Skip to main content

The 26S Proteasome as a Therapeutic Target in Cancer: Beyond Protease Inhibitors?

  • Chapter
  • First Online:
Modulation of Protein Stability in Cancer Therapy
  • 500 Accesses

Abstract

The 26S proteasome is a multi-subunit complex that has a barrel-shaped peptidase core (CP) whose proteolytic activity is sequestered from the cellular milieu by two regulatory particles (RP) that are docked on either end. The RP confers ubiquitin and ATP dependence to the proteolytic process. The CP can also be regulated by the REGγ complex, and can, in some instances, catalyze the degradation of proteins independent of ATP and ubiquitin. The peptidase activity of the 20S CP has been validated as a therapeutic target for cancers such as multiple myeloma by the development of inhibitors such as VELCAID. Since the peptidase activity is so central to 26S proteasome function, inhibitors of this class are generally toxic. Alternative therapeutic targets within the 26S proteasome can be explored, given the multistep nature of regulated degradation. Specifically, the recognition, and deubiquitination, of the polyubiquitin chain, and the unfolding and gating steps can be targeted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, J. (2004). The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4, 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J., Behnke, M., Chen, S., Cruickshank, A.A., Dick, L.R., Grenier, L., Klunder, J.M., Ma, Y.T., Plamondon, L., and Stein, R.L. (1998). Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8, 333–338.

    Article  PubMed  CAS  Google Scholar 

  • Ambroggio, X.I., Rees, D.C., and Deshaies, R.J. (2004). JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2, E2.

    Article  PubMed  Google Scholar 

  • Asher, G., Lotem, J., Sachs, L., Kahana, C., and Shaul, Y. (2002). Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci U S A 99, 13125–13130.

    Article  PubMed  CAS  Google Scholar 

  • Baker, S.P., and Grant, P.A. (2007). The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26, 5329–5340.

    Article  PubMed  CAS  Google Scholar 

  • Bogyo, M., McMaster, J.S., Gaczynska, M., Tortorella, D., Goldberg, A.L., and Ploegh, H. (1997). Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci U S A 94, 6629–6634.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, D., Catley, L., Li, G., Podar, K., Hideshima, T., Velankar, M., Mitsiades, C., Mitsiades, N., Yasui, H., Letai, A., et al (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8, 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Barton, L.F., Chi, Y., Clurman, B.E., and Roberts, J.M. (2007). Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol Cell 26, 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Collins, G.A., and Tansey, W.P. (2006). The proteasome: a utility tool for transcription? Curr Opin Genet Dev 16, 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Demo, S.D., Kirk, C.J., Aujay, M.A., Buchholz, T.J., Dajee, M., Ho, M.N., Jiang, J., Laidig, G.J., Lewis, E.R., Parlati, F., et al (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67, 6383–6391.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, A.P., Lonard, D.M., Nawaz, Z., and O’Malley, B.W. (2005). Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II. J Steroid Biochem Mol Biol 94, 337–346.

    Article  PubMed  CAS  Google Scholar 

  • Elangovan, M., Choi, E.S., Jang, B.G., Kim, M.S., and Yoo, Y.J. (2007). The ubiquitin-interacting motif of 26S proteasome subunit S5a induces A549 lung cancer cell death. Biochem Biophys Res Commun 364, 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Elsasser, S., and Finley, D. (2005). Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7, 742–749.

    Article  PubMed  CAS  Google Scholar 

  • Gaczynska, M., Osmulski, P.A., Gao, Y., Post, M.J., and Simons, M. (2003). Proline- and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 42, 8663–8670.

    Article  PubMed  CAS  Google Scholar 

  • Gallery, M., Blank, J.L., Lin, Y., Gutierrez, J.A., Pulido, J.C., Rappoli, D., Badola, S., Rolfe, M., and Macbeth, K.J. (2007). The JAMM motif of human deubiquitinase Poh1 is essential for cell viability. Mol Cancer Ther 6, 262–268.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y., Lecker, S., Post, M.J., Hietaranta, A.J., Li, J., Volk, R., Li, M., Sato, K., Saluja, A.K., Steer, M.L., et al (2000). Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha degradation by a naturally occurring antibacterial peptide. J Clin Invest 106, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Gong, X., Kole, L., Iskander, K., and Jaiswal, A.K. (2007). NRH:quinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53. Cancer Res 67, 5380–5388.

    Article  PubMed  CAS  Google Scholar 

  • Goy, A., Younes, A., McLaughlin, P., Pro, B., Romaguera, J.E., Hagemeister, F., Fayad, L., Dang, N.H., Samaniego, F., Wang, M., et al (2005). Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 23, 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Groll, M., Bajorek, M., Kohler, A., Moroder, L., Rubin, D.M., Huber, R., Glickman, M.H., and Finley, D. (2000). A gated channel into the proteasome core particle. Nat Struct Biol 7, 1062–1067.

    Article  PubMed  CAS  Google Scholar 

  • Guedat, P., and Colland, F. (2007). Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochem 8(Suppl 1), S14.

    Article  PubMed  Google Scholar 

  • Hanada, M., Sugawara, K., Kaneta, K., Toda, S., Nishiyama, Y., Tomita, K., Yamamoto, H., Konishi, M., and Oki, T. (1992). Epoxomicin, a new antitumor agent of microbial origin.J Antibiot (Tokyo) 45, 1746–1752.

    CAS  Google Scholar 

  • Hershko, A., Ciechanover, A., and Varshavsky, A. (2000). Basic Medical Research Award. The ubiquitin system. Nat Med 6, 1073–1081.

    Article  CAS  Google Scholar 

  • Hoyt, M.A., and Coffino, P. (2004). Ubiquitin-free routes into the proteasome. Cell Mol Life Sci 61, 1596–1600.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.B., Myung, J., Sin, N., and Crews, C.M. (1999). Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: insights into specificity and potency. Bioorg Med Chem Lett 9, 3335–3340.

    Article  PubMed  CAS  Google Scholar 

  • Kisselev, A.F., Callard, A., and Goldberg, A.L. (2006). Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281, 8582–8590.

    Article  PubMed  CAS  Google Scholar 

  • Koulich, E., Li, X., and Demartino, G.N. (2007). Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell 19(3):1072–1082.

    Article  PubMed  Google Scholar 

  • Lee, D., Ezhkova, E., Li, B., Pattenden, S.G., Tansey, W.P., and Workman, J.L. (2005). The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123, 423–436.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Post, M., Volk, R., Gao, Y., Li, M., Metais, C., Sato, K., Tsai, J., Aird, W., Rosenberg, R.D., et al (2000). PR39, a peptide regulator of angiogenesis. Nat Med 6, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Amazit, L., Long, W., Lonard, D.M., Monaco, J.J., and O’Malley, B.W. (2007). Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 26, 831–842.

    Article  PubMed  Google Scholar 

  • Lim, H.S., Cai, D., Archer, C.T., and Kodadek, T. (2007). Periodate-triggered cross-linking reveals Sug2/Rpt4 as the molecular target of a peptoid inhibitor of the 19S proteasome regulatory particle. J Am Chem Soc 129, 12936–12937.

    Article  PubMed  CAS  Google Scholar 

  • Lipford, J.R., and Deshaies, R.J. (2003). Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol 5, 845–850.

    Article  PubMed  CAS  Google Scholar 

  • Lipford, J.R., Smith, G.T., Chi, Y., and Deshaies, R.J. (2005). A putative stimulatory role for activator turnover in gene expression. Nature 438, 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Love, K.R., Catic, A., Schlieker, C., and Ploegh, H.L. (2007). Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol 3, 697–705.

    Article  PubMed  CAS  Google Scholar 

  • Lundgren, J., Masson, P., Realini, C.A., and Young, P. (2003). Use of RNA interference and complementation to study the function of the Drosophila and human 26S proteasome subunit S13. Mol Cell Biol 23, 5320–5330.

    Article  PubMed  CAS  Google Scholar 

  • Macherla, V.R., Mitchell, S.S., Manam, R.R., Reed, K.A., Chao, T.H., Nicholson, B., Deyanat-Yazdi, G., Mai, B., Jensen, P.R., Fenical, W.F., et al (2005). Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 48, 3684–3687.

    Article  PubMed  CAS  Google Scholar 

  • Mullally, J.E., Moos, P.J., Edes, K., and Fitzpatrick, F.A. (2001). Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway. J Biol Chem 276, 30366–30373.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, O.A., Wright, J., Moskowitz, C., Muzzy, J., MacGregor-Cortelli, B., Stubblefield, M., Straus, D., Portlock, C., Hamlin, P., Choi, E., et al (2005). Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 23, 676–684.

    Article  PubMed  Google Scholar 

  • Pickart, C.M., and Cohen, R.E. (2004). Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M., and Hill, C.P. (2005). Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15, 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, P.G., Mitsiades, C., Hideshima, T., and Anderson, K.C. (2005a). Proteasome inhibition in the treatment of cancer. Cell Cycle 4, 290–296.

    Article  CAS  Google Scholar 

  • Richardson, P.G., Sonneveld, P., Schuster, M.W., Irwin, D., Stadtmauer, E.A., Facon, T., Harousseau, J.L., Ben-Yehuda, D., Lonial, S., Goldschmidt, H., et al (2005b). Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352, 2487–2498.

    Article  CAS  Google Scholar 

  • Rubin, D.M., Glickman, M.H., Larsen, C.N., Dhruvakumar, S., and Finley, D. (1998). Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17, 4909–4919.

    Article  PubMed  CAS  Google Scholar 

  • Saeki, Y., and Tanaka, K. (2007). Unlocking the proteasome door. Mol Cell 27, 865–867.

    Article  PubMed  CAS  Google Scholar 

  • Saeki, Y., Isono, E., Shimada, M., Kawahara, H., Yokosawa, H., and Toh, E.A. (2005). Knocking out ubiquitin proteasome system function in vivo and in vitro with genetically encodable tandem ubiquitin. Methods Enzymol 399, 64–74.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.M., Wang, Z., Kazi, A., Li, L.H., Chan, T.H., and Dou, Q.P. (2002). Synthetic analogs of green tea polyphenols as proteasome inhibitors. Mol Med 8, 382–392.

    PubMed  CAS  Google Scholar 

  • Smith, D.M., Chang, S.C., Park, S., Finley, D., Cheng, Y., and Goldberg, A.L. (2007). Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell 27, 731–744.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.T., Wang, Y., Kane, E., Rollinson, S., Wiemels, J.L., Roman, E., Roddam, P., Cartwright, R., and Morgan, G. (2001). Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood 97, 1422–1426.

    Article  PubMed  CAS  Google Scholar 

  • Szutorisz, H., Georgiou, A., Tora, L., and Dillon, N. (2006). The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 127, 1375–1388.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, J., Chen, H., and Coffino, P. (2007). Proteasome substrate degradation requires association plus extended peptide. EMBO J 26, 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Tran, H.J., Allen, M.D., Lowe, J., and Bycroft, M. (2003). Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry 42, 11460–11465.

    Article  PubMed  CAS  Google Scholar 

  • Verma, R., and Deshaies, R.J. (2000). A proteasome howdunit: the case of the missing signal. Cell 101, 341–344.

    Article  PubMed  CAS  Google Scholar 

  • Verma, R., Aravind, L., Oania, R., McDonald, W.H., Yates, J.R., III, Koonin, E.V., and Deshaies, R.J. (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615.

    Article  PubMed  CAS  Google Scholar 

  • Verma, R., Oania, R., Graumann, J., and Deshaies, R.J. (2004a). Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110.

    Article  CAS  Google Scholar 

  • Verma, R., Peters, N.R., D’Onofrio, M., Tochtrop, G.P., Sakamoto, K.M., Varadan, R., Zhang, M., Coffino, P., Fushman, D., Deshaies, R.J., et al (2004b). Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306, 117–120.

    Article  CAS  Google Scholar 

  • Vinitsky, A., Michaud, C., Powers, J.C., and Orlowski, M. (1992). Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31, 9421–9428.

    Article  PubMed  CAS  Google Scholar 

  • Voorhees, P.M., and Orlowski, R.Z. (2006). The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 46, 189–213.

    Article  PubMed  CAS  Google Scholar 

  • Yao, T., and Cohen, R.E. (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Zetter, B.R., and Mangold, U. (2005). Ubiquitin-independent degradation and its implication in cancer. Future Oncol 1, 567–570.

    Article  PubMed  Google Scholar 

  • Zhang, M., Pickart, C.M., and Coffino, P. (2003). Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J 22, 1488–1496.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rati Verma .

Editor information

Eric Rubin Kathleen Sakamoto

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Verma, R. (2009). The 26S Proteasome as a Therapeutic Target in Cancer: Beyond Protease Inhibitors?. In: Rubin, E., Sakamoto, K. (eds) Modulation of Protein Stability in Cancer Therapy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69147-3_2

Download citation

Publish with us

Policies and ethics