Skip to main content

Industrial Applications of Thermal Spraying Technology

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

At its early stages of development, thermal spray technology was mostly used for the repair, rebuilding, retrofitting, and for surface protection against corrosion, erosion and wear. The wider acceptance of the technology for industrial-scale production has started in the late eighties and early nineties, with applications limited to high added-value components in the aeronautic and nuclear industry. Over the two past decades, a wide range of industrial-scale surface modification processes became available. The choice of a specific coating and/or thermal spray process, for a given service condition, depends, however, on the expectation of the user and the cost that could be tolerated for the application. This chapter presents the advantages and limitations of the different spray processes. Then the different coating applications are described, with coatings resistant to wear, corrosion and oxidation, providing thermal protection, clearance control, good bonding, electrical and electronic properties, free standing spray-formed parts, medical applications, replacement of hard chromium… potential applications. These applications are then presented according to the industrial users: aerospace, land-based turbines, automotive, electrical and electronic industries, corrosion applications for land-based and marine applications, medical engineering, ceramic and glass manufacturing, printing, pulp and paper, metal processing, petroleum and chemical industries, electrical utilities, textile and plastic, polymers, reclamation… The development of thermal sprayed coatings in the different countries is then discussed, the last part of the chapter being about the economic analysis of the different spray processes.

These are presently accepted for applications ranging from tribological and wear resistant applications including lubricity and low-friction surfaces, to resistance to corrosion and/or oxidation, thermal protection, freestanding components, electrical and optical components, electromagnetic shielding, electrical insulation, abradable seals, biomedical applications, superconducting oxides, components with coefficient of thermal expansion tailored to service conditions, magnetic coatings, solid oxide fuel cells, replacement of hard chromium, as well as ornamental applications.. This affected, in turn, the selection of the material to be applied for the coating, and the spray process to be used. The coating design process is often complicated, by the fact that in practice components are not always devoted to a single requirement such as wear or corrosion or electrical insulation or thermal insulation. In most cases, coatings must resist to different combined needs: for example, wear is often linked to corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACP:

Amorphous Calcium Phosphate

APS:

Atmospheric Plasma Spraying

BAG:

Bioactive Glass

BOF:

Basic Oxygen Furnace

BRT:

Burner Rig Test

CMAS:

Acronym of each oxide deposits CaO, MgO, Al2O3, and SiO2

CNT:

Carbon Nano-tubes

CFRP:

Carbon Fiber-Reinforced Plastics rolls

C-SS-CS:

Composite surface of Stainless Steel and Carbon Steel welded together

CTE:

Coefficient of Thermal Expansion

C-W:

Corrosion and Wear

dBA:

decibel Authorized

d.c.:

direct current

D-gun:

Detonation-gun

DRC:

Diamond-Reinforced Composite

EAF:

Electric Arc Furnace

EBC:

Environmental Barrier Coating

EB-PVD:

Electron Beam-Physical Vapor Deposition

E–C:

Erosion–Corrosion

EHC:

Electrolytic Hard Chrome

EIS:

Electrochemical Impedance Spectroscopy

FAC:

Fe-based Alloy Coatings

FBC:

Fluidized-Bed Combustor

fcc:

Face Center Cubic

FG:

Functionally Graded

FGC:

Functionally Graded Coating

GDC:

Ce0.8 Gd0.2 O1.9

GS:

Gas Shroud

HA:

Hydroxyapatite Ca10 (PO4)6 (OH)2

HAT:

HA Top coating

HB:

Hardness Brinell

HCC:

Hard Chromium Coating

HEPS:

High-Energy Plasma Spray

HIP:

Hot Isostatically Pressed

HPAL:

High-Pressure Acid-Leach

HTBC:

50 vol. % HA and 50 vol. % TiO2 (HT)

HTH:

(HA)/HA + TiO2 bond coat composite

HVAF:

High-Velocity Air Flame

HVLF:

High-Velocity Liquid Fuel

HVOF:

High-Velocity Oxy-fuel Flame

HVPS:

High-Velocity Plasma Spray

HVSFS:

High-Velocity Suspension Flame Spraying

IACS:

International Annealed Copper Standard

IPS:

Induction plasma spraying

LaMA:

La MgAl11O19

LTA:

LaTi2Al9O19

LSCF:

La0.6 Sr0.4 Co0.2 Fe0.8 O32-δ

M:

Mole unit

MMCs:

Metal Matrix Composites

MSWI:

Municipal Solid Waste Incinerators

NTSRS:

Net Thermal Spraying Residual Stress

ODS:

Oxide-Dispersion Strengthened

OEM:

Original Equipment Manufacturer

PA-12:

Polyamide 12

PAH:

Progressive Abradability Hardness

PECVD:

Plasma Enhanced Chemical Vapor Deposition

PEEK:

Poly-Ether-Ether-Ketone

PEI:

Poly Ether Imide

PGDS:

Pulsed Gas Dynamic Spraying

PS:

Plasma Sprayed

PS-PVD:

Plasma-Sprayed-Plasma Vapor Deposition

PTA:

Plasma-Transferred Arc

PVD:

Physical Vapor Deposition

QC:

Quality Control

r.f.:

Radio Frequency

RFC:

Rolling Contact Fatigue

RH:

Relative air Humidity

SBF:

Simulated Body Fluid

SER:

Specific Energy Requirement

SLPS:

Super solidus Liquid Phase Sintering

SPS:

Spark Plasma Sintering

SPS:

Suspension Plasma Spraying

SPPS:

Solution Precursor Plasma Spraying

SS:

Stainless Steel

SSC:

Sm0.5 Sr0.5 Co O3

STS:

Special Treatment Steel

SW-SS:

Spot-Welded Stainless Steel

TBC:

Thermal Barrier Coating

TCF:

Thermal Cycling Fatigue

TCHT:

Thermo Chemical Heat Treatment

TCP:

Tricalcium Phosphate

TCR:

Temperature Coefficient of Resistance

TF-LPPS:

Thin Film-Low Pressure Plasma Spraying

TGO:

Thermally Grown Oxide

TSR:

Thermal Shock Rig

TTCP:

Tetra-Calcium Phosphate

UHTC:

Ultrahigh Temperature Ceramics

VIPS:

Vacuum Induction Plasma Spraying

VPS:

Vacuum Plasma Spraying

WA:

Wire Arc

YPSZ:

Yttria Partially Stabilized Zirconia

YSZ:

Yttria-Stabilized Zirconia

ZFA:

ZrO2–CaF2–Ag2O composite coating

References

  1. Davis JR (ed) (2004) Handbook of thermal spray technology. Sections introduction to applications for thermal spray processing and selected applications. ASM International, Materials Park, OH

    Google Scholar 

  2. American Welding Society (1985) Thermal spraying, practice, theory and application. American Welding Society, Miami, FL

    Google Scholar 

  3. Cartier M (2003) Handbook of surface treatments and coatings. ASME Press, New York, 412 p

    Google Scholar 

  4. Zhum Gahr KH (1987) Microstructure and wear of materials. Elsevier, Amsterdam

    Google Scholar 

  5. Chattopadhyay R (2001) Surface wear: analysis, treatment, and prevention. ASM International, Materials Park, OH, 307 p

    Google Scholar 

  6. Pawlowski L (1995) The science and engineering of thermal spray coatings. Wiley, New York

    Google Scholar 

  7. Champagne VK (2007) The cold spray materials deposition process; fundamental and applications. Woodhead, Cambridge, 362 p

    Google Scholar 

  8. Sobolev VV, Guilemany JM, Nutting J (2004) High velocity oxy-fuel spraying. Maney for the Institute of Materials, Minerals and Mining, London

    Google Scholar 

  9. Bolelli G, Lusvarghi L (2006) Heat treatment effects on the tribological performance of HVOF sprayed Co-Mo-Cr-Si coatings. J Therm Spray Technol 15(4):802–810

    Google Scholar 

  10. Kulu P, Hailing J (1998) Recycled hard metal-base wear-resistant composite coatings. J Therm Spray Technol 7(2):173–178

    Google Scholar 

  11. Sakata K, Nakano K, Miyahara H, Matsubara Y, Ogi K (2007) Microstructure control of thermally sprayed Co-based self-fluxing alloy coatings by diffusion treatment. J Therm Spray Technol 16(5–6):991–997

    Google Scholar 

  12. Otsubo F, Era H, Kishitake K (2000) Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron. J Therm Spray Technol 9(1):107–113

    Google Scholar 

  13. Kulu P, Pihl T (2002) Selection criteria for wear resistant powder coatings under extreme erosive wear conditions. J Therm Spray Technol 11(4):517–522

    Google Scholar 

  14. Miranda JC, Ramalho A (2001) Abrasion resistance of thermal sprayed composite coatings with a nickel alloy matrix and a WC hard phase. Effect of deposition technique and re-melting. Tribol Lett 11(1):37–48

    Google Scholar 

  15. Schwetzke R, Kreye H (1999) Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems. J Therm Spray Technol 8(3):433–439

    Google Scholar 

  16. Kasparova M, Zahalka F, Houdkova S (2011) WC-Co and Cr3C2-NiCr coatings in low- and high-stress abrasive conditions. J Therm Spray Technol 20(3):412–424

    Google Scholar 

  17. Houdkova S, Kasparova M, Zahalka F (2010) The influence of spraying angle on properties of HVOF sprayed hardmetal coatings. J Therm Spray Technol 19(5):893–901

    Google Scholar 

  18. Tillmann W, Vogli E, Baumann I, Kopp G, Weihs C (2010) Desirability-based multi-criteria optimization of HVOF spray experiments to manufacture fine structured wear-resistant 75Cr3C2-25(NiCr20) coatings. J Therm Spray Technol 19(1–2):393–408

    Google Scholar 

  19. Skandan G, Yao R, Sadangi R, Kear BH, Qiao Y, Liu L, Fischer TE (2000) Multimodal coatings: a new concept in thermal spraying. J Therm Spray Technol 9(3):329–331

    Google Scholar 

  20. Lima RS, Marple BR (2007) Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol 16(1):40–63

    Google Scholar 

  21. Kim GE, Walker J (2007) Successful application of nanostructured titanium dioxide coating for high-pressure acid-leach application. J Therm Spray Technol 16(1):34–39

    Google Scholar 

  22. Gawne DT, Qiu Z, Bao Y, Zhang T, Zhang K (2001) Abrasive wear resistance of plasma-sprayed glass-composite coatings. J Therm Spray Technol 10(4):599–603

    Google Scholar 

  23. Cipri F, Bartuli C, Valente T, Casadei F (2007) Electromagnetic and mechanical properties of silica-aluminosilicates plasma sprayed composite coatings. J Therm Spray Technol 16(5–6):831–838

    Google Scholar 

  24. Kang AS, Grewal JS, Jain D, Kang S (2012) Wear behavior of thermal spray coatings on rotavator blades. J Therm Spray Technol 21(2):355–359

    Google Scholar 

  25. Kim HJ, Kweon YG, Chang RW (1994) Wear and erosion behavior of plasma-sprayed WC-Co coatings. J Therm Spray Technol 3(2):169–178

    Google Scholar 

  26. Wang BQ, Luer K (1994) The erosion-oxidation behavior of HVOF Cr3C2-NiCr cermet coating. Wear 174:177–185

    Google Scholar 

  27. Kenichi S, Nakahama S, Hattori S, Nakano K (2005) Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear 258:768–775

    Google Scholar 

  28. Hawthorne HM, Arsenault B, Immarigeon JP, Legoux JG, Parameswaran VR (1999) Comparison of slurry and dry erosion behavior of some HVOF thermal sprayed coatings. Wear 225–229:825–834

    Google Scholar 

  29. Ji G-C, Li C-J, Wang Y-Y, Li W-Y (2007) Erosion performance of HVOF-sprayed Cr3C2-NiCr coatings. J Therm Spray Technol 16(4):557–565

    Google Scholar 

  30. Yang G-J, Li C-J, Zhang S-J, Li C-X (2008) High-temperature erosion of HVOF sprayed Cr3C2-NiCr coating and mild steel for boiler tubes. J Therm Spray Technol 17(5–6):782–787

    Google Scholar 

  31. Osawa S, Itsukaichi T, Ahmed R (2005) Influence of substrate properties on the impact resistance of WC cermet coatings. J Therm Spray Technol 14(4):495–501

    Google Scholar 

  32. Kulu P, Hussainova L, Veinthal R (2005) Solid particle erosion of thermal sprayed coatings. Wear 258:488–496

    Google Scholar 

  33. Ramesha CS, Devaraja DS, Keshavamurthya R, Sridharb BR (2011) Slurry erosive wear behavior of thermally sprayed Inconel-718 coatings by APS process. Wear 271:1365–1371

    Google Scholar 

  34. Higuera HV, Belzunce Varela J, Carriles Menéndez A, Poveda Martiınez S (2001) High temperature erosion wear of flame and plasma-sprayed nickel–chromium coatings under simulated coal-fired boiler atmospheres. Wear 247:214–222

    Google Scholar 

  35. Krishnamurthy N, Murali MS, Venkataraman B, Mukunda PG (2012) Characterization and solid particle erosion behavior of plasma sprayed alumina and calcia-stabilized zirconia coatings on Al-6061 substrate. Wear 274–275:15–27

    Google Scholar 

  36. Branagan DJ, Breitsameter M, Meacham BE, Belashchenko V (2005) High-performance nanoscale composite coatings for boiler applications. J Therm Spray Technol 14(2):196–204

    Google Scholar 

  37. Pantelis DI, Psyllaki P, Alexopoulos N (2000) Tribological behavior of plasma-sprayed Al2O3 coatings under severe wear conditions. Wear 237:197–204

    Google Scholar 

  38. Sanchez E, Bannier E, Cantavella V, Salvador MD, Klyatskina E, Morgiel J, Grzonka J, Boccaccini AR (2008) Deposition of Al2O3-TiO2 nanostructured powders by atmospheric plasma spraying. J Therm Spray Technol 17(3):329–337

    Google Scholar 

  39. Darut G, Ageorges H, Denoirjean A, Montavon G, Fauchias P (2008) Effect of the structural scale of plasma-sprayed alumina coatings on their friction coefficients. J Therm Spray Technol 17(5–6):788–797

    Google Scholar 

  40. Bolelli G, Rauch J, Cannillo V, Killinger A, Lusvarghi L, Gadow R (2009) Microstructural and tribological investigation of high-velocity suspension flame sprayed (HVSFS) Al2O3 coatings. J Therm Spray Technol 18(1):35–48

    Google Scholar 

  41. Ahn H-S, Kwon O-K (1999) Tribological behaviour of plasma-sprayed chromium oxide coating. Wear 225–229:814–824

    Google Scholar 

  42. Pratap Singh V, Sil A, Jayaganthan R (2011) Tribological behavior of plasma sprayed Cr2O3–3%TiO2 coatings. Wear 272:149–158

    Google Scholar 

  43. Tao S, Yin Z, Zhou X, Ding C (2010) Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions. Tribol Int 43:69–75

    Google Scholar 

  44. Bolelli G, Cannillo V, Lusvarghi L, Manfredini T (2006) Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 261:1298–1315

    Google Scholar 

  45. Ramachandran CS, Balasubramanian V, Ananthapadmanabhan PV, Viswabaskaran V (2012) Understanding the dry sliding wear behaviour of atmospheric plasma-sprayed rare earth oxide coatings. Mater Design 39:234–252

    Google Scholar 

  46. Dallaire S (2001) Hard arc-sprayed coating with enhanced erosion and abrasion wear resistance. J Therm Spray Technol 10(3):511–519

    Google Scholar 

  47. Yang Q, Senda T, Hirose A (2006) Sliding wear behavior of WC–12% Co coatings at elevated temperatures. Surf Coat Technol 200:4208–4212

    Google Scholar 

  48. Yandouzi M, Bu H, Brochu M, Jodoin B (2012) Nanostructured Al-based metal matrix composite coating production by pulsed gas dynamic spraying process. J Therm Spray Technol 21(3–4):609–619

    Google Scholar 

  49. Li W-Y, Zhang G, Zhang C, Elkedim O, Liao H, Coddet C (2008) Effect of ball milling of feedstock powder on microstructure and properties of TiN particle-reinforced Al alloy-based composites fabricated by cold spraying. J Therm Spray Technol 17(3):316–322

    Google Scholar 

  50. Qiao Y, Liu Y-R, Fischer TE (2001) Sliding and abrasive wear resistance of thermal-sprayed WC-CO coatings. J Therm Spray Technol 10(1):118–125

    Google Scholar 

  51. Jacobs L, Hyland MM, De Bonte M (1999) Study of the influence of microstructural properties on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings. J Therm Spray Technol 8(1):125–132

    Google Scholar 

  52. Bolelli G, Bonferroni B, Laurila J, Lusvarghi L, Milantia A, Niemi K, Vuoristo P (2012) Micromechanical properties and sliding wear behaviour of HVOF-sprayed Fe-based alloy coatings. Wear 276–277:29–47

    Google Scholar 

  53. Alam S, Sasaki S, Shimura H (2001) Friction and wear characteristics of aluminum bronze coatings on steel substrates sprayed by a low pressure plasma technique. Wear 248:75–81

    Google Scholar 

  54. Ouyang JH, Sasaki S, Umeda K (2001) Microstructure and tribological properties of low-pressure plasma-sprayed ZrO2–CaF2–Ag2O composite coating at elevated temperature. Wear 249:440–451

    Google Scholar 

  55. Ahn J, Hwang B, Lee S (2005) Improvement of wear resistance of plasma-sprayed molybdenum blend coatings. J Therm Spray Technol 14(2):251–257

    Google Scholar 

  56. Rodriguez J, Martin A, Fernández R, Fernández JE (2003) An experimental study of the wear performance of NiCrBSi thermal spray coatings. Wear 255:950–955

    Google Scholar 

  57. Niebuhr D, Scholl M (2005) Synthesis and performance of plasma-sprayed polymer/steel coating system. J Therm Spray Technol 14(4):487–494

    Google Scholar 

  58. Li J, Liao H, Coddet C (2002) Friction and wear behavior of flame-sprayed PEEK coatings. Wear 252:824–831

    Google Scholar 

  59. Li Y, Ma Y, Xie B, Cao S, Wu Z (2007) Dry friction and wear behavior of flame-sprayed polyamide1010/n-SiO2 composite coatings. Wear 262:1232–1238

    Google Scholar 

  60. Żórawski W, Kozerski S (2008) Scuffing resistance of plasma and HVOF sprayed WC-12Co and Cr3C2-25(Ni20Cr) coatings. Surf Coat Technol 202:4453–4457

    Google Scholar 

  61. Edrisy A, Perry T, Alpas AT (2005) Investigation of scuffing damage in aluminum engines with thermal spray coatings. Wear 259:1056–1062

    Google Scholar 

  62. Kim J-H, Lee M-H (2010) A study on cavitation erosion and corrosion behavior of Al-, Zn-, Cu-, and Fe-based coatings prepared by arc spraying. J Therm Spray Technol 19(6):1224–1230

    Google Scholar 

  63. Hahn M, Fischer A (2010) Characterization of thermal spray coatings for cylinder running surfaces of diesel engines. J Therm Spray Technol 19(5):866–872

    Google Scholar 

  64. Kumar A, Boy J, Zatorski R, Stephenson LD (2005) Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note. J Therm Spray Technol 14(2):177–182

    Google Scholar 

  65. Factor M, Roman I (2002) Use of microhardness as a simple means of estimating relative wear resistance of carbide thermal spray coatings: Part 2. Wear resistance of cemented carbide coatings. J Therm Spray Technol 11(4):482–495

    Google Scholar 

  66. Wu Y, Hong S, Zhang J, He Z, Guo W, Wang Q, Li G (2012) Microstructure and cavitation erosion behavior of WC–Co–Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying. Int J Refract Metals Hard Mater 32:21–26

    Google Scholar 

  67. Santa JF, Espitia LA, Blanco JA, Romo SA, Toro A (2009) Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267:160–167

    Google Scholar 

  68. Lima MM, Godoy C, Modenesi PJ, Avelar-Batista JC, Davison A, Matthews A (2004) Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC–Co thermally sprayed coatings. Surf Coat Technol 177–178:489–496

    Google Scholar 

  69. Ding Z-X, Chen W, Wang Q (2011) Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF. Trans Nonferrous Met Soc China 21:2231–2236

    Google Scholar 

  70. Stewart S, Ahmed R (2002) Rolling contact fatigue of surface coatings—a review. Wear 253:1132–1144

    Google Scholar 

  71. Ahmed R, Hadfield M (2002) Mechanisms of fatigue failure in thermal spray coatings. J Therm Spray Technol 11(3):333–349

    Google Scholar 

  72. Savarimuthu AC, Taber HF, Megat I, Shadley JR, Rybicki EF, Cornell WC, Emery WA, Somerville DA, Nuse JD (2001) Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications. J Therm Spray Technol 10(3):502–510

    Google Scholar 

  73. Zhang XC, Xu BS, Xuan FZ, Tu ST, Wang HD, Wu YX (2008) Rolling contact fatigue behavior of plasma-sprayed CrC–NiCr cermet coatings. Wear 265:1875–1883

    Google Scholar 

  74. Berger L-M, Lipp K, Spatzier J, Bretschneider J (2011) Dependence of the rolling contact fatigue of HVOF-sprayed WC–17%Co hardmetal coatings on substrate hardness. Wear 271:2080–2088

    Google Scholar 

  75. Ganesh Sundara Raman S, Rajasekaran B, Joshi SV, Sundararajan G (2007) Influence of substrate material on plain fatigue and fretting fatigue behavior of detonation gun sprayed Cu-Ni-In coating. J Therm Spray Technol 16(4):571–579

    Google Scholar 

  76. Akebono H, Komotori J, Shimizu M (2008) Effect of coating microstructure on the fatigue properties of steel thermally sprayed with Ni-based self-fluxing alloy. Int J Fatigue 30:814–821

    Google Scholar 

  77. Jin O, Mall S, Sanders JH, Sharma SK (2006) Durability of Cu–Al coating on Ti–6Al–4V substrate under fretting fatigue. Surf Coat Technol 201:1704–1710

    Google Scholar 

  78. Kim K, Korsunsky AM (2011) Effects of imposed displacement and initial coating thickness on fretting behaviour of a thermally sprayed coating. Wear 271(7–8):1080–1085

    Google Scholar 

  79. Mary C, Fouvry S, Martin JM, Bonnet B (2011) Pressure and temperature effects on Fretting Wear damage of a Cu–Ni–In plasma coating versus Ti17 titanium alloy contact. Wear 272:18–37

    Google Scholar 

  80. Hager CH Jr, Sanders JH, Sharma S (2008) Un-lubricated gross slip fretting wear of metallic plasma-sprayed coatings for Ti6Al4V surfaces. Wear 265:439–451

    Google Scholar 

  81. Koiprasert H, Dumrongrattana S, Niranatlumpong P (2004) Thermally sprayed coatings for protection of fretting wear in land-based gas-turbine engine. Wear 257:1–7

    Google Scholar 

  82. Hager CH Jr, Sanders J, Sharma S, Voevodin AA (2009) The use of nickel graphite composite coatings for the mitigation of gross slip fretting wear on Ti6Al4V interfaces. Wear 267:1470–1481

    Google Scholar 

  83. Carrasquero EJ, Lesage J, Puchi-Cabrera ES, Staia MH (2008) Fretting wear of HVOF Ni–Cr based alloy deposited on SAE 1045 steel. Surf Coat Technol 202:4544–4551

    Google Scholar 

  84. Tian W, Wang Y, Yang Y (2008) Fretting wear behavior of conventional and nanostructured Al2O3–13 wt%TiO2 coatings fabricated by plasma spray. Wear 265:1700–1707

    Google Scholar 

  85. Sathish S, Geetha M, Aruna ST, Balaji N, Rajam KS, Asokamani R (2011) Sliding wear behavior of plasma sprayed nanoceramic coatings for biomedical applications. Wear 271:934–941

    Google Scholar 

  86. Aoh J-N, Chen J-C (2001) On the wear characteristics of cobalt-based hardfacing layer after thermal fatigue and oxidation. Wear 250:611–620

    Google Scholar 

  87. D’Ans P, Dille J, Degrez M (2011) Thermal fatigue resistance of plasma sprayed yttria-stabilised zirconia onto borided hot work tool steel, bonded with a NiCrAlY coating: experiments and modeling. Surf Coat Technol 205:3378–3386

    Google Scholar 

  88. Eriksson R, Brodin H, Johansson S, Östergren L, Li X-H (2011) Influence of isothermal and cyclic heat treatments on the adhesion of plasma sprayed thermal barrier coatings. Surf Coat Technol 205:5422–5429

    Google Scholar 

  89. Kwon J-Y, Lee J-H, Kim H-C, Jung Y-G, Paik U, Lee K-S (2006) Effect of thermal fatigue on mechanical characteristics and contact damage of zirconia-based thermal barrier coatings with HVOF-sprayed bond coat. Mater Sci Eng A 429:173–180

    Google Scholar 

  90. Luo L, Liu S, Li J, Wu Y (2011) Thermal shock resistance of FeMnCrAl/Cr3C2–Ni9Al coatings deposited by high velocity arc spraying. Surf Coat Technol 205:3467–3471

    Google Scholar 

  91. Pan ZY, Wang Y, Wang CH, Sun XG, Wang L (2012) The effect of SiC particles on thermal shock behavior of Al2O3/8YSZ coatings fabricated by atmospheric plasma spraying. Surf Coat Technol 206:2484–2498

    Google Scholar 

  92. Gu L, Chen X, Fan X, Liu Y, Zou B, Wang Y, Cao X (2011) Improvement of thermal shock resistance for thermal barrier coating on aluminum alloy with various electroless interlayers. Surf Coat Technol 206:29–36

    Google Scholar 

  93. Kokini K, DeJonge J, Rangaraj S, Beardsley B (2002) Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surf Coat Technol 154:223–231

    Google Scholar 

  94. Liang B, Ding C (2005) Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surf Coat Technol 197:185–192

    Google Scholar 

  95. Gilbert A, Kokini K, Sankarasubramanian S (2008) Thermal fracture of zirconia–mullite composite thermal barrier coatings under thermal shock: a numerical study. Surf Coat Technol 203:91–98

    Google Scholar 

  96. Ahmaniemi S, Vippola M, Vuoristo P, Mäntylä T, Buchmann M, Gadow R (2002) Residual stresses in aluminum phosphate sealed plasma sprayed oxide coatings and their effect on abrasive wear. Wear 252:614–623

    Google Scholar 

  97. Chen H, Hutchings IM (1998) Abrasive wear resistance of plasma-sprayed tungsten carbide–cobalt coatings. Surf Coat Technol 107:106–114

    Google Scholar 

  98. Venkateswarlu K, Rajinikanth V, Naveen T, Dhiraj Prasad Sinha (2009) Abrasive wear behavior of thermally sprayed diamond reinforced composite coating deposited with both oxy-acetylene and HVOF techniques. Wear 266:995–1002

    Google Scholar 

  99. Stoica V, Ahmed R, Itsukaichi T (2005) Influence of heat-treatment on the sliding wear of thermal spray cermet coatings. Surf Coat Technol 199:7–21

    Google Scholar 

  100. Valarezo A, Bolelli G, Choi WB, Sampath S, Cannillo V, Lusvarghi L, Rosa R (2010) Damage tolerant functionally graded WC–Co/stainless steel HVOF coatings. Surf Coat Technol 205:2197–2208

    Google Scholar 

  101. Bolelli, Cannillo V, Lusvarghi L, Rosa R, Valarezo A, Choi WB, Dey R, Weyant C, Sampath S (2012) Functionally graded WC–Co/NiAl HVOF coatings for damage tolerance, wear and corrosion protection. Surf Coat Technol 206:2585–2601

    Google Scholar 

  102. Stoica V, Ahmed R, Golshan M, Tobe S (2004) Sliding wear evaluation of hot isostatically pressed thermal spray cermet coatings. J Therm Spray Technol 13(1):93–107

    Google Scholar 

  103. Evdokimenko Yu I, Kisel’ VM, Kadyrov VK, Korol’ AA, Get’man OI (2001) High-velocity flame spraying of powder aluminum protective coatings. Powder Metallurgy Metal Ceram 40(3–4):121–126

    Google Scholar 

  104. Sørensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. J Coat Technol Res 6(2):135–176

    Google Scholar 

  105. Murakami K, Shimada M (2009) Development of thermal spray coatings with corrosion protection and antifouling properties. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1041–1044

    Google Scholar 

  106. Pacheo da Silva C et al (1991) 2nd Plasma Technik Symposium 1. Plasma Technik, Wohlen, pp 363–373

    Google Scholar 

  107. Chun-long Y, Yun-qi A, Ya-tan S (2009) Three years corrosion tests of nanocomposite epoxy sealer for metalized coatings on the East China Sea. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1090–1093

    Google Scholar 

  108. Schmidt DP, Shaw BA, Sikora E, Shaw WW, Laliberte LH (2006) Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment. Prog Org Coat 57:352–364

    Google Scholar 

  109. Han M-S, Woo Y-B, Ko S-C, Jeong Y-J, Jang S-K, Kim S-J (2009) Effects of thickness of Al thermal spray coating for STS 304. Trans Nonferrous Met Soc China 19:925–929

    Google Scholar 

  110. Esfahani EA, Salimijazi H, Golozar MA, Mostaghimi J, Pershin L (2012) Study of corrosion behavior of arc sprayed aluminum coating on mild steel. J Therm Spray Technol. doi:10.1007/s11666-012-9810-x

    Google Scholar 

  111. Gorlach IA (2009) A new method for thermal spraying of Zn–Al coatings. Thin Solid Films 517:5270–5273

    Google Scholar 

  112. Cramer SD, Covino BS Jr, Holcomb GR, Bullard SJ, Collins WK, Govier RD, Wilson RD, Laylor HM (1999) Thermal sprayed titanium anode for cathodic protection of reinforced concrete bridges. J Therm Spray Technol 8(1):133–145

    Google Scholar 

  113. Holcomb GR, Cramer SD, Bullard SJ, Covino Jr BS, Collins WK, Govier RD, McGill GE (1997) Characterization of thermal-sprayed titanium anodes for cathodic protection. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 141–150

    Google Scholar 

  114. Kawakita J, Kuroda S, Fukushima T, Kodama T (2005) Improvement of corrosion resistance of high-velocity oxyfuel-sprayed stainless steel coatings by addition of molybdenum. J Therm Spray Technol 14(2):225–230

    Google Scholar 

  115. Moskowitz LN (1993) Application of HVOF thermal spraying to solve corrosion problems in the petroleum industry—an industrial note. J Therm Spray Technol 2(1):21–29

    Google Scholar 

  116. Zeng Z, Sakoda N, Tajiri T, Kuroda S (2008) Structure and corrosion behavior of 316L stainless steel coatings formed by HVAF spraying with and without sealing. Surf Coat Technol 203:284–290

    Google Scholar 

  117. Meng H (2010) The performance of different WC-based cermet coatings in oil and gas applications–a comparison. In: ITSC 2010 Thermal spray: global solutions, future applications. DVS, Düsseldorf, e-Proc

    Google Scholar 

  118. Souza VAD, Neville A (2007) Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion–corrosion environments. Wear 263:339–346

    Google Scholar 

  119. Ishikawa Y, Kawakita J, Osawa S, Itsukaichi T, Sakamoto Y, Takaya M, Kuroda S (2005) Evaluation of corrosion and wear resistance of hard cermet coatings sprayed by using an improved HVOF process. J Therm Spray Technol 14(3):384–390

    Google Scholar 

  120. Fedrizzi L, Valentinelli L, Rossi S, Segna S (2007) Tribocorrosion behaviour of HVOF cermet coatings. Corros Sci 49:2781–2799

    Google Scholar 

  121. Zhang J, Wang Z, Lin P, Lu W, Zhou Z, Jiang S (2011) Effect of sealing treatment on corrosion resistance of plasma-sprayed NiCrAl/Cr2O3-8 wt.%TiO2 coating. J Therm Spray Technol 20(3):508–513

    Google Scholar 

  122. Tuominen J, Vuoristo P, Mäntylä T, Kylmälahti M, Vihinen J et al (2000) Improving corrosion properties of high-velocity oxy-fuel sprayed inconel 625 by using a high-power continuous wave neodymium-doped yttrium aluminum garnet laser. J Therm Spray Technol 9(4):513–519

    Google Scholar 

  123. Kim S-J, Lee S-J (2011) Effects of F−Si sealer on electrochemical characteristics of 15%Al−85%Zn alloy thermal spray coating. Trans Nonferrous Met Soc China 21:2798–2804

    Google Scholar 

  124. Dent AH, Horlock AJ, McCartney DG, Harris SJ (1999) The corrosion behavior and microstructure of high-velocity oxy-fuel sprayed nickel-base amorphous/nanocrystalline coatings. J Therm Spray Technol 8(3):399–404

    Google Scholar 

  125. Ishikawa K, Suzuki T, Tobe S, Kitamura Y (2001) Resistance of thermal-sprayed duplex coating composed of aluminum and 80Ni-20Cr alloy against aqueous corrosion. J Therm Spray Technol 10(3):520–525

    Google Scholar 

  126. Pardo A, Merino MC, Mohedano M, Casajús P, Coy AE, Arrabal R (2009) Corrosion behaviour of Mg/Al alloys with composite coatings. Surf Coat Technol 203:1252–1263

    Google Scholar 

  127. Arrabal R, Pardo A, Merino MC, Mohedano M, Casajús P, Merino S (2010) Al/SiC thermal spray coatings for corrosion protection of Mg–Al alloys in humid and saline environments. Surf Coat Technol 204:2767–2774

    Google Scholar 

  128. Pokhmurska H, Wielage B, Lampke T, Grund T, Student M, Chervinska N (2008) Post-treatment of thermal spray coatings on magnesium. Surf Coat Technol 202:4515–4524

    Google Scholar 

  129. Mohan P, Patterson T, Yao B, Sohn Y (2010) Degradation of thermal barrier coatings by fuel impurities and CMAS: thermochemical interactions and mitigation approaches. J Therm Spray Technol 19(1–2):156–167

    Google Scholar 

  130. Jones RL (1997) Some aspects of the hot corrosion of thermal barrier coatings. J Therm Spray Technol 6(1):77–84

    Google Scholar 

  131. Hitchman LN, Knapp J (2010) Failure of thermal barrier coatings subjected to CMAS attack. J Therm Spray Technol 19(1–2):148–155

    Google Scholar 

  132. Li L, Hitchman N, Knapp J (2010) Failure of thermal barrier coatings subjected to CMAS attack. J Therm Spray Technol 19(1–2):148–155

    Google Scholar 

  133. Habibi MH, Li Wang, Guo SM (2012) Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 °C. J Eur Ceram Soc 32:1635–1642

    Google Scholar 

  134. Xie X, Guo H, Gong S, Xu H (2012) Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings. Chin J Aeronautics 25:137–142

    Google Scholar 

  135. Mei H, Liu Y, Cheng L, Zhang L (2012) Corrosion mechanism of a NiCoCrAlTaY coated Mar-M247 superalloy in molten salt vapor. Corros Sci 55:201–204

    Google Scholar 

  136. Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J Therm Spray Technol 15(3):387–399

    Google Scholar 

  137. Chatha SS, Sidhu HS, Sidhu BS (2012) High temperature hot corrosion behaviour of NiCr and Cr3C2–NiCr coatings on T91 boiler steel in an aggressive environment at 750 °C. Surf Coat Technol 206:3839–3850

    Google Scholar 

  138. Tani K, Harada Y (2007) Enhancement of service life of steam generating tubes in oil-fired boiler for power generation employing plasma spray technology. J Therm Spray Technol 16(1):111–117

    Google Scholar 

  139. Bala N, Singh H, Prakash S (2010) Accelerated hot corrosion studies of cold spray Ni–50Cr coating on boiler steels. Mater Design 31:244–253

    Google Scholar 

  140. Matsubara Y, Sochi Y, Tanabe M, Takeya A (2007) Advanced coatings on furnace wall tubes. J Therm Spray Technol 16(2):195–201

    Google Scholar 

  141. Chatha SS, Sidhu HS, Sidhu BS (2012) The effects of post-treatment on the hot corrosion behavior of the HVOF-sprayed Cr3C2–NiCr coating. Surf Coat Technol 206:4212–4224

    Google Scholar 

  142. Tao K, Zhou X-L, Cui H, Zhang J-S (2009) Oxidation and hot corrosion behaviors of HVAF-sprayed conventional and nanostructured NiCrC coatings. Trans Nonferrous Met Soc China 19:1151–1160

    Google Scholar 

  143. Jansen F, Xi W, Dorfman MR, Peters JA, Nagy DR (2002) Performance of di-calcium silicate coatings in hot-corrosive environment. Surf Coat Technol 149:57–61

    Google Scholar 

  144. Hirata T, Ota S, Morimoto T (2003) Influence of impurities in Al2O3 ceramics on hot corrosion resistance against molten salt. J Eur Ceram Soc 23:91–97

    Google Scholar 

  145. Gibbons GJ, Hansell RG (2008) Thermal-sprayed coatings on aluminium for mould tool protection and upgrade. J Mater Process Technol 204:184–191

    Google Scholar 

  146. Mizuno H, Kitamura J (2007) MoB/CoCr cermet coatings by HVOF spraying against erosion by molten Al-Zn alloy. J Therm Spray Technol 16(3):404–413

    Google Scholar 

  147. Koolloos MFJ, Houben JM (2000) Behavior of plasma-sprayed thermal barrier coatings during thermal cycling and the effect of a preoxidized NiCrAIY bond coat. J Therm Spray Technol 9(1):49–58

    Google Scholar 

  148. Fossati A, DiFerdinando M, Bardi U, Scrivani A, Giolli C (2012) Influence of surface finishing on the oxidation behaviour of VPS MCrAlY coatings. J Therm Spray Technol 21(2):314–324

    Google Scholar 

  149. Jiang SM, Li HQ, Ma J, Xu CZ, Gong J, Sun C (2010) High temperature corrosion behavior of a gradient NiCoCrAlYSi coating II: oxidation and hot corrosion. Corros Sci 52:2316–2322

    Google Scholar 

  150. Yuan FH, Chen ZX, Huang ZW, Wang ZG, Zhu SJ (2008) Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bond coats. Corros Sci 50:1608–1617

    Google Scholar 

  151. Pint BA, Wright IG, Brindley WJ (2000) Evaluation of thermal barrier coating systems on novel substrates. J Therm Spray Technol 9(2):198–203

    Google Scholar 

  152. Limarga AM, Widjaja S, Yip TH (2005) Mechanical properties and oxidation resistance of plasma-sprayed multilayered Al2O3/ZrO2 thermal barrier coatings. Surf Coat Technol 197:93–102

    Google Scholar 

  153. Ramesh MR, Prakash S, Nath SK, Pawan Kumar Sapra, Krishnamurthy N (2011) Evaluation of thermocyclic oxidation behavior of HVOF-sprayed NiCrFeSiB coatings on boiler tube steels. J Therm Spray Technol 20(5):992–1000

    Google Scholar 

  154. Kaur M, Singh H, Prakash S (2011) Surface engineering analysis of detonation-gun sprayed Cr3C2–NiCr coating under high-temperature oxidation and oxidation–erosion environments. Surf Coat Technol 206:530–541

    Google Scholar 

  155. Sidhu TS, Malik A, Prakash S, Agrawal RD (2007) Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni- and Fe-based superalloys at 800 °C. J Therm Spray Technol 16(5–6):844–849

    Google Scholar 

  156. Singh H, Puri D, Prakash S, Rama Rao VV (2006) On the high-temperature oxidation protection behavior of plasma-sprayed stellite-6 coatings. Metallurgical Mater Trans A 37A:3048–3056

    Google Scholar 

  157. Bala N, Singh H, Prakash S (2011) Characterization and high-temperature oxidation behavior of cold-sprayed Ni-20Cr and Ni-50Cr coatings on boiler steels. Metallurgical Mater Trans A 42A:3399–3416

    Google Scholar 

  158. Hill H, Weber S, Raab U, Theisen W, Wagner L (2012) Influence of processing and heat treatment on corrosion resistance and properties of high alloyed steel coatings. J Therm Spray Technol 21(5):987–994

    Google Scholar 

  159. Kembaiyan KT, Keshavan K (1995) Combating severe fluid erosion and corrosion of drill bits using thermal spray coatings. Wear 186–187:487–492

    Google Scholar 

  160. Uozato S, Nakata K, Ushio M (2003) Corrosion and wear behaviors of ferrous powder thermal spray coatings on aluminum alloy. Surf Coat Technol 169–170:691–694

    Google Scholar 

  161. Al-Fadhli HY, Stokes J, Hashmi MSJ, Yilbas BS (2006) The erosion–corrosion behaviour of high velocity oxy-fuel (HVOF) thermally sprayed inconel-625 coatings on different metallic surfaces. Surf Coat Technol 200:5782–5788

    Google Scholar 

  162. Lima CRC, de Souza NFC, Camargo F (2012) Study of wear and corrosion performance of thermal sprayed engineering polymers. Surf Coat Technol 220:140–143

    Google Scholar 

  163. Flores JF, Neville A, Kapur N, Gnanavelu A (2009) An experimental study of the erosion–corrosion behavior of plasma transferred arc MMCs. Wear 267:213–222

    Google Scholar 

  164. Sidhu BS, Prakash S (2006) Erosion-corrosion of plasma as sprayed and laser remelted Stellite-6 coatings in a coal fired boiler. Wear 260:1035–1044

    Google Scholar 

  165. Wang B (1996) Erosion-corrosion of thermal sprayed coatings in FBC boilers. Wear 199:24–32

    Google Scholar 

  166. Uusitalo MA, Vuoristo PMJ, Mäntylä TA (2002) Elevated temperature erosion–corrosion coatings in chlorine containing environments of thermal sprayed. Wear 252:586–594

    Google Scholar 

  167. Billah BM, Ahmad Khalid F, Nusair Khan A (2012) Behavior of calcia-stabilized zirconia coating at high temperature, deposited by air plasma spraying system. J Therm Spray Technol 21(1):121–131

    Google Scholar 

  168. Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42

    Google Scholar 

  169. Schulz U, Bernardi O, Ebach-Stahl A, Vaßen R, Sebold D (2008) Improvement of EB-PVD thermal barrier coatings by treatments of a vacuum plasma-sprayed bond coat. Surf Coat Technol 203:160–170

    Google Scholar 

  170. Bose S, de Masi-Marcin J (1997) Thermal barrier coating experience in gas turbine engines at Pratt & Whitney. J Therm Spray Technol 6(1):99–104

    Google Scholar 

  171. Cipitria A, Golosnoy IO, Clyne TW (2009) A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings. Acta Mater 57:980–992

    Google Scholar 

  172. Markocsan N, Nylén P, Wigren J, Li X-H, Tricoire A (2009) Effect of thermal aging on microstructure and functional properties of zirconia-base thermal barrier coatings. J Therm Spray Technol 18(2):201–208

    Google Scholar 

  173. Golosnoy IO, Cipitria A, Clyne TW (2009) Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J Therm Spray Technol 18(5–6):809–821

    Google Scholar 

  174. Hernandez MT, Karlsson AM, Bartsch M (2009) On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings. Surf Coat Technol 203:3549–3558

    Google Scholar 

  175. Vaßen R, Giesen S, Stöver D (2009) Lifetime of plasma-sprayed thermal barrier coatings: comparison of numerical and experimental results. J Therm Spray Technol 18(5–6):835–845

    Google Scholar 

  176. Toscano J, Vaβen R, Gil A, Subanovic M, Naumenko D, Singheiser L, Quadakkers WJ (2006) Parameters affecting TGO growth and adherence on MCrAlY-bond coats for TBC’s. Surf Coat Technol 201:3906–3910

    Google Scholar 

  177. Pint BA, Haynes JA, Zhang Y (2010) Effect of superalloy substrate and bond coating on TBC lifetime. Surf Coat Technol 205:1236–1240

    Google Scholar 

  178. Chen Z, Mabon J, Wen J-G, Trice R (2009) Degradation of plasma-sprayed yttria-stabilized zirconia coatings via ingress of vanadium oxide. J Eur Ceram Soc 29:1647–1656

    Google Scholar 

  179. Feuerstein A, Knapp J, Taylor T, Ashary A, Bolcavage A, Hitchman N (2008) Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review. J Therm Spray Technol 17(2):199–213

    Google Scholar 

  180. Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D (2010) Overview on advanced thermal barrier coatings. Surf Coat Technol 205:938–942

    Google Scholar 

  181. Vaßen R, Stuke A, Stöver D (2009) Recent developments in the field of thermal barrier coatings. J Therm Spray Technol 18(2):181–186

    Google Scholar 

  182. Richer P, Yandouzi M, Beauvais L, Jodoin B (2010) Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf Coat Technol 204:3962–3974

    Google Scholar 

  183. Karger M, Vaßen R, Stöver D (2011) Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: spraying process, microstructure and thermal cycling behaviour. Surf Coat Technol 206:16–23

    Google Scholar 

  184. Hospach A, Mauer G, Vaßen R, Stöver D (2012) Characteristics of ceramic coatings made by thin film low pressure plasma spraying (LPPS-TF). J Therm Spray Technol 21(3–4):435–440

    Google Scholar 

  185. Muehlberger E, Meyer P (2009) LPPS – thin film processes: overview of origin and future possibilities. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 737–740

    Google Scholar 

  186. Fauchais P, Montavon G, Lima RS, Marple BR (2011) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D Appl Phys 44:093001

    Google Scholar 

  187. Musil J, Alaya M, Oberacker R (1997) Plasma-sprayed duplex and graded partially stabilized zirconia thermal barrier coatings: deposition process and properties. J Therm Spray Technol 6(4):449–455

    Google Scholar 

  188. Soechting FO (1999) A design perspective on thermal barrier coatings. J Therm Spray Technol 8(4):505–511

    Google Scholar 

  189. Beele W, Marijnissen G, van Lieshout A (1999) The evolution of thermal barrier coatings—status and upcoming solutions for today’s key issues. Surf Coat Technol 120–121:61–67

    Google Scholar 

  190. Gupta M, Curry N, Nylén P, Markocsan N, Vaßen R (2012) Design of next generation thermal barrier coatings — experiments and modeling. Surf Coat Technol 220:20–26

    Google Scholar 

  191. Cao XQ, Vaßen R, Stöver D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24:1–10

    Google Scholar 

  192. Haynes JA, Ferber MK, Porter WD (2000) Thermal cycling behavior of plasma-sprayed thermal barrier coatings with various MCrAIX bond coats. J Therm Spray Technol 9(1):38–48

    Google Scholar 

  193. Hamacha R, Fauchais P, Nardou E (1996) Influence of dopant on the behaviour under thermal cycling of two plasma sprayed zirconia coatings, Part 1: Relationship between powder characteristics and coating properties. J Therm Spray Technol 5(4):431–438

    Google Scholar 

  194. Ma B, Li Y, Su K (2009) Characterization of ceria–yttria stabilized zirconia plasma-sprayed coatings. Appl Surf Sci 255:7234–7237

    Google Scholar 

  195. Markocsan N, Nylén P, Wigren J, Li X-H (2007) Low thermal conductivity coatings for gas turbine applications. J Therm Spray Technol 16(4):498–505

    Google Scholar 

  196. Curry N, Donoghue J (2012) Evolution of thermal conductivity of dysprosia stabilised thermal barrier coating systems during heat treatment. Surf Coat Technol 209:38–43

    Google Scholar 

  197. Chen X, Zou B, Wang Y, Ma H, Cao X (2011) Microstructure and thermal cycling behavior of air plasma-sprayed YSZ/LaMgAl11O19 composite coatings. J Therm Spray Technol 20(6):1328–1338

    Google Scholar 

  198. Chen X, Gu L, Zou B, Wang Y, Cao X (2012) New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying. Surf Coat Technol 206:2265–2274

    Google Scholar 

  199. Jarligo MO, Mack DE, Vaßen R, Stöver D (2009) Application of plasma-sprayed complex perovskites as thermal barrier coatings. J Therm Spray Technol 18(2):187–193

    Google Scholar 

  200. Ma W, Jarligo MO, Mack DE, Pitzer D, Malzbender J, Vaßen R, Stöver D (2008) New generation perovskite thermal barrier coating materials. J Therm Spray Technol 17(5–6):831–837

    Google Scholar 

  201. Yu J, Zhao H, Zhou X, Tao S, Ding C (2011) Effect of thermal aging on microstructure and mechanical properties of plasma-sprayed samarium zirconate coatings. J Therm Spray Technol 20(5):1056–1062

    Google Scholar 

  202. Xie XY, Guo HB, Gong SK (2010) Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings. J Therm Spray Technol 19(6):1179–1185

    Google Scholar 

  203. Guo H, Zhang H, Ma G, Gong S (2009) Thermo-physical and thermal cycling properties of plasma-sprayed BaLa2Ti3O10 coating as potential thermal barrier materials. Surf Coat Technol 204:691–696

    Google Scholar 

  204. Liu Y, Gao YF, Tao SY, Zhou XM, Li WD, Luo HJ, Ding CX (2008) Microstructure of plasma sprayed La2O3-modified YSZ coatings. J Therm Spray Technol 17(5–6):603–607

    Google Scholar 

  205. Paul S, Cipitria A, Golosnoy IO, Xie L, Dorfman MR, Clyne TW (2007) Effects of impurity content on the sintering characteristics of plasma-sprayed zirconia. J Therm Spray Technol 16(5–6):798–803

    Google Scholar 

  206. Mihm S, Duda T, Gruner H, Thomas G, Dzur B (2012) Method and process development of advanced atmospheric plasma spraying for thermal barrier coatings. J Therm Spray Technol 21(3–4):400–408

    Google Scholar 

  207. Tan Y, Srinivasan V, Nakamura T, Sampath S, Bertrand P, Bertrand G (2012) TBC optimizing compliance and thermal conductivity of plasma sprayed thermal barrier coatings via controlled powders and processing strategies. J Therm Spray Technol 21(5):950–962

    Google Scholar 

  208. Guo HB, Vaßen R, Stöver D (2004) Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surf Coat Technol 186:353–363

    Google Scholar 

  209. Zhu D, Choi SR, Miller RA (2004) Development and thermal fatigue testing of ceramic thermal barrier coatings. Surf Coat Technol 188–189:146–152

    Google Scholar 

  210. Shin I-H, Koo J-M, Seok C-S, Yang S-H, Lee T-W, Kim B-S (2011) Estimation of spallation life of thermal barrier coating of gas turbine blade by thermal fatigue test. Surf Coat Technol 205:S157–S160

    Google Scholar 

  211. Kim D-J, Shin I-H, Koo J-M, Seok C-S, Lee T-W (2010) Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue. Surf Coat Technol 205:S451–S458

    Google Scholar 

  212. Jang H-J, Park D-H, Junga Y-G, Jang J-C, Choi S-C, Pai U (2006) Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs). Surf Coat Technol 200:4355–4362

    Google Scholar 

  213. Li Y, Li C-J, Yang G-J, Xing L-K (2010) Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying. Surf Coat Technol 205:2225–2233

    Google Scholar 

  214. von Niessen K, Gindrat M, Refke A (2010) Vapor phase deposition using plasma spray-PVD™. J Therm Spray Technol 19(1–2):502–509

    Google Scholar 

  215. Gell M, Jordan EH, Teicholz M, Cetegen BM, Padture N, Xie L, Chen D, Ma X, Roth J (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17(1):124–135

    Google Scholar 

  216. Mutasim Z, Brentnall W (1997) Thermal barrier coatings for industrial gas turbine applications: an industrial note. J Therm Spray Technol 6(1):105–108

    Google Scholar 

  217. Nelson WA, Orenstein RM (1997) Land based gas turbines TBC experience in land-based gas turbines. J Therm Spray Technol 6(2):176–180

    Google Scholar 

  218. Parks WP, Hoffman EE, Lee WY, Wright IG (1997) Thermal barrier coatings issues in advanced land-based gas turbines. J Therm Spray Technol 6(2):187–192

    Google Scholar 

  219. Tamura M, Takahashi M, Ishii J, Suzuki K, Sato M, Shimomur K (1999) Multilayered thermal barrier coating for land-based gas turbines. J Therm Spray Technol 8(1):68–72

    Google Scholar 

  220. Wright IG, Gibbons TB (2007) Recent developments in gas turbine materials and technology and their implications for syngas firing. Int J Hydrogen Energy 32:3610–3621

    Google Scholar 

  221. Lebedev AS, Kostennikov SV (2008) Trends in increasing gas-turbine units efficiency. Therm Eng 55(6):461–468

    Google Scholar 

  222. Pomeroy MJ (2005) Coatings for gas turbine materials and long-term stability issues. Mater Design 26:223–231

    Google Scholar 

  223. Curry N, Markocsan N, Li X-H, Tricoire A, Dorfman M (2011) Next generation thermal barrier coatings for the gas turbine industry. J Therm Spray Technol 20(1–2):108–115

    Google Scholar 

  224. Beardsley MB (1997) Thick thermal barrier coatings for diesel engines. J Therm Spray Technol 6(2):181–186

    Google Scholar 

  225. Ahmaniemi S, Tuominen J, Vuoristo P, Mäntylä T (2002) Sealing procedures for thick thermal barrier coatings. J Therm Spray Technol 11(3):320–332

    Google Scholar 

  226. Hejwowski T, Weronski A (2002) The effect of thermal barrier coatings on diesel engine performance. Vacuum 65:427–432

    Google Scholar 

  227. Buyukkaya E, Cerit M (2007) Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method. Surf Coat Technol 202:398–402

    Google Scholar 

  228. Parlak A, Yasar H, Eldogan O (2005) The effect of thermal barrier coating on a turbo-charged diesel engine performance and exergy potential of the exhaust gas. Energy Convers Manag 46:489–499

    Google Scholar 

  229. İşcan B, Aydın H (2012) Improving the usability of vegetable oils as a fuel in a low heat rejection diesel engine. Fuel Process Technol 98:59–64

    Google Scholar 

  230. Pulci G, Tului M, Tirillo J, Marra F, Lionetti S, Valente T (2011) High temperature mechanical behavior of UHTC coatings for thermal protection of re-entry vehicles. J Therm Spray Technol 20(1–2):139–144

    Google Scholar 

  231. Davis JB, Marshall DB, Oka KS, Housley RM, Morgan PED (1999) Ceramic composites for thermal protection systems. Composites A 30:483–488

    Google Scholar 

  232. Fan X, Liu Y, Xu Z, Wang Y, Zou B, Gu L, Wang C, Chen X, Khan ZS, Yang D, Cao X (2011) Preparation and characterization of 8YSZ thermal barrier coatings on rare earth-magnesium alloy. J Therm Spray Technol 20(4):948–957

    Google Scholar 

  233. Huang W, Fan X, Zhao Y, Zhou X, Meng X, Wang Y, Zou B, Cao X, Wang Z (2012) Fabrication of thermal barrier coatings onto polyimide matrix composites via air plasma spray process. Surf Coat Technol 207:421–429

    Google Scholar 

  234. Cojocaru CV, Wang Y, Moreau C, Lima RS, Mesquita-Guimarães J, Garcia E, Miranzo P, Osendi MI (2011) Mechanical behavior of air plasma-sprayed YSZ functionally graded mullite coatings investigated via instrumented indentation. J Therm Spray Technol 20(1–2):101–107

    Google Scholar 

  235. Suzuki M, Sodeoka S, Inoue T (2008) Zircon-based ceramics composite coating for zircon-based ceramics composite. J Therm Spray Technol 17(3):404–409

    Google Scholar 

  236. Ma X, Matthews A (2009) Evaluation of abradable seal coating mechanical properties. Wear 267:1501–1510

    Google Scholar 

  237. Johnston RE (2011) Mechanical characterization of AlSi-hBN, NiCrAl-Bentonite, and NiCrAl-Bentonite-hBN freestanding abradable coatings. Surf Coat Technol 205:3268–3273

    Google Scholar 

  238. Rajendran R (2012) Gas turbine coatings – an overview. Eng Fail Anal 26:355–369

    Google Scholar 

  239. Ma X, Matthews A (2007) Investigation of abradable seal coating performance using scratch testing. Surf Coat Technol 202:1214–1220

    Google Scholar 

  240. Bardi U, Giolli C, Scrivani A, Rizzi G, Borgioli F, Fossati A, Partes K, Seefeld T, Sporer D, Refke A (2008) Development and investigation on new composite and ceramic coatings as possible abradable seals. J Therm Spray Technol 17(5–6):805–811

    Google Scholar 

  241. Steinke T, Mauer G, Vaßen R, Stöver D, Roth-Fagaraseanu D, Hancock M (2010) Process design and monitoring for plasma sprayed abradable coatings. J Therm Spray Technol 19(4):756–764

    Google Scholar 

  242. Sporer D, Dorfman M, Xie L, Refke A, Giovannetti I, Giannozzi M (2007) Processing and properties of advanced ceramic abradable coatings. In: Marple MR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 495–500

    Google Scholar 

  243. Stringer J, Marshall MB (2012) High speed wear testing of an abradable coating. Wear 294–295:257–263

    Google Scholar 

  244. Faraoun HI, Grosdidier T, Seichepine J-L, Goran D, Aourag H, Coddet C, Zwick J, Hopkins N (2006) Improvement of thermally sprayed abradable coating by microstructure control. Surf Coat Technol 201:2303–2312

    Google Scholar 

  245. Johnston RE (2009) The sensitivity of abradable coating residual stresses to varying material properties. J Therm Spray Technol 101318(5–6):1004–1013

    Google Scholar 

  246. Bounazef M, Guessasmaa S, Ait Saadi B (2004) The wear, deterioration and transformation phenomena of abradable coating BN–SiAl–bounding organic element, caused by the friction between the blades and the turbine casing. Mater Lett 58:3375–3380

    Google Scholar 

  247. Dowson P, Walker MS, Watson AP (2004) Development of abradable and rub-tolerant seal materials for application in centrifugal compressors and steam turbines. Seal Technol Dec:5–10

    Google Scholar 

  248. Lekatou A, Regoutas E, Karantzalis AE (2008) Corrosion behaviour of cermet-based coatings with a bond coat in 0.5 M H2SO4. Corros Sci 50:3389–3400

    Google Scholar 

  249. Yılmaz S (2009) An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3–13 wt.% TiO2 with bond coat on pure titanium substrate. Ceram Int 35:2017–2022

    Google Scholar 

  250. Cho TY, Hong Yoon J, Young Cho J, Kon Joo Y, Ho Kang J, Zhang S, Gon Chun H, Young Hwang S, Chol Kwon S (2009) Surface properties and tensile bond strength of HVOF thermal spray coatings of WC-Co powder onto the surface of 420J2 steel and the bond coats of Ni, NiCr, and Ni/NiCr. Surf Coat Technol 203:3250–3253

    Google Scholar 

  251. Schulz U, Fritscher K, Ebach-Stahl A (2008) Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats. Surf Coat Technol 203:449–455

    Google Scholar 

  252. Zhao X, Xiao P (2008) Effect of platinum on the durability of thermal barrier systems with a γ+γ′ bond coat. Thin Solid Films 517:828–834

    Google Scholar 

  253. Tang F, Schoenung JM (2005) Local accumulation of thermally grown oxide in plasma-sprayed thermal barrier coatings with rough top-coat/bond-coat interfaces. Scr Mater 52:905–909

    Google Scholar 

  254. Chen WR, Irissou E, Wu X, Legoux J-G, Marple BR (2011) The oxidation behavior of TBC with cold spray CoNiCrAlY bond coat. J Therm Spray Technol 20(1–2):132–138

    Google Scholar 

  255. Das S, Datta S, Basu D, Das GC (2009) Glass–ceramics as oxidation resistant bond coat in thermal barrier coating system. Ceram Int 35:1403–1406

    Google Scholar 

  256. Lu Y-P, Li M-S, Li S-T, Wang Z-G, Zhu R-F (2004) Plasma-sprayed hydroxyapatite-titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25:4393–4403

    Google Scholar 

  257. Goller G (2004) The effect of bond coat on mechanical properties of plasma sprayed bioglass-titanium coatings. Ceram Int 30:351–355

    Google Scholar 

  258. Guanhong S, Xiaodong H, Jiuxing J, Yue S (2011) Parametric study of Al and Al2O3 ceramic coatings deposited by air plasma spray onto polymer substrate. Appl Surf Sci 257:7864–7870

    Google Scholar 

  259. Liu A, Guo M, Gao J, Zhao M (2006) Influence of bond coat on shear adhesion strength of erosion and thermal resistant coating for carbon fiber reinforced thermosetting polyimide. Surf Coat Technol 201:2696–2700

    Google Scholar 

  260. Beauvais S, Guipont V, Jeandin M, Juve D, Treheux D, Robisson A, Saenger R (2005) Influence of defect orientation on electrical insulating properties of plasma-sprayed alumina coatings. J Electroceram 15:65–74

    Google Scholar 

  261. Toma F-L, Scheitz S, Berger L-M, Sauchuk V, Kusnezoff M, Thiele S (2011) Comparative study of the electrical properties and characteristics of thermally sprayed alumina and spinel coatings. J Therm Spray Technol 20(1–2):195–204

    Google Scholar 

  262. Toma F-L, Berger L-M, Scheitz S, Langner S, Rödel C, Potthoff A, Sauchuk V, Kusnezoff M (2012) Comparison of the microstructural characteristics and electrical properties of thermally sprayed Al2O3 coatings from aqueous suspensions and feedstock powders. J Therm Spray Technol 21(3–4):480–488

    Google Scholar 

  263. Kim H-J, Odoul S, Lee C-H, Kweon Y-G (2001) The electrical insulation behavior and sealing effects of plasma-sprayed alumina-titania coatings. Surf Coat Technol 140:293–301

    Google Scholar 

  264. Prudenziati M, Gualtieri ML (2008) Electrical properties of thermally sprayed Ni- and Ni20Cr-based resistors. J Therm Spray Technol 17(3):385–394

    Google Scholar 

  265. Prudenziati M, Cirri G, Dal Bo P (2006) Novel high-temperature reliable heaters in plasma spray technology. J Therm Spray Technol 15(3):329–331

    Google Scholar 

  266. Prudenziati M (2008) Development and the implementation of high-temperature reliable heaters in plasma spray technology. J Therm Spray Technol 17(2):234–243

    Google Scholar 

  267. Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15(2):223–232

    Google Scholar 

  268. Marx S, Paul A, Köhler A, Hüttl G (2006) Cold spraying: innovative layers for new applications. J Therm Spray Technol 15(2):177–183

    Google Scholar 

  269. Wu X-K, Zhang J-S, Zhou X-L, Cui H, Liu J-C (2012) Advanced cold spray technology: deposition characteristics and potential applications. Sci China Technol Sci 55(2):357–368

    Google Scholar 

  270. Gui M, Kang SB, Euh K (2004) Al-SiC powder preparation for electronic packaging aluminum composites by plasma spray processing. J Therm Spray Technol 13(2):214–222

    Google Scholar 

  271. Yamakawa O, Nihonmatsu H, Morisasa M, Hotta H (2009) Plasma sprayed ceramic tray members for firing ceramic capacitor. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 624–627

    Google Scholar 

  272. Donner K-R, Gärtner F, Klassen T (2011) Metallization of thin Al2O3 layers in power electronics using cold gas spraying. J Therm Spray Technol 20(1–2):299–306

    Google Scholar 

  273. Lin KH, Xu ZH, Lin ST (2011) A study on microstructure and dielectric performances of alumina/copper composites by plasma spray coating. J Mater Eng Perform 20(2):231–237

    Google Scholar 

  274. Osbond P (1992) Plasma sprayed anti-reflection coatings for micro-wave optical components. Adv Mater 4:807–809

    Google Scholar 

  275. Lisjak D, Bégard M, Bruehl M, Bobzin K, Hujanen A, Lintunen P, Bolelli G, Lusvarghi L, Ovtar S, Drofenik M (2011) Hexaferrite/polyester composite coatings for electromagnetic-wave absorbers. J Therm Spray Technol 20(3):638–644

    Google Scholar 

  276. Rieger G, Wecker J, Rodewald W, Sattler W, Bach FW, Duda T, Unterberg W (2000) Nd-Fe-B permanent magnets (thick films) produced by a vacuum-plasma-spraying process. J Appl Phys 87(9):5329–5331

    Google Scholar 

  277. Sampath S (2010) Thermal spray applications in electronics and sensors: past, present, and future. J Therm Spray Technol 19(5):921–949

    Google Scholar 

  278. Voyer J, Schulz P, Schreiber M (2008) Electrically conductive flame sprayed aluminum coatings on textile substrates. J Therm Spray Technol 17(5–6):818–823

    Google Scholar 

  279. Geibel A, Froyen L, Delaey L, Leuven KU (1996) Plasma spray forming: an alternate route for manufacturing free-standing components. J Therm Spray Technol 5(4):419–430

    Google Scholar 

  280. Devasenapathi A, Ng HW, Yu SCM, Indra AB (2002) Forming near net shape free-standing components by plasma spraying. Mater Lett 57:882–886

    Google Scholar 

  281. Chráska P, Neufuss K, Herman H (1997) Plasma spraying of zircon. J Therm Spray Technol 6(4):445–448

    Google Scholar 

  282. Neufuss K, Chráska P, Kolman B, Sampath S, Trávnícek Z (1997) Properties of plasma-sprayed freestanding ceramic parts. J Therm Spray Technol 6(4):434–438

    Google Scholar 

  283. Shi S, Hwang J-Y (2003) Plasma spray fabrication of near-net-shape ceramic objects. J Miner Mater Charact Eng 2(2):145–150

    Google Scholar 

  284. Patel RR, Keshri AK, Dulikravich GS, Agarwal A (2010) An experimental and computational methodology for near net shape fabrication of thin walled ceramic structures by plasma spray forming. J Mater Process Technol 210:1260–1269

    Google Scholar 

  285. Brožek V, Ctibor P, Cheong DI, Yang S-H (2009) Plasma spraying of zirconium carbide-hafnium carbide-tungsten cermets. Powder Metallurgy Prog 9:1–49

    Google Scholar 

  286. Helali M, Hashmi MSJ (1996) Production of free-standing objects by high velocity oxy-fuel (HVOF) thermal spraying process. J Mater Process Technol 56:431–438

    Google Scholar 

  287. Pattison J, Celotto S, Morgan R, Bray M, O’Neill W (2007) Cold gas dynamic manufacturing: a non-thermal approach to freeform fabrication. Int J Machine Tools Manuf 47:627–634

    Google Scholar 

  288. Chen JZ, Herman H, Safai S (1993) Evaluation of NiAI and NiAI-B deposited by vacuum plasma spray. J Therm Spray Technol 2(4):357–361

    Google Scholar 

  289. Saeidi S, Voisey KT, McCartney DG (2009) The effect of heat treatment on the oxidation behavior of HVOF and VPS CoNiCrAlY coatings. J Therm Spray Technol 18(2):209–216

    Google Scholar 

  290. Fan X, Ishigaki T (2001) Mo5Si3-B and MoSi2 deposits fabricated by radio frequency induction plasma spraying. J Therm Spray Technol 10(4):611–617

    Google Scholar 

  291. Waki H, Kitamura T, Kobayashi A (2009) Effect of thermal treatment on high-temperature mechanical properties enhancement in LPPS, HVOF, and APS CoNiCrAlY coatings. J Therm Spray Technol 18(4):500–509

    Google Scholar 

  292. Chraska P, Neufuss K, Herman H (1997) Plasma spraying of zircon. J Therm Spray Technol 6(4):445–448

    Google Scholar 

  293. Chen H, Gao Y, Luo H, Tao S (2011) Preparation and thermophysical properties of La2Zr2O7 coatings by thermal spraying of an amorphous precursor. J Therm Spray Technol 20(6):1201–1208

    Google Scholar 

  294. Henne R, Müller M, Proß E, Schiller G, Gitzhofer F, Boulos M (1999) Near-net-shape forming of metallic bipolar plates for planar solid oxide fuel cells by induction plasma spraying. J Therm Spray Technol 8(1):110–116

    Google Scholar 

  295. Agarwal A, McKechnie T, Seal S (2003) Net shape nanostructured aluminum oxide structures fabricated by plasma spray forming. J Therm Spray Technol 12(3):350–359

    Google Scholar 

  296. Laha T, Agarwal A, McKechnie T, Seal S (2004) Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A 381:249–258

    Google Scholar 

  297. Hussain T, McCartney DG, Shipway PH, Marrocco T (2011) Corrosion behavior of cold sprayed titanium coatings and free standing deposits. J Therm Spray Technol 20(1–2):260–274

    Google Scholar 

  298. Herman H, Sampath S, Tiwari R, Neiser R (1994) Plasma spray forming of intermetallics and their composites. J Therm Spray Technol 3(3):295–296

    Google Scholar 

  299. Weiss LE, Prinz FB, Adams DA, Siewiorek DP (1992) Thermal spray shape deposition. J Therm Spray Technol 1(3):231–237

    Google Scholar 

  300. Yang Y, Oh N, Liu Y, Chen W, Oh S, Appleford M, Kim S, Kim K, Park S, Bumgardner J, Haggard W, Ong J (2006) Enhancing osseo-integration using surface-modified titanium implants. JOM 58:71–76

    Google Scholar 

  301. Ong JL, Appleford M, Oh S, Yang Y, Chen W-H et al (2006) The characterization and development of bioactive hydroxyapatite coatings. JOM 58(7):67–69

    Google Scholar 

  302. Gross KA, Walsh W, Swarts E (2004) Analysis of retrieved hydroxyapatite-coated hip prostheses. J Therm Spray Technol 13(2):190–199

    Google Scholar 

  303. Khor KA, Cheang P, Wang Y (1997) The thermal spray processing of HA powders and coatings. JOM Feb:51–57

    Google Scholar 

  304. Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205:2785–2792

    Google Scholar 

  305. Legoux J-G, Chellat F, Lima RS, Marple BR, Bureau MN, Shen H, Candeliere GA (2006) Development of osteoblast colonies on new bioactive coatings. J Therm Spray Technol 15(4):628–633

    Google Scholar 

  306. Chang C, Shi J, Huang J, Hu Z, Ding C (1998) Effects of power level on characteristics of vacuum plasma sprayed hydroxyapatite coating. J Therm Spray Technol 7(4):484–488

    Google Scholar 

  307. Prevéy PS (2000) X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings. J Therm Spray Technol 9(3):369–376

    Google Scholar 

  308. Khor KA, Yip CS, Cheang P (1997) Ti-6AI-4 hydroxyapatite composite coatings prepared by thermal spray techniques. J Therm Spray Technol 6(1):109–115

    Google Scholar 

  309. Wang Y, Khor KA, Cheang P (1998) Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants. J Therm Spray Technol 7(1):50–57

    Google Scholar 

  310. Hasan S, Stokes J (2011) Design of experiment analysis of the Sulzer Metco DJ high velocity oxy-fuel coating of hydroxyapatite for orthopedic applications. J Therm Spray Technol 20(1–2):186–194

    Google Scholar 

  311. Lima RS, Dimitrievska S, Bureau MN, Marple BR, Petit A, Mwale F, Antoniou J (2010) HVOF-sprayed Nano TiO2-HA coatings exhibiting enhanced biocompatibility. J Therm Spray Technol 19(1–2):336–343

    Google Scholar 

  312. Lima RS, Li H, Khor KA, Marple BR (2006) Biocompatible nanostructured high-velocity oxyfuel sprayed titania coating: deposition, characterization, and mechanical properties. J Therm Spray Technol 15(4):623–627

    Google Scholar 

  313. Morks MF, Kobayashi A (2008) Development of ZrO2/SiO2 bioinert ceramic coatings for biomedical application. J Mech Behav Biomed Mater 1:165–171

    Google Scholar 

  314. Vitale-Brovarone C, Verné E (2005) SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications. J Mater Sci Mater Med 16:863–871

    Google Scholar 

  315. Xie Y, Zheng X, Ding C, Zhai W, Chang J, Ji H (2009) Preparation and characterization of CaO-ZrO2-SiO2 coating for potential application in biomedicine. J Therm Spray Technol 18(4):678–685

    Google Scholar 

  316. Bolelli G, Cannillo V, Gadow R, Killinger A, Lusvarghi L, Rauch J (2009) Microstructural and in vitro characterisation of high-velocity suspension flame sprayed (HVSFS) bioactive glass coatings. J Eur Ceram Soc 29:2249–2257

    Google Scholar 

  317. Fernandez J, Gaona M, Guilemany JM (2007) Effect of heat treatments on HVOF hydroxyapatite coatings. J Therm Spray Technol 16(2):220–228

    Google Scholar 

  318. Yu L-G, Khor KA, Li H, Cheang P (2003) Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings. Biomaterials 24:2695–2705

    Google Scholar 

  319. Bellucci D, Bolelli G, Cannillo V, Gadow R, Killinger A, Lusvarghi L, Sola A, Stiegler N (2012) High velocity suspension flame sprayed (HVSFS) potassium-based bioactive glass coatings with and without TiO2 bond coat. Surf Coat Technol 206:3857–3868

    Google Scholar 

  320. Liang Y, Xie Y, Ji H, Huang L, Zheng X (2010) Chemical stability and biological properties of plasma-sprayed CaO-SiO2-ZrO2 coatings. J Therm Spray Technol 19(6):1171–1178

    Google Scholar 

  321. Jeffery B, Peppler M, Lima RS, McDonald A (2010) Bactericidal effects of HVOF-sprayed nanostructured TiO2 on Pseudomonas aeruginosa. J Therm Spray Technol 19(1–2):344–349

    Google Scholar 

  322. Sanpo N, Lu Tan M, Cheang P, Khor KA (2009) Antibacterial property of cold-sprayed HA-Ag/PEEK coating. J Therm Spray Technol 18(1):10–15

    Google Scholar 

  323. Sanpo N, Ming Ang S, Cheang P, Khor KA (2009) Antibacterial property of cold sprayed chitosan-Cu/Al coating. J Therm Spray Technol 18(4):600–608

    Google Scholar 

  324. Sahraoui T, Fenineche N-E, Montavon G, Coddet C (2004) Alternative to chromium: characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty). J Mater Process Technol 152:43–55

    Google Scholar 

  325. Heydarzadeh SM, Ghadami F (2010) Comparative tribological study of air plasma sprayed WC–12% coating versus conventional hard chromium electro deposit. Tribol Int 43:882–886

    Google Scholar 

  326. Bolelli G, Cannillo V, Lusvarghi L, Ricco S (2006) Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surf Coat Technol 200:2995–3009

    Google Scholar 

  327. Deng C, Liu M, Wu C, Zhou K, Song J (2007) Impingement resistance of HVAF WC-based coatings. J Therm Spray Technol 16(5–6):604–609

    Google Scholar 

  328. Guilemany JM, Espallargas N, Suegama PH, Benedetti AV, Fernández J (2005) High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings. J Therm Spray Technol 14(3):335–341

    Google Scholar 

  329. Picas JA, Forna A, Matthäus G (2006) HVOF coatings as an alternative to hard chrome for pistons and valves. Wear 261:477–484

    Google Scholar 

  330. Staia MH, Suárez M, Chicot D, Lesage J, Iost A, Puchi-Cabrera ES (2012) Cr2C3–NiCr VPS thermal spray coatings as candidate for chromium replacement. Surf Coat Technol 220:225–231

    Google Scholar 

  331. Lu W, Wu Y, Zhang J, Hong S, Zhang J, Li G (2011) Microstructure and corrosion resistance of plasma sprayed Fe-based alloy coating as an alternative to hard chromium. J Therm Spray Technol 20(5):1063–1070

    Google Scholar 

  332. Abdi S, Lebaili S (2008) Alternative to chromium, a hard alloy powder NiCrBCSi (Fe) coatings thermally sprayed on 60CrMn4 steel. Phase and comportements. Phys Proc 2:1005–1014

    Google Scholar 

  333. Matthäus G, Henry J, Ackermann D (2009) Further developments in internal diameter HVOF application of WC-CoCr for hard chrome replacement in critical applications such as landing gear. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 722–724

    Google Scholar 

  334. Krishnan N, Vardelle A, Legoux JG (2008) A life cycle comparison of hard chrome and thermal sprayed coatings: a case example of aircraft landing gears. In: Lugscheider E (ed) Thermal spray conference: Crossing the border. DVS, Dûsseldorf, e-Proc

    Google Scholar 

  335. Henne R (2007) Solid oxide fuel cells: a challenge for plasma deposition processes. J Therm Spray Technol 16(3):381–403

    Google Scholar 

  336. Takenoiri S, Kadokawa N, Koseki K (2000) Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying. J Therm Spray Technol 3639(3):360–363

    Google Scholar 

  337. Barthel K, Rambert S, Barthel S, Rambert S, Siegmann S (2000) Microstructure and polarization resistance of thermally sprayed composite cathodes for solid oxide fuel cell use. J Therm Spray Technol 9(3):343–347

    Google Scholar 

  338. Sun F, Zhang N, Liao H, Li J (2012) Effect of heat treatment temperature on performance of plasma-sprayed apatite-lanthanum silicate coatings as electrolytes for IT-SOFC. J Therm Spray Technol 21(6):1257–1267

    Google Scholar 

  339. Puranen J, Lagerbom J, Hyvärinen L, Kylmälahti M, Himanen O, Pihlatie M, Kiviaho J, Vuoristo P (2011) The structure and properties of plasma sprayed iron oxide doped manganese cobalt oxide spinel coatings for SOFC metallic interconnectors. J Therm Spray Technol 20(1–2):154–159

    Google Scholar 

  340. Harris J, Qureshi M, Kesler O (2012) Deposition of composite LSCF-SDC and SSC-SDC cathodes by axial-injection plasma spraying. J Therm Spray Technol 21(3–4):461–468

    Google Scholar 

  341. Shen Y, Alexandra V, Almeida B, François Gitzhofer (2011) Preparation of nanocomposite GDC/LSCF cathode material for IT-SOFC by induction plasma spraying. J Therm Spray Technol 20(1–2):145–153

    Google Scholar 

  342. Wang Y, Legoux J-G, Neagu R, Hui S, Marple BR (2012) Suspension plasma spray and performance characterization of half cells with NiO/YSZ anode and YSZ electrolyte. J Therm Spray Technol 21(1):7–15

    Google Scholar 

  343. Michaux P, Montavon G, Grimaud A, Denoirjean A, Fauchais P (2010) Elaboration of porous NiO/8YSZ layers by several SPS and SPPS routes. J Therm Spray Technol 19(1–2):317–327

    Google Scholar 

  344. Zotov N, Hospach A, Mauer G, Sebold D, Vaßen R (2012) Deposition of La12xSrxFe12yCoyO32d coatings with different phase compositions and microstructures by low-pressure plasma spraying-thin film (LPPS-TF) processes. J Therm Spray Technol 21(3–4):441–447

    Google Scholar 

  345. Fedtke P, Wienecke M, Bunescu M-C, Barfels T, Deistung K, Pietrzak M (2004) Yttria-stabilized zirconia films deposited by plasma spraying and sputtering. J Solid State Electrochem 8:626–632

    Google Scholar 

  346. Gross KA, Tikkanen J, Keskinen J, Pitkänen V, Eerola M, Siikamaki R, Rajala M (1999) Liquid flame spraying for glass coloring. J Therm Spray Technol 8(4):583–589

    Google Scholar 

  347. Arcondéguy A, Grimaud A, Denoirjean A, Gasgnier G, Huguet C, Pateyron B, Montavon G (2007) Flame-sprayed glaze coatings: effects of operating parameters and feedstock characteristics onto coating structures. J Therm Spray Technol 16(5–6):978–990

    Google Scholar 

  348. Arcondéguy A, Gasgnier G, Montavon G, Pateyron B, Denoirjean A, Grimaud A, Huguet C (2008) Effects of spraying parameters onto flame-sprayed glaze coating structures. Surf Coat Technol 202:4444–4448

    Google Scholar 

  349. Blink J, Farmer J, Choi J, Saw C (2009) Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings. Metallurgical Mater Trans A 40A:1344–1354

    Google Scholar 

  350. Farmer JC, Choi J-S (2007) Criticality-control applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings, UCRL-TR-234171. Lawrence Livermore National Laboratory, Aug 31, pp 1–7

    Google Scholar 

  351. Blink J, Choi J, Farmer J (2007) Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings, UCRL-CONF-232603. Lawrence Livermore National Laboratory, July 9, pp 1–14

    Google Scholar 

  352. Farmer J, Choi J, Saw C, Haslam J, Day D, Hailey P, Lian T, Rebak R, Perepezko J, Payer J, Branagan D, Beardsley B, D’Amato A, Aprigliano L (2009) Iron-based amorphous metals: high-performance corrosion-resistant material development. Metallurgical Mater Trans A 40A:1289–1305

    Google Scholar 

  353. Branagan D (2004) Properties of amorphous/partially crystalline coatings. US Patent 20040253381

    Google Scholar 

  354. Berard G, Brun P, Lacombe J, Montavon G, Denoirjean A, Antou G (2008) Influence of a sealing treatment on the behavior of plasma-sprayed alumina coatings operating in extreme environments. J Therm Spray Technol 17(3):410–419

    Google Scholar 

  355. Haslam JJ, Farmer JC, Hopper RW, Wilfinger KR (2005) Ceramic coatings for a corrosion-resistant nuclear waste container evaluated in simulated ground water at 90 °C. Metallurgical Mater Trans A 36A:1085–1095

    Google Scholar 

  356. Hardwicke CU, Lau Y-C (2013) Advances in thermal spray coatings for gas turbines and energy generation: a review. J Therm Spray Technol 22(5):564–576

    Google Scholar 

  357. Matejıcek J, Chraska P, Linke J (2007) Thermal spray coatings for fusion applications—review. J Therm Spray Technol 16(1):64–83

    Google Scholar 

  358. Longo FN (1992) Industrial guide–markets, materials, and applications for thermal-sprayed coatings. J Therm Spray Technol 1(2):143–145

    Google Scholar 

  359. Dorfman M, Sharma A (2013) Commentary challenges and strategies for growth of thermal spray markets: the six-pillar plan. J Therm Spray Technol Comment 22(5):559–563

    Google Scholar 

  360. Tucker RC (ed) (2013) ASM handbook, vol 5A: Thermal spray technology. ASM International, Materials Park, OH

    Google Scholar 

  361. Thintri Inc. (2013) Thermal spray wear coatings find growing markets and greater competition. Spraytime 20(1):1–36

    Google Scholar 

  362. Vetter J, Barbezat G, Crummenauer J, Avissar J (2005) Surface treatment selections for automotive applications. Surf Coat Technol 200:1962–1968

    Google Scholar 

  363. Barbezat G (2006) Application of thermal spraying in the automobile industry. Surf Coat Technol 201:2028–2031

    Google Scholar 

  364. Barbezat G (2005) Advanced thermal spray technology and coating for lightweight engine blocks for the automotive industry. Surf Coat Technol 200:1990–1993

    Google Scholar 

  365. Barbezat G (2003) Low-cost high-performance coatings produced by internal plasma spraying for the production of high efficiency engines. In: Moreau C, Marple B (eds) International thermal spray conference 2003. ASM International, Materials Park, OH, pp 139–142

    Google Scholar 

  366. Smyth RT, Anderson JC (1975) Production of resistors by arc plasma spraying. Electrocompon Sci Technol 2:135–145

    Google Scholar 

  367. Ducos M (2006) Evaluating the costs of thermal spraying, ALIDERTE course. ALIDERTE, Limoges (in French)

    Google Scholar 

  368. Nelson GM, Nychka JA, McDonald AG (2011) Flame spray deposition of titanium alloy-bioactive glass composite coatings. J Therm Spray Technol 20(6):1339–1351

    Google Scholar 

  369. Drnovšek N, Novak S, Dragin U, Čeh M, Gorenšek M, Gradišar M (2012) Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants. Int Orthop 36:1739–1745

    Google Scholar 

  370. Juhasz JA, Best SM (2012) Bioactive ceramics: processing, structures and properties. J Mater Sci 47:610–624

    Google Scholar 

  371. Landor I, Vavrik P, Sosna A, Jahoda D, Hahn H, Daniel M (2007) Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch Orthop Trauma Surg 127(2):81–89

    Google Scholar 

  372. Hamashima K (2007) Application of new boride cermet coating to forming of glass sheets. J Therm Spray Technol 16(1):32–33

    Google Scholar 

  373. Döring J-E, Hoebener F, Langer G (2008) Review of applications of thermal spraying in the printing industry in respect to OEMs. In: Lugscheider E (ed) Thermal spray conference: Crossing the border. DVS, Düsseldorf, e-Proc

    Google Scholar 

  374. Pawlowski L (1996) Technology of thermally sprayed anilox rolls: state of art, problems, and perspectives. J Therm Spray Technol 5(3):317–334

    Google Scholar 

  375. Lima RS, Marple BR (2005) Superior performance of high-velocity oxyfuel-sprayed nanostructured TiO2 in comparison to air plasma-sprayed conventional Al2O3-13TiO2. J Therm Spray Technol 14(3):397–404

    Google Scholar 

  376. Vuoristo P, Nylén P (2009) Industrial and research activities in thermal spray technology in the Nordic region of Europe. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 517–522, e-Proc

    Google Scholar 

  377. Yoshiya A, Shigemura S, Nagai M, Yamanaka M (2009) Advances of thermal sprayed carbon roller in paper industry. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 601–606

    Google Scholar 

  378. Nagai M, Shigemura S, Yoshiya A (2009) Thermal-sprayed CFRP roll with resistant to thermal shock and wear - for papermaking machine. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 607–611

    Google Scholar 

  379. Iyengar RK (2009) Thermal spray coating for steel processing. Technovations International, Littleton, MA

    Google Scholar 

  380. Process Industries: Power, http://www.castolin.com

  381. Kaushal G, Singh H, Prakash S (2011) High-temperature erosion-corrosion performance of high-velocity oxy-fuel sprayed Ni-20Cr coating in actual boiler environment. Metallurgical Mater Trans A 42(7):1836–1846

    Google Scholar 

  382. Espallargas N, Berget J, Guilemany JM, Benedetti AV, Suegama PH (2008) Cr3C2–NiCr and WC–Ni thermal spray coatings as alternatives to hard chromium for erosion–corrosion resistance. Surf Coat Technol 202:1405–1417

    Google Scholar 

  383. Wang B-Q, Verstak A (1999) Elevated temperature erosion of HVOF Cr3C2/TiC– NiCrMo cermet coating. Wear 233–235:342–351

    Google Scholar 

  384. Higuera HV, Belzunce Varela FJ, Carriles Menéndez A, Poveda Martinez S (2001) A comparative study of high-temperature erosion wear of plasma-sprayed NiCrBSiFe and WC–NiCrBSiFe coatings under simulated coal-fired boiler conditions. Tribol Int 34:161–169

    Google Scholar 

  385. Sidhu TS, Prakash S, Agrawal RD (2005) Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci 41(6):805–823

    Google Scholar 

  386. Sidhu HS, Sidhu BS, Prakash S (2006) Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes. J Mater Eng Perform 5(6):699–704

    Google Scholar 

  387. Sanz A (2001) Tribological behavior of coatings for continuous casting of steel. Surf Coat Technol 146–147:55–64

    Google Scholar 

  388. Gross KA, Kovalevskis A (1996) Mold manufacture with plasma spraying. J Therm Spray Technol 5(4):469–475

    Google Scholar 

  389. Weiss LE, Thuel DG, Schultz L, Prinz FB (1994) Arc-sprayed steel-faced tooling. J Therm Spray Technol 3(3):275–281

    Google Scholar 

  390. Kim H-J, Kweon Y-G (1996) The application of thermal sprayed coatings for pig iron ingot molds. J Therm Spray Technol 5(4):463–468

    Google Scholar 

  391. Gibbons GJ, Hansell RG (2006) Down-selection and optimization of thermal-sprayed coatings for aluminum mould tool protection and upgrade. J Therm Spray Technol 15(3):340–347

    Google Scholar 

  392. Khan FF, Bae G, Kang K, Na H, Kim J, Jeong T, Lee C (2011) Evaluation of die-soldering and erosion resistance of high velocity oxy-fuel sprayed MoB-based cermet coatings. J Therm Spray Technol 20(5):1022–1034

    Google Scholar 

  393. Maranho O, Rodrigues D, Boccalini M, Sinatora A (2009) Bond strength of multicomponent white cast iron coatings applied by HVOF thermal spray process. J Therm Spray Technol 18(4):708–713

    Google Scholar 

  394. Seonga BG, Hwanga SY, Kima MC, Kimb KY (2001) Reaction of WC-Co coating with molten zinc in a zinc pot of a continuous galvanizing line. Surf Coat Technol 138:101–110

    Google Scholar 

  395. Huang XO, Wang RJ, Zhang TJ, Luo HJ, Lü YF (2007) Several application cases of thermal spraying technology on industrial components and its considerations. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: Global coating solutions. ASM International, Materials Park, OH, e-Proc

    Google Scholar 

  396. Vicenzi J, Marques CM, Bergmann CP (2008) Hot and cold erosive wear of thermal sprayed NiCr-based coatings: influence of porosity and oxidation. Surf Coat Technol 202:3688–3697

    Google Scholar 

  397. Bolelli G, Lusvarghi L, Giovanardi R (2008) A comparison between the corrosion resistances of some HVOF-sprayed metal alloy coatings. Surf Coat Technol 202:4793–4809

    Google Scholar 

  398. Godoya C, Lima MM, Castro MMR, Avelar-Batista JC (2004) Structural changes in high-velocity oxy-fuel thermally sprayed WC–Co coatings for improved corrosion resistance. Surf Coat Technol 188–189:1–6

    Google Scholar 

  399. Choa JE, Hwang SY, Kim KY (2006) Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment. Surf Coat Technol 200:2653–2662

    Google Scholar 

  400. Bolelli G, Giovnardi R, Lusvarghi L, Manfredini T (2006) Corrosion resistance of HVOF-sprayed coatings for hard chrome replacement. Corros Sci 48:3375–3397

    Google Scholar 

  401. Perry JM, Neville A, Wilson VA, Hodgkiess T (2001) Assessment of the corrosion rates and mechanisms of a WC-Co-Cr HVOF coating in static and liquid-solid impingement saline environments. Surf Coat Technol 137:43–51

    Google Scholar 

  402. Petrovicova E, Schadler LS (2002) Thermal spraying of polymers. Int Mater Rev 47(4):169–190

    Google Scholar 

  403. Notomi A, Sakakibara N (2009) Recent application of thermal spray to thermal power plants. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1106–1111

    Google Scholar 

  404. Yilmaz R, Kurt AO, Demir A, Tatli Z (2007) Effects of TiO2 on the mechanical properties of the Al2O3–TiO2 plasma sprayed coating. J Eur Ceram Soc 27:1319–1323

    Google Scholar 

  405. Lathabai S, Ottmuller M, Fernandez I (1998) Solid particle erosion behaviour of thermal sprayed ceramic, metallic and polymer coatings. Wear 221:93–108

    Google Scholar 

  406. Lins VFC, Branco JRT, Diniz FRC, Brogan JC, Berndt CC (2007) Erosion behavior of thermal sprayed, recycled polymer and ethylene–methacrylic acid composite coatings. Wear 262:274–281

    Google Scholar 

  407. Berndt CC, Brogan JA, Montavon G, Claudon A, Coddet C (1998) Mechanical properties of metal- and ceramic-polymer composites formed via thermal spray consolidation. J Therm Spray Technol 7(3):337–339

    Google Scholar 

  408. Leivo E, Wilenius T, Kinos T, Vuoristo P, Mäntylä T (2004) Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Prog Org Coat 49:69–73

    Google Scholar 

  409. Zhang T, Gawne DT, Bao Y (1997) The influence of process parameters on the degradation of thermally sprayed polymer coatings. Surf Coat Technol 96:337–344

    Google Scholar 

  410. Chen H, Zhao H, Qu J, Shao H (1999) Erosion-corrosion of thermal-sprayed nylon coatings. Wear 233–235:431–435

    Google Scholar 

  411. Zhang G, Liao H, Cherigui M, Paulo Davim J, Coddet C (2007) Effect of crystalline structure on the hardness and interfacial adherence of flame sprayed (poly-ether–ether–ketone) coatings. Eur Polym J 43:1077–1082

    Google Scholar 

  412. Zhang G, Liao H, Yu H, Ji V, Huang W, Mhaisalkar SG, Coddet C (2006) Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. Surf Coat Technol 200:6690–6695

    Google Scholar 

  413. Zhang C, Zhang G, Ji V, Liao H, Costil S, Coddet C (2009) Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process. Prog Org Coat 66:248–253

    Google Scholar 

  414. Sweet GK (1993) Applying thermoplastic/thermoset powder with a modified plasma system. In: Berndt CC, Bernicki F (eds) Proceedings of the 1993 national thermal spray conference. ASM International, Materials Park, OH, pp 381–384

    Google Scholar 

  415. Brogan JA, Margolies S, Sampath H, Herman CC, Berndt SD (1995) Adhesion of combustion-sprayed polymer coatings. In: Berndt CC, Sampath S (eds) Thermal spray science and technology. ASM International, Materials Park, OH, pp 521–526

    Google Scholar 

  416. Henne RH, Schitter C (1995) Plasma spraying of high performance thermoplastics. In: Berndt CC, Sampath S (eds) Thermal spray science and technology. ASM International, Materials Park, OH, pp 527–532

    Google Scholar 

  417. Ivosevic M, Coguill SL, Galbraith SL (2009) Polymer thermal spraying: a novel coating process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1078–1083

    Google Scholar 

  418. Song JX, Han YF, Li SS, Xiao CB (2005) Repair of NiCrAlYSi overlay coating on Ni3Al base alloy IC6. Intermetallics 13:351–355

    Google Scholar 

  419. Ducos M (1988) Plasma transferred arc reclamation. In: Laroche G, Orfeuil M (eds) Plasmas in industry. Dopee Diffusion, France, pp 251–262 (in French)

    Google Scholar 

  420. Isakaev E, Yablonsky A, Kogan A, Katarzhis V, Kutnov V, Ivanov P (1999) The repair of railway frogs using plasma sprayed coatings, heat and mass transfer under plasma conditions. Ann NY Acad Sci 891:231–235

    Google Scholar 

  421. Tapphorn R, Henness J, Gabel H (2009) Kinetic metallization-a repair process for damaged IVD-Al coatings, Mg, and Al alloy components. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 261–266

    Google Scholar 

  422. Champagne VK (2008) The repair of magnesium rotorcraft components by cold spray. J Fail Anal Prevent 8:164–175

    Google Scholar 

  423. Kashirin A, Klyuev O, Buzdygar T, Shkodkin A (2007) DYMET technology evolution and application. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: Global coating solutions. ASM International, Materials Park, OH, pp 141–145

    Google Scholar 

  424. Guilemany JM, Torrell M, Miguel JR (2007) Properties of HVOF coating of Ni based alloy for MSWI boilers protection. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: Global coating solutions. ASM International, Materials Park, OH, pp 1115–1119, e-Proc

    Google Scholar 

  425. de Botton O (1988) Master of Science in Technology and Policy. MIT, Cambridge, MA

    Google Scholar 

  426. Ducos M, Durand JP (2001) Thermal coatings in Europe, a business perspective. In: Berndt CC, Khor KH, Lugscheider E (eds) Thermal spray 2001. ASM International, Materials Park, OH, pp 1267–1276

    Google Scholar 

  427. MAGETEX (n.d.) Thermal coatings in Europe: a business prospective. MAGETEX, Les bureaux de Sèvres, 2 rue Troyon, 92316 Sèvres

    Google Scholar 

  428. Wigren J, Kristina Täng (2007) Quality considerations for the evaluation of thermal spray coatings. J Therm Spray Technol 16(4):533–540

    Google Scholar 

  429. Lee C (2009) Market direction and application opportunities for T/S growth in Korea. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 505–510, e-Proc

    Google Scholar 

  430. Sundararajan G, Mahajan YR, Joshi SV (2009) Thermal spraying in India: status and prospects. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 511–516

    Google Scholar 

  431. Tani K, Nakahira H (1992) Status of thermal spray technology in Japan. J Therm Spray Technol 1(4):333–339

    Google Scholar 

  432. Nakahira A (2009) Current status and future prospect of thermal spray coating applications and coating service market of job shops in Japan. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 499–504, e-Proc

    Google Scholar 

  433. Fukumoto M (2008) The current status of thermal spraying in Asia; Hwang SY Status of thermal spraying in Korea; Li C-J The current state of thermal spray activities in China; Tani K, Nakahira A The current status of thermal spray in Japan; Khor MKA Thermal spray activities in Singapore. J Therm Spray Technol 17(1): 5–13

    Google Scholar 

  434. de Munter AJ, Bult A, de Jong JA (2002) On the economical and environmental aspects of TSA coatings. In: Lugscheider E (ed) International thermal spray conference 2002. DVS, Düsseldorf, e-Proc

    Google Scholar 

  435. Celotto S, Pattison J, Ho JS, Johnson AN, O’Neill W (2007) The economics of the cold spray process. In: Champagne V (ed) Cold spray materials deposition process - fundamentals and applications. Woodhead, Sawston

    Google Scholar 

  436. Molz R, Hawley D (2007) A method of evaluating thermal spray process performance. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: Global coating solutions. ASM International, Materials Park, OH, e-Proc

    Google Scholar 

  437. Sacriste D, Goubot N, Dhers J, Ducos M, Vardelle A (2001) An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAlY coatings. J Therm Spray Technol 10(2):352–358

    Google Scholar 

  438. Moign A, Vardelle A, Legoux JG, Themelis NJ (2009) LCA Comparison of electroplating and other thermal spray processes. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1207–1212, e-Proc

    Google Scholar 

  439. International Thermal Spray Association, What is thermal spray. http://www.thermalspray.org

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix: Use of the Different Spray Materials

In this appendix only basic information about the main sprayed materials and the most frequently sprayed materials are presented. For more detailed information the reader must consult the different powder and wire suppliers. It must also be kept in mind that the coating resulting from the spray process has properties (thermal and electrical conductivities for example) different from those of powder or wire properties. Such differences result from the increase of the oxide content, the pores generated during spraying, the real contacts between layered splats, … Properties also depend on the way the sprayed material has been manufactured. In the following X-20Y-10Z means 20 wt% of Y, 10 wt% of Z, the balance being X.

18.1.1 A.1 Metals

Aluminum Al (99 wt%) T m = 660 °C:

  • Good corrosion resistance in industrial atmospheric conditions

  • Good electrical and thermal conductivity

  • Soft and ductile → repair Al alloys

  • Non-magnetic (electromagnetic shielding)

  • Sprayed by flame (powder or wire), wire arc, plasma, and cold spray

Aluminum base Al–Si (95/5 or 12 wt%)

  • Salvage of parts made of Al, Mg, and their alloys: excellent finish

  • Sprayed by flame (powder or wire), wire arc, plasma, and cold spray

Cobalt based powders (Pure cobalt T m = 1,495 °C):

  • Stellite® (Co–xCr–yW–zC)

  • Against galling, cavitation

  • For metal friction, high angle erosion, high temperature hardness, good resistance to abrasion, rather good wettability

  • Very good oxidation resistance

  • Replace WC in high temperature applications

  • Repair of Cobalt-based parts

  • Sprayed by HVOF, flame, PTA, Plasma

Triballoy® (Co–xCr–yMo–zSi) or (Co–xCr–yMo–zSi–tNi)

  • Against galling for metal to metal friction

  • High temperature hardness

  • Good resistance to corrosion and oxidation

  • Very good wear properties from room temperature to 860 °C

  • Sprayed by HVOF, flame, PTA, Plasma

Co–25.5Cr–10.5Ni–7.5W–0.5C

  • High abrasive, sliding fretting and cavitation wear resistance up to 800–850 °C

  • Good oxidation resistance

  • Behave well between 540 and 840 °C

  • Sprayed by HVOF, flame, PTA, plasma

Co–28Mo–8Cr–2Si

  • Up to 760 °C low coefficient of friction

  • Good corrosion resistance

  • Sprayed by HVOF, flame, PTA, plasma

Co–28Mo–17Cr–3Si

  • Excellent sliding wears resistance

  • Good hot corrosion resistance and moderate oxidation resistance up to 800 °C

  • Sprayed by HVOF, flame, PTA, plasma

Copper Cu (99 wt%) (T m = 1,084 °C)

  • Very good electrical and thermal conductivities

  • Good resistance to inks (paper and printing)

  • Used to repair Cu base alloys

  • Non-magnetic (electromagnetic shielding)

  • Sprayed by flame (powder or wire), wire arc, plasma, HVOF, and cold spray

Copper-based powder: Cu–36Ni–5In (T m = 1,150 °C):

  • Very dense coatings with good resistance to galling and fretting

  • Sprayed by flame (powder or wire), wire arc, plasma, HVOF, and cold spray

Aluminum Bronze Cu–9.5Al–1Fe:

  • For pumps (against cavitation)

  • Piston guides (soft bearing surfaces)

  • Shifter forks and compressor air seals (friction)

  • Strength and hardness twice that of other bronzes

  • Sprayed by flame (powder or wire), wire arc, plasma, HVOF, and cold spray

Supra bronze: Cu–40Zn–0.8Sn–0.75Fe–0.24Mn

  • For metallizing work

  • Sprayed by flame (powder or wire), wire arc, plasma, HVOF, and cold spray

Iron-based powders (Pure iron T m = 1,538 °C)

Low carbon steels (C < 0.25 wt%):

  • An inexpensive low carbon steel powder

  • Corrosion resistant → repair + good wear resistance in lubricated service

  • May contain martensitic phases

  • Produces machinable coatings

  • Sprayed by flame, wire arc, plasma, HVOF, and cold spray

High carbon steels (C > 0.8 wt%)

  • Reclamation

  • Wear and erosion resistance

  • Sprayed by flame, wire arc, plasma, HVOF

Stainless steels (SS) Fe-13 or 14Cr–1Ni:

  • Good resistance to wear and corrosion

  • Best all purpose (SS)

  • Sprayed by flame, wire arc, plasma, HVOF

Stainless steels (SS) Fe–18Cr–8Mg–5Ni:

  • Reclamation

  • Corrosion protection

  • Low shrinkage and good machinability

  • Sprayed by flame, wire arc, plasma, HVOF

Stainless steels (SS) Fe–17Cr–12NI–2.5Mo–1Si–0.1C (ASI 316):

  • Corrosion protection

  • Dimensional restoration

  • Cavitation and low temperature erosion resistance

  • Sprayed by wire or powder flame, wire arc, HVOF

Cored Wires (wire arc sprayed):

  • Some of them (Fe–Cr–P–C–…) form amorphous phases upon spraying

  • Rather good resistance to corrosion (for example, with H2SO4)

  • Good resistance to abrasion

Molybdenum Mo (Pure molybdenum T m = 2,623 °C)

  • Self bonding to most metallic surfaces, especially steels

  • Natural lubricity and high hardness: good wear properties

  • Maximum service temperature 316 °C

  • Salvage and build-up of Ni base alloy components

  • High density coatings

  • Fretting resistant

  • Used for pump parts, diesel engine fuel, injectors, piston rings, synchronized ring, press fits, valves, gears, cam followers, …

  • Sprayed by HVOF, flame (powder or wire), wire arc, plasma

Self-fluxing alloys: Mo+25 (Ni–Cr–B–Si–Fe)

  • High wear resistance, low friction coefficient

  • Against steel, good scuff resistance

  • Can be used for hard facing, hard bearing surfaces

  • Against abrasion

Nickel Ni (99.5 wt%) (Pure nickel T m = 1,455 °C)

  • Good bonding to steel

  • Good corrosion and oxidation resistance up to 980 °C

  • Resist heat and prevent scaling of carbon and low alloy steels in hot atmospheres

  • Salvage and build-up of Ni base alloys

  • Easily machined

  • Sprayed by HVOF, flame (powder or wire), wire arc, plasma

Ni–20Cr:

  • Good surface appearance

  • Good machinability

  • Protective coatings against oxidizing gases at high temperature (up to 980 °C)

  • Electrical conductors

  • Surfacing

  • Other different types of NiCr (Cr 10–17 wt%) but also addition of Fe, Mo with specific applications (see suppliers guides); for example:

Ni–16Cr–8Fe

  • Machinable “stainless” coatings for salvage and build-up applications on corrosion resistant steels

  • Sprayed by HVOF, flame (powder or wire), wire arc, plasma

Ni–18Cr–6Al (composite or clad):

  • Good oxidation resistance

  • Good machinability

  • Bonding and surfacing layers

  • Self-bonds to most metallic surfaces

  • Sprayed by HVOF, flame (powder or wire), wire arc, plasma

Ni–20Cr–10W–9Mo–4Cu–1C–1B–1Fe:

  • Wear and corrosion protection

  • Coatings contain some amounts of glassy phases (due to addition of refractory metals and metalloids)

  • Sprayed by HVOF, flame (powder or wire), wire arc, plasma

Ni–5Al (clad):

  • Good hardness and refractoriness (formation of nickel aluminide)

  • Oxidation and abrasion resistant

  • Adhere very well to smooth substrates

  • Bond coat

  • Resizing of over machined parts or of worn-out parts

  • Possible: Al 20 wt% (clad) → self-bonds to most metal surfaces

  • Sprayed by HVOF, flame (powder or wire), wire arc, plasma

Nickel-based self-fluxing alloys

  • Ni–10Cr–2.5B–2.5Fe–2.5Si–0.15C

  • The only one producing machinable-fused coating

  • Resistance to abrasive wear, fretting, cavitation, and erosion up to 840 °C

  • Ni–17Cr–4Fe–4Si–3.5B–1C

  • Dense coating good corrosion resistance

  • Ni–17Cr–4Fe–4Si–3.5B–1C

  • Dense, hard, oxide free coating

  • Piston rings, cylinder liners, utility exhaust fan

Superalloys: M.Cr.Al.Y with M = Ni, Co, Fe, Ni–Co

  • Composition optimized: for substrate compatibility and environmental resistance

  • Protection against corrosion and oxidation in high temperature applications:

  • Aero gas turbines

  • Marine turbines

  • Stationary gas turbines

  • Design criteria—Avoid phase transformation during engine start up and shut down, Avoid brittle phases (ex μ, σ, αCr)

  • Limit brittleness increasing with oxide content

  • Form a stable and adherent oxide scale of Al2O3 (addition of active elements: 0.5 % wt Y)

  • Increase corrosion resistance (by increasing Cr content)

  • Control thermal expansion coefficient: increasing with Cr and decreasing with Al

  • Keep ductile coatings (ductile to brittle temperature influenced by Cr and Al contents)

  • Many compositions exist

  • Sprayed by HVOF, plasma (if possible under soft-vacuum to limit oxidation)

18.1.2 A.2 Ceramics (Oxides)

For most oxides the thermal expansion coefficient is low compared to that of most metals and it has to be taken into account because they are often used at high temperature.

Alumina Al2O3 (T m = 2,050 °C)

  • Main problem: Starting from α phase, melting and fast cooling (spraying) result in γ phase. Unfortunately around 1,000 °C γ phase transforms into α phase with a volume increase of about 4 % resulting in coating peeling off. Thus coatings should be used below 900 °C

  • They are not too sensitive to oxygen losses

  • They have a good resistance to abrasive, sliding and friction wear up to approximately 800 °C

  • Poor resistance to shock or impact loading

  • High dielectric strength, good electrical insulating coatings

  • Reactive with molten salts

  • Porous coatings

  • Sprayed mainly by plasma, sometimes by HVOF (particles below 22 μm in diameter) and also by flame (rods or cords)

Titanium dioxide TiO2 (T m = 1,843 °C)

  • Very sensitive to oxygen losses resulting in strong modifications of coating properties: color from white to black and especially electrical properties

  • Loss and gain of oxygen reversible

  • Very good wettability

  • Excellent surface finish

  • Excellent adhesion

  • Rather low porosity

  • Sprayed by plasma, HVOF, and also by flame (rods or cords)

Alumina–Titanium dioxide Al2O3–xTiO2

  • TiO2 in the range 2–50 wt% (most common: 3–13–40 wt%):

    • Lowers Al2O3 coatings porosity.

Al2O3–3TiO2

  • Can be used with most acids and alkalis

  • Good for abrasion, erosion, and sliding wear

  • Maximum service temperature 840 °C

  • Less brittle but lower dielectric strength than pure Al2O3 coatings

  • Sprayed by plasma

Al2O3–13TiO2

  • Applications similar to those of Al2O3–3TiO2 but lower hardness and dielectric strength and less resistance to chemical attack

  • Maximum service temperature 540 °C

  • Sprayed by plasma

Al2O3–40TiO2

  • Formation of Al2TiO5

  • Softer and less resistant to chemicals

  • Excellent finishing properties

  • Sprayed by plasma

  • Other compositions are used, for example, with SiO2 below 2 wt%

Chromium Oxide Cr2O3 (T m = 2,435 °C)

  • Its stoichiometry depends strongly upon spray conditions (high oxygen pressure needed), and sub-stoichiometric coatings have a metallic behavior with a poor corrosion resistance

  • Coatings have high hardness (1900–2000 HV5N)

  • Excellent wear resistance

  • Low porosity

  • Excellent finish

  • Used on sliding surfaces

  • Good wear resistance

  • Insoluble in acids, alkalis, and alcohol

  • Maximum service temperature 540 °C

  • Excellent engraving properties

  • Sprayed by plasma, HVOF, and also by flame (rods or cords)

Cr2O3–3TiO2–5SiO2

  • TiO2 limits oxygen losses

  • Resist better than Cr2O3 to impacts

  • High wear and corrosion resistance

Hydroxyapatite Ca5 (PO4)3 OH

  • For coating medical and dental implants

  • Biocompatible and bioactive (main constituent of bones)

  • Sprayed by plasma

Zirconia, ZrO2

  • Interesting mechanical properties

  • Good wear resistance

  • Low thermal conductivity (1–5 W/m K)

  • Three phases: monoclinic (m), tetragonal (t), and cubic (c). Upon cooling around 1,000 °C, cubic or tetragonal phases transform into monoclinic with volume increase of about 10 % and coating peeling off. Thus only totally (c phase) or partially (t′ non-transformable t phase) stabilized zirconia can be sprayed.

    Most used stabilizers are CaO, MgO, Y2O3, CeO2. CaO and MgO are rather cheap but the maximum service temperature is about 500 °C. Very good results are obtained with Y2O3; with about 8 wt% t′ phase is obtained, while with13 wt% c phase is obtained, as with 24–25 wt% CeO2. The maximum service temperature (about 1,350 °C at the best) depends not only on the phase (best results with c phase) but also on the way the powder is manufactured (see Sect. 11.1.2.9) best results being obtained when zirconia and stabilizer particles are very small and uniformly distributed.

  • Coatings have excellent thermal shock resistance and good oxidation and corrosion resistance.

  • They are mainly used as thermal barriers.

  • Sprayed by plasma and also by flame (rods or cords)

Zircon ZrSiO4 (infusible)

  • Dissociated during spraying (65 % ZrO2, 35 % SiO2)

  • Not wetted by liquid metals: used for casting

  • Good resistance to liquid glass.

  • Good resistance to combustion gases

18.1.3 A.3 Cermets

They are made of a metal matrix, to achieve a good toughness, where are imbedded ceramic particles either of oxides or carbides for the hardness and wear resistance. Here again the manufacturing process plays a key role, for example, sintered particles behaving very differently than blended ones.

With oxides. In most cases they are blends. For example

Al2O3–30(Ni–20Al)

  • Denser coatings than pure ceramic, more abrasion, and shock resistant, hard, and smooth

  • Addition of alumina particles modifies the electrical resistance of the metal matrix

MCrAlY + Al2O3 (<3 μm)

  • Hardness increases with Al2O3 content

  • Electrical resistance decreases with Al2O3 %

With carbides (the most used)

Most used ones are:

WC, Cr3C2, and also sometimes TiC

  • If all of them have melting temperatures over 1,900 °C (for example, T m = 2,870 °C for WC) they are relatively sensitive to oxidation

  • WC oxidation starts at 500–600 °C and oxidation produces W2C decomposing into W over 1300 °C

Cr3C2

  • Is not the only chromium carbide: Cr7C3 (T m = 1,782 °C), Cr23C6 (T m = 1,518 °C). Cr3C2 is mostly used in spraying and its oxidation starts at 800–900 °C, however, Cr23C6 has an excellent wear resistance.

TiC

  • Has a unique cubic phase (T m = 3,170 °C), which oxidation starts at 800–900 °C.

  • At last carbides dissolve more or less in the liquid metal or alloy matrix, the dissolution increasing with temperature over the matrix melting temperature. The metal matrix lowers the wear resistance of carbides but increases resistance to mechanical or thermal shock. Phase changes of metal matrix must be avoided during the service (for example, that of Co occurs at about 480 °C). To conclude chemical changes occur during spraying especially in air atmosphere: oxidation, decomposition, and dilution. Thus microstructural properties of sprayed cermets depend strongly on spray conditions (VPS, IPS, APS, HVOF, HVAF, …), particle morphology and manufacturing process, and ceramic mean grain size. Only a few examples are given below:

WC–8Co

  • Dense, hard wear-resistant coating

  • Sprayed by plasma, HVOF, HVAF

WC–12Co

  • Excellent low-temperature wear resistance

  • Sprayed by plasma, HVOF, HVAF

WC–17Co

  • Higher Co level improves toughness and fretting resistance

  • Cannot be used in corrosive media

Cr3C2–25(Ni–20Cr)

  • Oxidation resistant up to 900 °C

  • Good corrosion resistance

  • Excellent for high-temperature cavitation, abrasion, and sliding wear

Cr3C2–7(Ni–20Cr)

  • Very good resistance to high temperature fretting and wear (higher carbide content increases hardness)

18.1.4 A.4 Abradables

They are designed to wear preferentially upon contact with mating part in order to automatically establish clearance. They comprise a metal matrix and non-metallic filler such as graphite, polyester, polymide, boron nitride, and friable material, the role of filler being to weaken the matrix integrity. The metal matrix is made of Ni, Al, Cu, Co bases, and superalloys.

The main difference of the base material is related to service temperature.

  • Al–Si with C: up to 315–425 °C

  • Al–Si with polyester: up to 350 °C

  • The filler content can be varied

  • Both are used for the compressor section of jet engines

  • Co–polyester–BN

  • They are used up to 700 °C

  • Cu: Aluminum bronze alloy–polyester or Cu–14polyester–8Al–1Fe–5Binder

  • Maximum service temperature: 650 °C

  • Ni–graphite

  • They are used up to 480 °C

  • Also self-lubricating

  • MCrAlY–polyester and/or BN

  • Temperatures up to 1,200–1,300 °C

Nomenclature

Ah:

Amount to be amortized per hour of equipment work (€/h or USD/h)

Ap:

Amortization cost per kilogram of powder used (€/kg or USD/kg)

Fr:

Process gas flow rate per hour (m3/h)

Nh:

The number of hours devoted per year to spray the specific coating

Ny:

Number of years of the amortization period

p :

Pressure (Pa)

Pc:

Deposited powder cost per kilogram (€/kg or USD/kg)

Pcc:

Cost of each component (electrodes, nozzle, O-ring, …) (€ or USD)

Pcp:

Deposited powder cost per hour (€/h or USD/h)

Pe:

Cost of the equipment (€ or USD)

Pee:

Cost of 100 kW (€ or USD)

Pen:

Energy cost per deposited powder kilogram (€/kg or USD/kg)

Pep:

Cost of components related to the deposition of powder kilogram (€/kg or USD/kg)

Pg:

Gas price per 100 m3 (€ or USD)

Pgp:

Gas price per kilogram deposited (€/kg or USD/kg)

Pp:

Energy cost per deposited powder kilogram (€/kg or USD/kg)

Pt:

Plasma torch power (kW)

qp:

Powder quantity necessary for each part (kg)

Qp:

Quantity of powder sprayed per hour (kg/h)

Sc:

Surface to be coated (m2)

tc:

Mean life time of each component (electrodes, nozzle, O-ring, …) (h)

tp:

Time necessary to spray the part (h)

v :

Velocity (m/s)

wc:

Thickness of the coating including the overspray before machining (mm)

η e :

Percentage corresponding to effective spray due to loss at holes and edges (%)

η p :

Powder or wire deposition efficiency

ρ p :

Feed stock specific mass (kg/m3)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). Industrial Applications of Thermal Spraying Technology. In: Thermal Spray Fundamentals. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68991-3_18

Download citation

Publish with us

Policies and ethics