Skip to main content

Blind Calibration of Networks of Sensors: Theory and Algorithms

  • Chapter
Networked Sensing Information and Control

With the wide variety of sensor network applications being envisioned and implemented, it is clear that in certain situations the applications need more accurate measurements than uncalibrated, low-cost sensors provide. Arguably, calibration errors are one of the major obstacles to the practical use of sensor networks [3], because they allow a user to infer a difference between the readings of two spatially separated sensors when in fact that difference may be due in part to miscalibration. Consequently, automatic methods for jointly calibrating sensor networks in the field, without dependence on controlled stimuli or high-fidelity groundtruth data, is of significant interest. We call this problem blind calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Balzano and R. Nowak. Blind calibration for signals with bandlim-ited subspaces. Technical report, Information Sciences Laboratory at the University of Wisconsin-Madison, February 2007.

    Google Scholar 

  2. L. Balzano, N. Ramanathan, E. Graham, M. Hansen, and M. B. Sri-vastava. An investigation of sensor integrity. Technical Report UCLA-NESL-200510-01, Networked and Embedded Systems Laboratory, 2005.

    Google Scholar 

  3. P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and S. Madden. Task: Sensor network in a box. Technical Report IRB-TR-04-021, Intel Re-search Berkeley, January 2005.

    Google Scholar 

  4. V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collabora-tive approach to in-place sensor calibration. Lecture Notes in Computer Science, 2634:301-316, 2003.

    Article  Google Scholar 

  5. E. Candes and J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Computational Mathematics, 2006.

    Google Scholar 

  6. J. Feng, S. Megerian, and M. Potkonjak. Model-based calibration for sensor networks. Sensors, pages 737 - 742, October 2003.

    Google Scholar 

  7. M. Gurelli and C. Nikias. Evam: An eigenvector-based algorithm for multichannel blind deconvolution of input colored signals. IEEE Trans-actions on Signal Processing, 43:134-149, January 1995.

    Article  Google Scholar 

  8. G. Harikumar and Y. Bresler. Perfect blind restoration of images blurred by multiple filters: Theory and efficient algorithms. IEEE Transactions on Image Processing, 8(2):202-219, February 1999.

    Article  Google Scholar 

  9. B. Hoadley. A bayesian look at inverse linear regression. Journal of the American Statistical Association, 65(329):356-369, March 1970.

    Article  MATH  Google Scholar 

  10. A. Ihler, J. Fisher, R. Moses, and A. Willsky. Nonparametric belief prop-agation for self-calibration in sensor networks. In Proceedings of the Third International Symposium on Information Processing in Sensor Networks, 2004.

    Google Scholar 

  11. N. Ramanathan, L. Balzano, M. Burt, D. Estrin, T. Harmon, C. Harvey, J. Jay, E. Kohler, S. Rothenberg, and M.Srivastava. Rapid deployment with confidence: Calibration and fault detection in environmental sensor networks. Technical Report CENS TR 62, Center for Embedded Networked Sensing, 2006.

    Google Scholar 

  12. O. Shalvi and E. Weinstein. New criteria for blind deconvolution of nonmimimum phase systems (channels). IEEE Trans. on Information Theory, IT-36(2):312-321, March 1990.

    Article  MathSciNet  Google Scholar 

  13. C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, and A. Grue. Simultane- ous localization, calibration, and tracking in an ad hoc sensor network. In IPSN ’06: Proceedings of the Fifth International Conference on Infor-mation Processing in Sensor Networks, pages 27-33, 2006.

    Google Scholar 

  14. G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the redwoods. In Proceedings of Sensys, 2005.

    Google Scholar 

  15. K. Whitehouse and D. Culler. Calibration as parameter estimation in sensor networks. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pages 59-67, 2002.

    Google Scholar 

  16. W. M. Wonham. Linear Multivariable Control. Springer-Verlag, New York, 1979.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balzano, L., Nowak, R. (2008). Blind Calibration of Networks of Sensors: Theory and Algorithms. In: Saligrama, V. (eds) Networked Sensing Information and Control. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68845-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68845-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68843-5

  • Online ISBN: 978-0-387-68845-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics