Skip to main content

Dietary Restriction: A Model System Probing the Cell Fate Decision Between Cancer and Senescence

  • Chapter
  • First Online:
Mouse Models of Human Blood Cancers
  • 562 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ames, B. N., and Gold, L. S. 1998. The causes and prevention of cancer: the role of environment. Biotherapy. 11:205–220.

    Article  PubMed  CAS  Google Scholar 

  • Aranda-Anzaldo, A., and Dent, M. A. R. 2007. Reassessing the role of p53 in cancer and ageing from an evolutionary perspective. Mech Ageing Dev. 128:293–302.

    Article  PubMed  CAS  Google Scholar 

  • Beausejour, C. M., and Campisi, J. 2006. Ageing: balancing regeneration and cancer. Nature. 443:404–405.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell, B. N., Bucci, T. J., Hart, R. W., et al. 1995. A. Longevity, body weight, and neoplasia in ad libitum-fed and diet-restricted C57BL6 mice fed NIH-31 open formula diet. Toxicol Pathol. 23:570–582.

    Article  PubMed  CAS  Google Scholar 

  • Bronson, R. T., and Lipman, R. D. 1991. Reduction in rate of occurrence of age related lesions in dietary restricted laboratory mice. Growth Dev Aging. 55:169–184.

    PubMed  CAS  Google Scholar 

  • Bryder, D., Rossi, D. J., and Weissman, I. L. 2006. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol. 169:338–346.

    Article  PubMed  CAS  Google Scholar 

  • Campisi, J. Cancer and ageing: rival demons? 2003. Nat Rev Cancer. 3:339–349.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Astle, C. M., and Harrison, D. E. 1998. Delayed immune aging in diet-restricted B6CBAT6F1 mice is associated with preservation of naive T cells. J Gerontol A Biol Sci Med Sci. 53:B330–B337.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Astle, C. M., and Harrison, D. E. 2000. Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol. 28:442–450.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Astle, C. M., and Harrison, D. E. 2003. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol. 31:1097–1103.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, J. L., and Weissman, I. L. 2001. Flk-2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-term stem cells. Proc Natl Acad Sci USA. 98:14541–14546.

    Article  PubMed  CAS  Google Scholar 

  • Dröge, W., and Schipper, H. M. 2007. Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell. 6:361–370.

    Article  PubMed  Google Scholar 

  • Dumble, M., Moore, L., Chambers, S. M., et al. 2007. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood. 109:1736–1742.

    Article  PubMed  CAS  Google Scholar 

  • Effros, R. B., Walford, R. L., Weindruch, R., et al. 1991. Influences of dietary restriction on immunity to influenza in aged mice. J Gerontol. 46:B142–B147.

    PubMed  CAS  Google Scholar 

  • Ertl, R. P., Chen, J., Astle, C. M., et al. (2008). Effects of dietary restriction on hematopoietic stem cell aging are genetically regulated. Blood. 111:1709–1716.

    Google Scholar 

  • Flurkey, K., Currer, J. M., and Harrison, D. E. 2007. The Mouse in Aging Research. In: The Mouse in Biomedical Research, 2nd Edition, Vol III, Normative Biology, Husbandry, and Models. Fox J. G. et al., (eds). American College of Laboratory Animal Medicine (Elsevier), Burlington, MA. pp. 637–672.

    Google Scholar 

  • Gatza, C., Moore, L., Dumble, M., et al. 2007. Tumor suppressor dosage regulates stem cell dynamics during aging. Cell Cycle. 6:52–55.

    Article  PubMed  CAS  Google Scholar 

  • Giordano, A., Fucito, A., Romano, G., et al. 2007. Carcinogenesis and environment: the cancer stem cell hypothesis and implications for the development of novel therapeutics and diagnostics. Front Biosci. 12:3475–3482.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, F. J., and Nebert, D. W. 1990. Evolution of the P450 gene superfamily: animal-plant ‘warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 6:182–186.

    Article  PubMed  CAS  Google Scholar 

  • Goodell, M. A. 1999. Introduction: Focus on hematology. CD34(+) or CD34(−): does it really matter? Blood. 94:2545–2547.

