Google Scholar 

  35. Franssen CF, Stegeman CA, Kallenberg CG, et al. Antiproteinase 3- and antimyeloperoxidase-associated vasculitis. Kidney Int. 2000;57:2195–2206.

    Article  CAS  PubMed  Google Scholar 

  36. Fujii S, Shimizu K, Kronenberg M, Steinman RM. Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol. 2002;3:867–874.

    Article  CAS  PubMed  Google Scholar 

  37. Gaiger A, Reese V, Disis ML, Cheever MA. Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. Blood. 2000;96:1480–1489.

    CAS  PubMed  Google Scholar 

  38. Gale RP, Horowitz MM, Ash RC, et al. Identical-twin bone marrow transplants for leukemia. Ann Intern Med. 1994;120:646–652.

    CAS  PubMed  Google Scholar 

  39. Ganser A, Heil G, Seipelt G, et al. Intensive chemotherapy with idarubicin, ara-C, etoposide, and m-AMSA followed by immunotherapy with interleukin-2 for myelodysplastic syndromes and high-risk Acute Myeloid Leukemia (AML). Ann Hematol. 2000;79:30–35.

    Article  CAS  PubMed  Google Scholar 

  40. Giaccone G, Punt CJ, Ando Y, et al. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res. 2002;8:3702–3709.

    CAS  PubMed  Google Scholar 

  41. Giralt S, Hester J, Huh Y, et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood. 1995;86:4337–4343.

    CAS  PubMed  Google Scholar 

  42. Giralt SA, Champlin RE. Leukemia relapse after allogeneic bone marrow transplantation: a review. Blood. 1994;84:3603–3612.

    CAS  PubMed  Google Scholar 

  43. Giralt SA, Kolb HJ. Donor lymphocyte infusions. Curr Opin Oncol. 1996;8:96–102.

    Article  CAS  PubMed  Google Scholar 

  44. Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG. NKT cells: facts, functions and fallacies. Immunol Today. 2000;21:573–583.

    Article  CAS  PubMed  Google Scholar 

  45. Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, Clark RE. Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98:1302–1311.

    Article  CAS  PubMed  Google Scholar 

  46. Greiner J, GiannopoulosK, Li L, et al. RHAMM/CD168-R3 Peptide vaccination of HLA-A2+ patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and multiple myeloma (MM). American Society of Hematology Annual Meeting, 2005;106. Abstract 2781.

    Google Scholar 

  47. Greiner J, Li L, Ringhoffer M, Barth TF, et al. Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood. 2005;106:938–945.

    Article  CAS  PubMed  Google Scholar 

  48. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood. 1998;92:2322–2333.

    CAS  PubMed  Google Scholar 

  49. Gutterman JU, Hersh EM, Rodriguez V, et al. Chemoimmunotherapy of adult acute leukaemia. Prolongation of remission in myeloblastic leukaemia with B.C.G. Lancet. 1405;2:1405–1409.

    Google Scholar 

  50. Hall CL, Yang B, Yang X, et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell. 1995;82:19–26.

    Google Scholar 

  51. Hambach L, Nijmeijer BA, Aghai Z, et al. Human cytotoxic T lymphocytes specific for a single minor histocompatibility antigen HA-1 are effective against human lymphoblastic leukaemia in NOD/scid mice. Leukemia 2006;20:371–374.

    Article  CAS  PubMed  Google Scholar 

  52. Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood. 1997;90:3245–3287.

    CAS  PubMed  Google Scholar 

  53. Hayakawa Y, Godfrey DI, Smyth MJ. Alpha-galactosylceramide: potential immunomodulatory activity and future application. Curr Med Chem. 2004;11:241–252.

    Article  CAS  PubMed  Google Scholar 

  54. Hayakawa Y, Rovero S, Forni G, Smyth MJ. Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA. 2003;100:9464–9469.

    Article  CAS  PubMed  Google Scholar 

  55. Herberman RB, Ortaldo JR. Natural killer cells: their roles in defenses against disease. Science. 1981;214:24–30.

    Article  CAS  PubMed  Google Scholar 

  56. Heslop HE, Stevenson FK, Molldrem JJ. Immunotherapy of hematologic malignancy. Hematol Am Soc Hematol Educ Program. 2003;331–349.

    Google Scholar 

  57. Hewitt SM, Hamada S, McDonnell TJ, Rauscher FJ, Saunders GF. Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms' tumor suppressor gene WT1. Cancer Res. 1995;55:5386–5389.

    CAS  PubMed  Google Scholar 

  58. Hiesse C, Larue JR, Kriaa F, et al. Incidence and type of malignancies occurring after renal transplantation in conventionally and in cyclosporine-treated recipients: single-center analysis of a 20-year period in 1600 patients. Transplant Proc. 1995;27:2450–2451.

    CAS  PubMed  Google Scholar 

  59. Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–562.

    CAS  PubMed  Google Scholar 

  60. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 1795;356:1795–1799.

    Google Scholar 

  61. Ishikawa A, Motohashi S, Ishikawa E, et al. A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res. 1910;11:1910–1917.

    Google Scholar 

  62. Kaufmann SH, Steensma DP. On the TRAIL of a new therapy for leukemia. Leukemia. 2005;19:2195–2202.

    Article  CAS  PubMed  Google Scholar 

  63. Keating S, de Witte T, Suciu S, et al. The influence of HLA-matched sibling donor availability on treatment outcome for patients with AML: an analysis of the AML 8A study of the EORTC Leukaemia Cooperative Group and GIMEMA. European Organization for Research and Treatment of Cancer. Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto. Br J Haematol. 1998;102:1344–1353.

    Article  CAS  PubMed  Google Scholar 

  64. Keilholz U, Letsch A, Asemissen A, et al. Clinical and immune responses of WT1-peptide vaccination in patients with acute myeloid leukemia. ASCO Ann Meet Proc. 2006;24:2511.

    Google Scholar 

  65. Kell WJ, Burnett AK, Chopra R, et al. A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood. 2003;102:4277–4283.

    Article  CAS  PubMed  Google Scholar 

  66. Kolb HJ, Holler E. Adoptive immunotherapy with donor lymphocyte transfusions. Curr Opin Oncol. 1997;9:139–145.

    Article  CAS  PubMed  Google Scholar 

  67. Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86:2041–2050.

    CAS  PubMed  Google Scholar 

  68. Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–1452.

    Article  CAS  PubMed  Google Scholar 

  69. Lazetic S, Chang C, Houchins JP, Lanier LL, Phillips JH. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol. 1996;157:4741–4745.

    CAS  PubMed  Google Scholar 

  70. Lee JJ, Kook H, Park MS, et al. Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J Clin Apher. 2004;19:66–70.

    Article  PubMed  Google Scholar 

  71. Li Y, Li H, Wang MN, et al. Suppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood. 2004;104:1137–1144.

    Article  CAS  PubMed  Google Scholar 

  72. Lindmark A, Gullberg U, Osson I. Processing and intracellular transport of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937-modulation by brefeldin A, ammonium chloride, and monensin. J Leukoc Biol. 1994;55:50–57.

    CAS  PubMed  Google Scholar 

  73. Lokhorst HM, Schattenberg A, Cornelissen JJ, Thomas LL, Verdonck LF. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood. 1997;90:4206–4211.

    CAS  PubMed  Google Scholar 

  74. Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood. 1995;86:1261–1268.

    CAS  PubMed  Google Scholar 

  75. Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia. 2004;18:165–166.

    Article  CAS  PubMed  Google Scholar 

  76. Maraninchi D, Gluckman E, Blaise D, et al. Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukaemias. Lancet. 1987;2:175–178.

    Article  CAS  PubMed  Google Scholar 

  77. Maraninchi D, Vey N, Viens P, et al. A phase II study of interleukin-2 in 49 patients with relapsed or refractory acute leukemia. Leuk Lymphoma. 1998;31:343–349.

    CAS  PubMed  Google Scholar 

  78. Marijt E, Wafelman A, van der Hoorn M, et al. Phase I/II feasibility study evaluating the generation of leukemia-reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica. 2007;92:72–80.

    Article  PubMed  Google Scholar 

  79. Marijt WA, Heemskerk MH, Kloosterboer FM, et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA. 2003;100:2742–2747.

    Article  CAS  PubMed  Google Scholar 

  80. Marmont AM, Horowitz MM, Gale RP, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991;78:2120–2130.

    CAS  PubMed  Google Scholar 

  81. Mathe G, Amiel JL, Schwarzenberg L, et al. Successful allogenic bone marrow transplantation in man: chimerism, induced specific tolerance and possible anti-leukemic effects. Blood. 1965;25:179–196.

    CAS  PubMed  Google Scholar 

  82. Mathe G, Schwarzenberg L, Delgado M, De Vassal F. Active immunotherapy trials on acute lymphoid leukemia lymphosarcoma and acute myeloid leukemia. Eur J Cancer. 1977;13:445–455.

    CAS  PubMed  Google Scholar 

  83. Meloni G, Foa R, Vignetti M, et al. Interleukin-2 may induce prolonged remissions in advanced acute myelogenous leukemia. Blood. 1994;84:2158–2163.

    CAS  PubMed  Google Scholar 

  84. Meloni G, Vignetti M, Andrizzi C, Capria S, Foa R, Mandelli F. Interleukin-2 for the treatment of advanced acute myelogenous leukemia patients with limited disease: updated experience with 20 cases. Leuk Lymphoma. 1996;21:429–435.

    Article  CAS  PubMed  Google Scholar 

  85. Meloni G, Vignetti M, Pogliani E, et al. Interleukin-2 therapy in relapsed acute myelogenous leukemia. Cancer J Sci Am. 1997;3 (suppl 1):S43–47.

    PubMed  Google Scholar 

  86. Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia. 2003;17:1068–1077.

    Article  CAS  PubMed  Google Scholar 

  87. Miller JS. The biology of natural killer cells in cancer, infection, and pregnancy. Exp Hematol. 2001;29:1157–1168.

    Article  CAS  PubMed  Google Scholar 

  88. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–3057.

    Article  CAS  PubMed  Google Scholar 

  89. Miller JS, Tessmer-Tuck J, Pierson BA, et al. Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biol Blood Marrow Transplant. 1997;3:34–44.

    CAS  PubMed  Google Scholar 

  90. Molldrem JJ, Lee PP, Wang C, Champlin RE, Davis MM. A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res. 1999;59:2675–2681.

    CAS  PubMed  Google Scholar 

  91. Molldrem JJ, Lee PP, Wang C, et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6:1018–1023.

    Article  CAS  PubMed  Google Scholar 

  92. Mueller BU, Pizzo PA. Cancer in children with primary or secondary immunodeficiencies [see comment]. J Pediatr. 1995;126:1–10.

    Article  CAS  PubMed  Google Scholar 

  93. Mulford DA, Jurcic JG. Antibody-based treatment of acute myeloid leukaemia. Expert Opin Biol Ther. 2004;4:95–105.

    Article  CAS  PubMed  Google Scholar 

  94. Murphy WJ, Longo DL. The potential role of NK cells in the separation of graft-versus-tumor effects from graft-versus-host disease after allogeneic bone marrow transplantation. Immunol Rev. 1997;157:167–176.

    Article  CAS  PubMed  Google Scholar 

  95. Mutis T, Ghoreschi K, Schrama E, et al. Efficient induction of minor histocompatibility antigen HA-1-specific cytotoxic T-cells using dendritic cells retrovirally transduced with HA-1-coding cDNA. Biol Blood Marrow Transplant. 2002;8:412–419.

    Article  CAS  PubMed  Google Scholar 

  96. Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E. Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood. 1999;93:2336–2341.

    CAS  PubMed  Google Scholar 

  97. Nakagawa R, Motoki K, Ueno H, et al. Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res. 1998;58:1202–1207.

    CAS  PubMed  Google Scholar 

  98. Oka Y, Tsuboi A, Taguchi T, et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA. 2004;101:13885–13890.

    Article  CAS  PubMed  Google Scholar 

  99. Peiper SC, Ashmun RA, Look AT. Molecular cloning, expression, and chromosomal localization of a human gene encoding the CD33 myeloid differentiation antigen. Blood. 1988;72:314–321.

    CAS  PubMed  Google Scholar 

  100. Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol. 17:297–329.

    Google Scholar 

  101. Pulendran B, Lingappa J, Kennedy MK, et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol. 1997;159:2222–2231.

    CAS  PubMed  Google Scholar 

  102. Rao NV, Rao GV, Marshall BC, Hoidal JR. Biosynthesis and processing of proteinase 3 in U937 cells. Processing pathways are distinct from those of cathepsin G. J Biol Chem. 1996;271:2972–2978.

    Article  CAS  PubMed  Google Scholar 

  103. Reiffers J, Stoppa AM, Attal M, et al. Allogeneic vs autologous stem cell transplantation vs chemotherapy in patients with acute myeloid leukemia in first remission: the BGMT 87 study. Leukemia. 1996;10:1874–1882.

    CAS  PubMed  Google Scholar 

  104. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990;76:2421–2438.

    CAS  PubMed  Google Scholar 

  105. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100.

    Article  CAS  PubMed  Google Scholar 

  106. Schirrmann T, Pecher G. Specific targeting of CD33(+) leukemia cells by a natural killer cell line modified with a chimeric receptor. Leuk Res. 2005;29:301–306.

    Article  CAS  PubMed  Google Scholar 

  107. Schlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22:3741–3750.

    Article  CAS  PubMed  Google Scholar 

  108. Schulz TF, Boshoff CH, Weiss RA. HIV infection and neoplasia [see comment]. Lancet. 1996;348:587–591.

    Article  CAS  PubMed  Google Scholar 

  109. Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–334.

    Article  CAS  PubMed  Google Scholar 

  110. Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–1111.

    Article  CAS  PubMed  Google Scholar 

  111. Shimizu K, Hidaka M, Kadowaki N, et al. Evaluation of the function of human invariant NKT cells from cancer patients using alpha-galactosylceramide-loaded murine dendritic cells. J Immunol. 2006;177:3484–3492.

    CAS  PubMed  Google Scholar 

  112. Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A. Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia. 2005;19:2215–2222.

    Article  CAS  PubMed  Google Scholar 

  113. Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96:4075–4083.

    CAS  PubMed  Google Scholar 

  114. Spada FM, Borriello F, Sugita M, Watts GF, Koezuka Y, Porcelli SA. Low expression level but potent antigen presenting function of CD1d on monocyte lineage cells. Eur J Immunol. 2000;30:3468–3477.

    Article  CAS  PubMed  Google Scholar 

  115. Spisek R, Chevallier P, Morineau N, et al. Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res. 2002;62:2861–2868.

    CAS  PubMed  Google Scholar 

  116. Suciu S, Mandelli F, de Witte T, et al. Allogeneic compared with autologous stem cell transplantation in the treatment of patients younger than 46 years with acute myeloid leukemia (AML) in first complete remission (CR1): an intention-to-treat analysis of the EORTC/GIMEMAAML-10 trial. Blood. 2003;102:1232–1240.

    Article  CAS  PubMed  Google Scholar 

  117. Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia. 2007;21:66–71.

    Article  CAS  PubMed  Google Scholar 

  118. Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood. 2005;106:1154–1163.

    Article  CAS  PubMed  Google Scholar 

  119. Timonen T, Ortaldo JR, Herberman RB. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 1981;153:569–582.

    Article  CAS  PubMed  Google Scholar 

  120. Timonen T, Saksela E. Isolation of human NK cells by density gradient centrifugation. J Immunol Methods. 1980;36:285–291.

    Article  CAS  PubMed  Google Scholar 

  121. Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J Immunol. 1999;163:2387–2391.

    CAS  PubMed  Google Scholar 

  122. Tsimberidou AM, Giles FJ, Estey E, O'Brien S, Keating MJ, Kantarjian HM. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol. 2006;132:398–409.

    CAS  PubMed  Google Scholar 

  123. Tsuboi A, Oka Y, Ogawa H, et al. Constitutive expression of the Wilms' tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte-colony stimulating factor (G-CSF). Leuk Res. 1999;23:499–505.

    Article  CAS  PubMed  Google Scholar 

  124. Tsuji T, Yasukawa M, Matsuzaki J, et al. Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood. 2005;106:470–476.

    Article  CAS  PubMed  Google Scholar 

  125. Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7:753–763.

    Article  CAS  PubMed  Google Scholar 

  126. van Der Velden VH, te Marvelde JG, Hoogeveen PG, Bernstein ID, Houtsmuller AB, Berger MS, van Dongen JJ. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood. 2001;97:3197–3204.

    Article  Google Scholar 

  127. Wu CJ, Yang XF, McLaughlin S, et al. Detection of a potent humoral response associated with immune-induced remission of chronic myelogenous leukemia. J Clin Invest. 2000;106:705–714.

    Article  CAS  PubMed  Google Scholar 

  128. Xue SA, Gao L, Hart D, et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood. 2005;106:3062–3067.

    Article  CAS  PubMed  Google Scholar 

  129. Yanada M, Matsuo K, Emi N, Naoe T. Efficacy of allogeneic hematopoietic stem cell transplantation depends on cytogenetic risk for acute myeloid leukemia in first disease remission: a metaanalysis. Cancer. 2005;103:1652–1658.

    Article  PubMed  Google Scholar 

  130. Zeis M, Siegel S, Wagner A, et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol. 2003;170:5391–5397.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alatrash, G., Molldrem, J.J. (2009). Immunotherapy of AML. In: Nagarajan, L. (eds) Acute Myelogenous Leukemia. Cancer Treatment and Research, vol 145. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69259-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69259-3_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-69257-9

  • Online ISBN: 978-0-387-69259-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics