Skip to main content

Coregulators and the Regulation of Androgen Receptor Action in Prostate Cancer

  • Chapter
  • First Online:
Androgen Action in Prostate Cancer

Abstract

The importance of androgen receptors in primary prostate cancer is well established and some form of androgen blockade is the primary treatment for metastatic prostate cancer. There is increasing evidence that the androgen receptor (AR) continues to play a role in castration resistant disease despite the decrease in serum androgens. Thus, factors that modulate AR activity are potential therapeutic targets. AR is a transcription factor that regulates its target genes by recruiting a complex of coregulators with multiple enzymatic activities. These coregulators remodel chromatin, modify receptor, other coregulators, and general transcription factors, as well as affect splicing decisions. Here we summarize current evidence for changes in expression of coregulators in prostate cancer and their function in prostate cancer cell lines. Many of these coregulators have pleiotropic functions and modulate transcription factors other then AR. Thus, they may have both AR dependent and AR independent roles in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

references

  • Agoulnik, I. U., and N. L. Weigel. 2006. Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem 99: 362–72.

    PubMed  CAS  Google Scholar 

  • Agoulnik, I. U., W. C. Krause, W. E. Bingman, III, H. T. Rahman, M. Amrikachi, G. E. Ayala, and N. L. Weigel. 2003. Repressors of androgen and progesterone receptor action. J Biol Chem 278: 31136–48.

    PubMed  CAS  Google Scholar 

  • Agoulnik, I. U., A. Vaid, W. E. Bingman, III, H. Erdeme, A. Frolov, C. L. Smith, G. Ayala, M. M. Ittmann, and N. L. Weigel. 2005. Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 65: 7959–67.

    PubMed  CAS  Google Scholar 

  • Agoulnik, I. U., A. Vaid, M. Nakka, M. Alvarado, W. E. Bingman, III, H. Erdem, A. Frolov, C. L. Smith, G. E. Ayala, M. M. Ittmann, and N. L. Weigel. 2006. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 66: 10594–602.

    PubMed  CAS  Google Scholar 

  • Anzick, S. L., J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X. Y. Guan, G. Sauter, O. P. Kallioniemi, J. M. Trent, and P. S. Meltzer. 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277: 965–8.

    PubMed  CAS  Google Scholar 

  • Arnold, J. T., and J. T. Isaacs. 2002. Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell's fault. Endocr Relat Cancer 9: 61–73.

    PubMed  CAS  Google Scholar 

  • Ayala, G., D. Wang, G. Wulf, A. Frolov, R. Li, J. Sowadski, T. M. Wheeler, K. P. Lu, and L. Bao. 2003. The prolyl isomerase Pin1 is a novel prognostic marker in human prostate cancer. Cancer Res 63: 6244–51.

    PubMed  CAS  Google Scholar 

  • Barrett, A., S. Santangelo, K. Tan, S. Catchpole, K. Roberts, B. Spencer-Dene, D. Hall, A. Scibetta, J. Burchell, E. Verdin, P. Freemont, and J. Taylor-Papadimitriou. 2007. Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. Int J Cancer 121: 265–75.

    PubMed  CAS  Google Scholar 

  • Bawa-Khalfe, T., J. Cheng, Z. Wang, and E. T. Yeh. 2007. Induction of the SUMO-specific protease 1 transcription by the androgen receptor in prostate cancer cells. J Biol Chem 282: 37341–9.

    PubMed  CAS  Google Scholar 

  • Bevan, C. L., S. Hoare, F. Claessens, D. M. Heery, and M. G. Parker. 1999. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 19: 8383–92.

    PubMed  CAS  Google Scholar 

  • Bordone, L., and L. Guarente. 2005. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6: 298–305.

    PubMed  CAS  Google Scholar 

  • Burd, C. J., C. E. Petre, L. M. Morey, Y. Wang, M. P. Revelo, C. A. Haiman, S. Lu, C. M. Fenoglio-Preiser, J. Li, E. S. Knudsen, J. Wong, and K. E. Knudsen. 2006. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci USA 103: 2190–5.

    PubMed  CAS  Google Scholar 

  • Byvoet, P., G. R. Shepherd, J. M. Hardin, and B. J. Noland. 1972. The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys 148: 558–67.

    PubMed  CAS  Google Scholar 

  • Callewaert, L., G. Verrijdt, A. Haelens, and F. Claessens. 2004. Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements. Mol Endocrinol 18: 1438–49.

    PubMed  CAS  Google Scholar 

  • Castoria, G., M. Lombardi, M. V. Barone, A. Bilancio, M. Di Domenico, D. Bottero, F. Vitale, A. Migliaccio, and F. Auricchio. 2003. Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J Cell Biol 161: 547–56.

    PubMed  CAS  Google Scholar 

  • Castoria, G., M. Lombardi, M. V. Barone, A. Bilancio, M. Di Domenico, A. De Falco, L. Varricchio, D. Bottero, M. Nanayakkara, A. Migliaccio, and F. Auricchio. 2004. Rapid signalling pathway activation by androgens in epithelial and stromal cells. Steroids 69: 517–22.

    PubMed  CAS  Google Scholar 

  • Chen, D., H. Ma, H. Hong, S. S. Koh, S. M. Huang, B. T. Schurter, D. W. Aswad, and M. R. Stallcup. 1999. Regulation of transcription by a protein methyltransferase. Science 284: 2174–7.

    PubMed  CAS  Google Scholar 

  • Chen, C. D., D. S. Welsbie, C. Tran, S. H. Baek, R. Chen, R. Vessella, M. G. Rosenfeld, and C. L. Sawyers. 2004a. Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–9.

    Google Scholar 

  • Chen, G., N. Shukeir, A. Potti, K. Sircar, A. Aprikian, D. Goltzman, and S. A. Rabbani. 2004b. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101: 1345–56.

    CAS  Google Scholar 

  • Chen, S. Y., G. Wulf, X. Z. Zhou, M. A. Rubin, K. P. Lu, and S. P. Balk. 2006. Activation of beta-catenin signaling in prostate cancer by peptidyl-prolyl isomerase Pin1-mediated abrogation of the androgen receptor-beta-catenin interaction. Mol Cell Biol 26: 929–39.

    PubMed  CAS  Google Scholar 

  • Cheng, J., D. Wang, Z. Wang, and E. T. Yeh. 2004. SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol Cell Biol 24: 6021–8.

    PubMed  CAS  Google Scholar 

  • Cheng, J., T. Bawa, P. Lee, L. Gong, and E. T. Yeh. 2006. Role of desumoylation in the development of prostate cancer. Neoplasia 8: 667–76.

    PubMed  CAS  Google Scholar 

  • Cohen, H. Y., C. Miller, K. J. Bitterman, N. R. Wall, B. Hekking, B. Kessler, K. T. Howitz, M. Gorospe, R. de Cabo, and D. A. Sinclair. 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305: 390–2.

    PubMed  CAS  Google Scholar 

  • Comstock, C. E., M. P. Revelo, C. R. Buncher, and K. E. Knudsen. 2007. Impact of differential cyclin D1 expression and localisation in prostate cancer. Br J Cancer 96: 970–9.

    PubMed  CAS  Google Scholar 

  • Culig, Z., A. Hobisch, M. V. Cronauer, C. Radmayr, J. Trapman, A. Hittmair, G. Bartsch, and H. Klocker. 1994. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54: 5474–8.

    PubMed  CAS  Google Scholar 

  • Daniel, J. A., M. G. Pray-Grant, and P. A. Grant. 2005. Effector proteins for methylated histones: an expanding family. Cell Cycle 4: 919–26.

    PubMed  CAS  Google Scholar 

  • David, A., N. Mabjeesh, I. Azar, S. Biton, S. Engel, J. Bernstein, J. Romano, Y. Avidor, T. Waks, Z. Eshhar, S. Z. Langer, B. Lifschitz-Mercer, H. Matzkin, G. Rotman, A. Toporik, K. Savitsky, and L. Mintz. 2002. Unusual alternative splicing within the human kallikrein genes KLK2 and KLK3 gives rise to novel prostate-specific proteins. J Biol Chem 277: 18084–90.

    PubMed  CAS  Google Scholar 

  • Debes, J. D., L. J. Schmidt, H. Huang, and D. J. Tindall. 2002. p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62: 5632–6.

    PubMed  CAS  Google Scholar 

  • Desai, S. J., A. H. Ma, C. G. Tepper, H. W. Chen, and H. J. Kung. 2006. Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications. Cancer Res 66: 10449–59.

    PubMed  CAS  Google Scholar 

  • Dong, X., J. Sweet, J. R. Challis, T. Brown, and S. J. Lye. 2007. Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb. Mol Cell Biol 27: 4863–75.

    PubMed  CAS  Google Scholar 

  • Fu, M., M. Rao, C. Wang, T. Sakamaki, J. Wang, D. Di Vizio, X. Zhang, C. Albanese, S. Balk, C. Chang, S. Fan, E. Rosen, J. J. Palvimo, O. A. Janne, S. Muratoglu, M. L. Avantaggiati, and R. G. Pestell. 2003. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 23: 8563–75.

    PubMed  CAS  Google Scholar 

  • Fu, M., C. Wang, X. Zhang, and R. G. Pestell. 2004. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem Pharmacol 68: 1199–208.

    PubMed  CAS  Google Scholar 

  • Fu, M., M. Liu, A. A. Sauve, X. Jiao, X. Zhang, X. Wu, M. J. Powell, T. Yang, W. Gu, M. L. Avantaggiati, N. Pattabiraman, T. G. Pestell, F. Wang, A. A. Quong, C. Wang, and R. G. Pestell. 2006. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 26: 8122–35.

    PubMed  CAS  Google Scholar 

  • Furuya, F., C. J. Guigon, L. Zhao, C. Lu, J. A. Hanover, and S. Y. Cheng. 2007. Nuclear receptor corepressor is a novel regulator of phosphatidylinositol 3-kinase signaling. Mol Cell Biol 27: 6116–26.

    PubMed  CAS  Google Scholar 

  • Gao, X., S. K. Mohsin, Z. Gatalica, G. Fu, P. Sharma, and Z. Nawaz. 2005. Decreased expression of e6-associated protein in breast and prostate carcinomas. Endocrinology 146: 1707–12.

    PubMed  CAS  Google Scholar 

  • Gioeli, D., J. W. Mandell, G. R. Petroni, H. F. Frierson, Jr., and M. J. Weber. 1999. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59: 279–84.

    PubMed  CAS  Google Scholar 

  • Girdwood, D., D. Bumpass, O. A. Vaughan, A. Thain, L. A. Anderson, A. W. Snowden, E. Garcia-Wilson, N. D. Perkins, and R. T. Hay. 2003. P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11: 1043–54.

    PubMed  CAS  Google Scholar 

  • Goldknopf, I. L., and H. Busch. 1977. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc Natl Acad Sci USA 74: 864–8.

    PubMed  CAS  Google Scholar 

  • Gong, J., J. Zhu, O. B. Goodman, Jr., R. G. Pestell, P. N. Schlegel, D. M. Nanus, and R. Shen. 2006. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells. Oncogene 25: 2011–21.

    PubMed  CAS  Google Scholar 

  • Gregoretti, I. V., Y. M. Lee, and H. V. Goodson. 2004. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338: 17–31.

    PubMed  CAS  Google Scholar 

  • Gregory, C. W., B. He, R. T. Johnson, O. H. Ford, J. L. Mohler, F. S. French, and E. M. Wilson. 2001. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61: 4315–9.

    PubMed  CAS  Google Scholar 

  • Gregory, C. W., X. Fei, L. A. Ponguta, B. He, H. M. Bill, F. S. French, and E. M. Wilson. 2004. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 279: 7119–30.

    PubMed  CAS  Google Scholar 

  • Guo, Z., B. Dai, T. Jiang, K. Xu, Y. Xie, O. Kim, I. Nesheiwat, X. Kong, J. Melamed, V. D. Handratta, V. C. Njar, A. M. Brodie, L. R. Yu, T. D. Veenstra, H. Chen, and Y. Qiu. 2006. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10: 309–19.

    PubMed  CAS  Google Scholar 

  • Haas, A. L. 2007. Structural insights into early events in the conjugation of ubiquitin and ubiquitin-like proteins. Mol Cell 27: 174–5.

    PubMed  CAS  Google Scholar 

  • Halkidou, K., V. J. Gnanapragasam, P. B. Mehta, I. R. Logan, M. E. Brady, S. Cook, H. Y. Leung, D. E. Neal, and C. N. Robson. 2003. Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22: 2466–77.

    PubMed  CAS  Google Scholar 

  • He, M. L., A. L. Jiang, P. J. Zhang, X. Y. Hu, Z. F. Liu, H. Q. Yuan, and J. Y. Zhang. 2005. Identification of androgen-responsive element ARE and Sp1 element in the maspin promoter. Chin J Physiol 48: 160–6.

    PubMed  CAS  Google Scholar 

  • Heemers, H. V., T. J. Sebo, J. D. Debes, K. M. Regan, K. A. Raclaw, L. M. Murphy, A. Hobisch, Z. Culig, and D. J. Tindall. 2007. Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67: 3422–30.

    PubMed  CAS  Google Scholar 

  • Huffman, D. M., W. E. Grizzle, M. M. Bamman, J. S. Kim, I. A. Eltoum, A. Elgavish, and T. R. Nagy. 2007. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67: 6612–8.

    PubMed  CAS  Google Scholar 

  • Kahl, P., L. Gullotti, L. C. Heukamp, S. Wolf, N. Friedrichs, R. Vorreuther, G. Solleder, P. J. Bastian, J. Ellinger, E. Metzger, R. Schule, and R. Buettner. 2006. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66: 11341–7.

    PubMed  CAS  Google Scholar 

  • Kalkhoven, E. 2004. CBP and p300: HATs for different occasions. Biochem Pharmacol 68: 1145–55.

    PubMed  CAS  Google Scholar 

  • Kang, Z., A. Pirskanen, O. A. Janne, and J. J. Palvimo. 2002. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J Biol Chem 277: 48366–71.

    PubMed  CAS  Google Scholar 

  • Karvonen, U., O. A. Janne, and J. J. Palvimo. 2006. Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res 312: 3165–83.

    PubMed  CAS  Google Scholar 

  • Khan, O. Y., G. Fu, A. Ismail, S. Srinivasan, X. Cao, Y. Tu, S. Lu, and Z. Nawaz. 2006. Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland. Mol Endocrinol 20: 544–59.

    PubMed  CAS  Google Scholar 

  • Kotaja, N., S. Aittomaki, O. Silvennoinen, J. J. Palvimo, and O. A. Janne. 2000. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 14: 1986–2000.

    PubMed  CAS  Google Scholar 

  • Kotaja, N., U. Karvonen, O. A. Janne, and J. J. Palvimo. 2002. The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem 277: 30283–8.

    PubMed  CAS  Google Scholar 

  • Lalli, E., K. Ohe, C. Hindelang, and P. Sassone-Corsi. 2000. Orphan receptor DAX-1 is a shuttling RNA binding protein associated with polyribosomes via mRNA. Mol Cell Biol 20: 4910–21.

    PubMed  CAS  Google Scholar 

  • Lee, D. Y., J. P. Northrop, M. H. Kuo, and M. R. Stallcup. 2006. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J Biol Chem 281: 8476–85.

    PubMed  CAS  Google Scholar 

  • Li, R., T. Wheeler, H. Dai, A. Frolov, T. Thompson, and G. Ayala. 2004. High level of androgen receptor is associated with aggressive clinicopathologic features and decreased biochemical recurrence-free survival in prostate: cancer patients treated with radical prostatectomy. Am J Surg Pathol 28: 928–34.

    PubMed  Google Scholar 

  • Lin, H. K., S. Altuwaijri, W. J. Lin, P. Y. Kan, L. L. Collins, and C. Chang. 2002. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J Biol Chem 277: 36570–6.

    PubMed  CAS  Google Scholar 

  • Lu, S., G. Jenster, and D. E. Epner. 2000. Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol 14: 753–60.

    PubMed  CAS  Google Scholar 

  • Ma, Z. Q., Z. Liu, E. S. Ngan, and S. Y. Tsai. 2001. Cdc25B functions as a novel coactivator for the steroid receptors. Mol Cell Biol 21: 8056–67.

    PubMed  CAS  Google Scholar 

  • Ma, A. H., L. Xia, S. J. Desai, D. L. Boucher, Y. Guan, H. M. Shih, X. B. Shi, R. W. deVere White, H. W. Chen, C. G. Tepper, and H. J. Kung. 2006. Male germ cell-associated kinase, a male-specific kinase regulated by androgen, is a coactivator of androgen receptor in prostate cancer cells. Cancer Res 66: 8439–47.

    PubMed  CAS  Google Scholar 

  • Mahajan, N. P., Y. Liu, S. Majumder, M. R. Warren, C. E. Parker, J. L. Mohler, H. S. Earp, and Y. E. Whang. 2007. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA 104: 8438–43.

    PubMed  CAS  Google Scholar 

  • Majumder, S., Y. Liu, O. H. Ford, III, J. L. Mohler, and Y. E. Whang. 2006. Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66: 1292–301.

    PubMed  CAS  Google Scholar 

  • Metzger, E., J. M. Muller, S. Ferrari, R. Buettner, and R. Schule. 2003. A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer. EMBO J 22: 270–80.

    PubMed  CAS  Google Scholar 

  • Metzger, E., M. Wissmann, N. Yin, J. M. Muller, R. Schneider, A. H. Peters, T. Gunther, R. Buettner, and R. Schule. 2005. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437: 436–9.

    PubMed  CAS  Google Scholar 

  • Metzger, E., N. Yin, M. Wissmann, N. Kunowska, K. Fischer, N. Friedrichs, D. Patnaik, J. M. Higgins, N. Potier, K. H. Scheidtmann, R. Buettner, and R. Schule. 2008. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10: 53–60.

    PubMed  CAS  Google Scholar 

  • Michan, S., and D. Sinclair. 2007. Sirtuins in mammals: insights into their biological function. Biochem J 404: 1–13.

    PubMed  CAS  Google Scholar 

  • Nair, S. S., Z. Guo, J. M. Mueller, S. Koochekpour, Y. Qiu, R. R. Tekmal, R. Schule, H. J. Kung, R. Kumar, and R. K. Vadlamudi. 2007. Proline-, glutamic acid-, and leucine-rich protein-1/modulator of nongenomic activity of estrogen receptor enhances androgen receptor functions through LIM-only coactivator, four-and-a-half LIM-only protein 2. Mol Endocrinol 21: 613–24.

    PubMed  CAS  Google Scholar 

  • Ngan, E. S., Y. Hashimoto, Z. Q. Ma, M. J. Tsai, and S. Y. Tsai. 2003. Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer. Oncogene 22: 734–9.

    PubMed  CAS  Google Scholar 

  • Olshavsky, N. A., E. M. Groh, C. E. Comstock, L. M. Morey, Y. Wang, M. P. Revelo, C. Burd, J. Meller, and K. E. Knudsen. 2008. Cyclin D3 action in androgen receptor regulation and prostate cancer. Oncogene 27: 3111–21.

    PubMed  CAS  Google Scholar 

  • Onate, S. A., S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–7.

    PubMed  CAS  Google Scholar 

  • Popov, V. M., C. Wang, L. A. Shirley, A. Rosenberg, S. Li, M. Nevalainen, M. Fu, and R. G. Pestell. 2007. The functional significance of nuclear receptor acetylation. Steroids 72: 221–30.

    PubMed  CAS  Google Scholar 

  • Poukka, H., P. Aarnisalo, U. Karvonen, J. J. Palvimo, and O. A. Janne. 1999. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J Biol Chem 274: 19441–6.

    PubMed  CAS  Google Scholar 

  • Poukka, H., U. Karvonen, O. A. Janne, and J. J. Palvimo. 2000. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA 97: 14145–50.

    PubMed  CAS  Google Scholar 

  • Rowan, B. G., N. L. Weigel, and B. W. O'Malley. 2000. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem 275: 4475–83.

    PubMed  CAS  Google Scholar 

  • Sathya, G., C. Y. Chang, D. Kazmin, C. E. Cook, and D. P. McDonnell. 2003. Pharmacological uncoupling of androgen receptor-mediated prostate cancer cell proliferation and prostate-specific antigen secretion. Cancer Res 63: 8029–36.

    PubMed  CAS  Google Scholar 

  • Scibetta, A. G., S. Santangelo, J. Coleman, D. Hall, T. Chaplin, J. Copier, S. Catchpole, J. Burchell, and J. Taylor-Papadimitriou. 2007. Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 27: 7220–35.

    PubMed  CAS  Google Scholar 

  • Seligson, D. B., S. Horvath, T. Shi, H. Yu, S. Tze, M. Grunstein, and S. K. Kurdistani. 2005. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435: 1262–6.

    PubMed  CAS  Google Scholar 

  • Shang, Y., M. Myers, and M. Brown. 2002. Formation of the androgen receptor transcription complex. Mol Cell 9: 601–10.

    PubMed  CAS  Google Scholar 

  • Shen, M. M., and C. Abate-Shen. 2003. Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Dev Dyn 228: 767–78.

    PubMed  CAS  Google Scholar 

  • Sigismund, S., S. Polo, and P. P. Di Fiore. 2004. Signaling through monoubiquitination. Curr Top Microbiol Immunol 286: 149–85.

    PubMed  CAS  Google Scholar 

  • Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–8.

    PubMed  CAS  Google Scholar 

  • Sun, J., A. L. Blair, S. E. Aiyar, and R. Li. 2007. Cofactor of BRCA1 modulates androgen-dependent transcription and alternative splicing. J Steroid Biochem Mol Biol 107: 131–9.

    PubMed  CAS  Google Scholar 

  • Sykes, S. M., H. S. Mellert, M. A. Holbert, K. Li, R. Marmorstein, W. S. Lane, and S. B. McMahon. 2006. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841–51.

    PubMed  CAS  Google Scholar 

  • Tomlins, S. A., D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra, X. W. Sun, S. Varambally, X. Cao, J. Tchinda, R. Kuefer, C. Lee, J. E. Montie, R. B. Shah, K. J. Pienta, M. A. Rubin, and A. M. Chinnaiyan. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–8.

    PubMed  CAS  Google Scholar 

  • Truica, C. I., S. Byers, and E. P. Gelmann. 2000. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60: 4709–13.

    PubMed  CAS  Google Scholar 

  • Ueda, T., N. R. Mawji, N. Bruchovsky, and M. D. Sadar. 2002. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem 277: 38087–94.

    PubMed  CAS  Google Scholar 

  • Unni, E., S. Sun, B. Nan, M. J. McPhaul, B. Cheskis, M. A. Mancini, and M. Marcelli. 2004. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res 64: 7156–68.

    PubMed  CAS  Google Scholar 

  • van der Horst, E. H., Y. Y. Degenhardt, A. Strelow, A. Slavin, L. Chinn, J. Orf, M. Rong, S. Li, L. H. See, K. Q. Nguyen, T. Hoey, H. Wesche, and S. Powers. 2005. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA 102: 15901–6.

    PubMed  CAS  Google Scholar 

  • Waltregny, D., B. North, F. Van Mellaert, J. de Leval, E. Verdin, and V. Castronovo. 2004. Screening of histone deacetylases (HDAC) expression in human prostate cancer reveals distinct class I HDAC profiles between epithelial and stromal cells. Eur J Histochem 48: 273–90.

    PubMed  CAS  Google Scholar 

  • Wang, H., Z. Q. Huang, L. Xia, Q. Feng, H. Erdjument-Bromage, B. D. Strahl, S. D. Briggs, C. D. Allis, J. Wong, P. Tempst, and Y. Zhang. 2001. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853–7.

    PubMed  CAS  Google Scholar 

  • Wang, Q., J. S. Carroll, and M. Brown. 2005. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19: 631–42.

    PubMed  CAS  Google Scholar 

  • Wissmann, M., N. Yin, J. M. Muller, H. Greschik, B. D. Fodor, T. Jenuwein, C. Vogler, R. Schneider, T. Gunther, R. Buettner, E. Metzger, and R. Schule. 2007. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9: 347–53.

    PubMed  CAS  Google Scholar 

  • Wu, R. C., J. Qin, P. Yi, J. Wong, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 2004. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic responses to multiple cellular signaling pathways. Mol Cell 15: 937–49.

    PubMed  CAS  Google Scholar 

  • Xiang, Y., Z. Zhu, G. Han, X. Ye, B. Xu, Z. Peng, Y. Ma, Y. Yu, H. Lin, A. P. Chen, and C. D. Chen. 2007. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci USA 104: 19226–31.

    PubMed  CAS  Google Scholar 

  • Xin, L., M. A. Teitell, D. A. Lawson, A. Kwon, I. K. Mellinghoff, and O. N. Witte. 2006. Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc Natl Acad Sci USA 103: 7789–94.

    PubMed  CAS  Google Scholar 

  • Xu, J., Y. Qiu, F. J. DeMayo, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 1998. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279: 1922–5.

    PubMed  CAS  Google Scholar 

  • Xu, J., L. Liao, G. Ning, H. Yoshida-Komiya, C. Deng, and B. W. O'Malley. 2000. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA 97: 6379–84.

    PubMed  CAS  Google Scholar 

  • Xu, J., and B. W. O'Malley. 2002. Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev Endocr Metab Disord 3: 185–92.

    PubMed  CAS  Google Scholar 

  • Yamane, K., C. Toumazou, Y. Tsukada, H. Erdjument-Bromage, P. Tempst, J. Wong, and Y. Zhang. 2006. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125: 483–95.

    PubMed  CAS  Google Scholar 

  • Yan, J., C. T. Yu, M. Ozen, M. Ittmann, S. Y. Tsai, and M. J. Tsai. 2006. Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res 66: 11039–46.

    PubMed  CAS  Google Scholar 

  • Yu, J., C. Palmer, T. Alenghat, Y. Li, G. Kao, and M. A. Lazar. 2006. The corepressor silencing mediator for retinoid and thyroid hormone receptor facilitates cellular recovery from DNA double-strand breaks. Cancer Res 66: 9316–22.

    PubMed  CAS  Google Scholar 

  • Zhao, Y., K. Goto, M. Saitoh, T. Yanase, M. Nomura, T. Okabe, R. Takayanagi, and H. Nawata. 2002. Activation function-1 domain of androgen receptor contributes to the interaction between subnuclear splicing factor compartment and nuclear receptor compartment. Identification of the p102 U5 small nuclear ribonucleoprotein particle-binding protein as a coactivator for the receptor. J Biol Chem 277: 30031–9.

    PubMed  CAS  Google Scholar 

  • Zheng, Z., C. Cai, J. Omwancha, S. Y. Chen, T. Baslan, and L. Shemshedini. 2006. SUMO-3 enhances androgen receptor transcriptional activity through a sumoylation-independent mechanism in prostate cancer cells. J Biol Chem 281: 4002–12.

    PubMed  CAS  Google Scholar 

  • Zhou, G., Y. Hashimoto, I. Kwak, S. Y. Tsai, and M. J. Tsai. 2003. Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol 23: 7742–55.

    PubMed  CAS  Google Scholar 

  • Zhou, H. J., J. Yan, W. Luo, G. Ayala, S. H. Lin, H. Erdem, M. Ittmann, S. Y. Tsai, and M. J. Tsai. 2005. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res 65: 7976–83.

    PubMed  CAS  Google Scholar 

  • Zhu, P., W. Zhou, J. Wang, J. Puc, K. A. Ohgi, H. Erdjument-Bromage, P. Tempst, C. K. Glass, and M. G. Rosenfeld. 2007. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 27: 609–21.

    PubMed  CAS  Google Scholar 

  • Zong, H., Y. Chi, Y. Wang, Y. Yang, L. Zhang, H. Chen, J. Jiang, Z. Li, Y. Hong, H. Wang, X. Yun, and J. Gu. 2007. Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol 27: 7125–42.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Weigel .

Editor information

James Mohler Donald Tindall

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Agoulnik, I.U., Weigel, N.L. (2009). Coregulators and the Regulation of Androgen Receptor Action in Prostate Cancer. In: Mohler, J., Tindall, D. (eds) Androgen Action in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69179-4_14

Download citation

Publish with us

Policies and ethics