    PubMed  CAS  Google Scholar 

  • Goodell, M. A., Brose, K., Paradis, G., et al. C. 1996. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 183:1797–1806.

    Article  PubMed  CAS  Google Scholar 

  • Goodell, M. A., Rosenzweig, M., Kim, H., et al. 1997. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 3:1337–1345.

    Article  PubMed  CAS  Google Scholar 

  • Guralnik, J. M., Eisenstaedt, R. S., Ferrucci, L., et al. 2004. Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood. 104:2263–2268.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D. E., Astle, C. M., and Stone, M. 1989. Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol. 142:3833–3840.

    PubMed  CAS  Google Scholar 

  • Harrison, D. E., and Zhong, R. K. 1992. The same exhaustible multilineage precursor produces both myeloid and lymphoid cells as early as 3–4 weeks after marrow transplantation. Proc Nat Acad Sci USA. 89:10134–10138.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D. E., Jordan, C. T., Zhong, R. K., et al. 1993. Primitive hematopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol. 21:206–219.

    PubMed  CAS  Google Scholar 

  • Hayflick, L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 37:614–636.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, A., Zeng, H., and Ogawa, M. 2002. Expression of lineage markers by CD34+ hematopoietic stem cells of adult mice. Exp Hematol. 30:361–365.

    Article  PubMed  Google Scholar 

  • Janzen, V., Forkert, R., Fleming, H. E., et al. 2006. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 443:421–426.

    PubMed  CAS  Google Scholar 

  • Kiel, M. J., Yilmaz, O. H., Iwashita, T., et al. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. 2005;121:1109–1121.

    Google Scholar 

  • Krishnamurthy, J., Ramsey, M. R., Ligon, K. L., et al. 2006. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 443:453–457.

    Article  PubMed  CAS  Google Scholar 

  • Krivtsov, A. V., Twomey, D., Feng, Z., et al. 2006. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 442:818–822.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., Van Zant, G., and Szilvassy, S. J. 2005. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood. 106:1479–1487.

    Article  PubMed  CAS  Google Scholar 

  • Lin, K. K., and Goodell, M. A. 2006. Purification of hematopoietic stem cells using the side population. Methods Enzymol. 420:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Luan. X., Zhao, W., Chandrasekar, B., et al. 1995. G. Calorie restriction modulates lymphocyte subset phenotype and increases apoptosis in MRL/lpr mice. Immunol Lett. 47:181–186.

    Article  PubMed  CAS  Google Scholar 

  • Maier, B., Gluba, W., Bernier, B., et al. 2004. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18:306–319.

    Article  PubMed  CAS  Google Scholar 

  • Mallette, F.A., and Ferbeyre, G. 2007. The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle. 6:1831–1836.

    Article  PubMed  CAS  Google Scholar 

  • Masoro, E. J. 1993. Dietary restriction and aging. J Am Geriatr Soc. 41:994–999.

    PubMed  CAS  Google Scholar 

  • Miller, R. A., and Harrison, D. E. 1985. Delayed reduction in T cell precursor frequencies accompanies diet-induced lifespan extension. J Immunol. 134:1426–1429.

    PubMed  CAS  Google Scholar 

  • Min, H., Montecino-Rodriguez, E., and Dorshkind, K. 2006. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J Immunol. 176:1007–1012.

    PubMed  CAS  Google Scholar 

  • Molofsky, A. V., He, S., Bydon, M., et al. 2005. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 19:1432–1437.

    Article  PubMed  CAS  Google Scholar 

  • Molofsky, A. V., Slutsky, S. G., Joseph, N. M., et al. 2006. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature. 443:448–452.

    Google Scholar 

  • Morrison, S. J., and Weissman, I. L. 1994. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1:661–673.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, S. J., Wandycz, A. M., Akashi, K., et al. 1996. The aging of hematopoietic stem cells. Nat Med. 2:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  • Muller, F. L., Lustgarten, M. S., Jang, Y., et al. 2007. Trends in oxidative aging theories. Free Radic Biol Med. 43:477–503.

    Article  PubMed  CAS  Google Scholar 

  • Pardal, R., Clarke, M. F., and Morrison, S. J. 2003. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 3:895–902.

    Article  PubMed  CAS  Google Scholar 

  • Pardal, R., Molofsky, A. V., He, S., et al. 2005. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol. 70:177–185.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, D. J., Anjos-Afonso, F., Ridler, C. M., et al. 2007. Age dependent increase in SP distribution within Hematopoiesis: implications for our understanding of the mechanism of aging. Stem Cells. 25:828–835.

    Article  PubMed  CAS  Google Scholar 

  • Penninx, B.W., Pahor, M., Cesari, M., et al. 2004. Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc. 52:719–724.

    Article  PubMed  Google Scholar 

  • Robinson, B. 2003. Cost of anemia in the elderly. J Am Geriatr Soc. 51:S14–S17.

    Article  PubMed  Google Scholar 

  • Rossi, D. J., Bryder, D., Zahn, J. M., et al. 2005. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Nat Acad Sci USA. 102:9194–9199.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, D. J., Bryder, D., and Weissman, I. L. 2007. Hematopoeitic stem cell aging: Mechanism and consequence. Exp Gerontol. 42:385–390.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, Y., Flurkey, K., Astle, C. M., et al. 2005. Mice severely deficient in growth hormone have normal hemaotopoiesis. Exp Hematol. 33:776–783.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. R., and Pereira-Smith, O.M. 1996. Replicative senescence: implications for in vivo aging and tumor suppression. Science. 273:63–67.

    Article  PubMed  CAS  Google Scholar 

  • Spangrude, G.J., and Brooks, D. M. 1993. Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood. 82:3327–3332.

    PubMed  CAS  Google Scholar 

  • Spangrude, G. J., Heimfeld, S., and Weissman, I. L. 1988. Purification and characterization of mouse hematopoietic stem cells. Science. 241:58–62. [Erratum in Science. 1989;244:1030].

    Article  PubMed  CAS  Google Scholar 

  • The Staff of The Jackson Laboratory. 1997. Handbook on Genetically Standardized JAX® Mice. Bar Harbor, ME: The Jackson Laboratory.

    Google Scholar 

  • Sudo, K., Ema, H., Morita, Y., et al. 2000. Age-associated characteristics of murine hematopoietic stem cells. J Exp Med. 192:1273–1280.

    Article  PubMed  CAS  Google Scholar 

  • TeKippe, M., Harrison, D. E., and Chen, J. 2003. Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. Exp Hematol. 31:521–527.

    Article  PubMed  CAS  Google Scholar 

  • Turturro, A., Duffy, P., Hass, B., et al. 2002. Survival characteristics and age-adjusted disease incidences in C57BL/6 mice fed a commonly used cereal-based diet modulated by dietary restriction. J Gerontol A Biol Sci Med Sci. 57:B379–B389.

    Article  PubMed  Google Scholar 

  • Tyner, S. D., Venkatachalam, S., Choi, J., et al. 2002. p53 mutant mice that display early ageing-associated phenotypes. Nature. 415:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Van Zant, G., Holland, B. P., Eldridge, P. W., et al. 1990. Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. J Exp Med. 171:1547–1565.

    Article  PubMed  Google Scholar 

  • Wiesner, R. J., Zsurka, G., and Kunz, W. S. 2006. Mitochondrial DNA damage and the aging process: facts and imaginations. Free Radic Res. 40:1284–1294.

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz, O. H., Kiel, M. J., and Morrison, S. J. 2006. SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood. 107:924–930.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, R., Astle, C. M., Chen, J., et al. 2005. Genetic regulation of hematopoietic stem cell exhaustion during development and growth. Exp Hematol. 33:243–250.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ertl, R.P., Harrison, D.E. (2008). Dietary Restriction: A Model System Probing the Cell Fate Decision Between Cancer and Senescence. In: Li, S. (eds) Mouse Models of Human Blood Cancers. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69132-9_6

Download citation

Publish with us

Policies and ethics