Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Haykin, “Cognitive dynamic systems,” Proc. IEEE, vol. 94, pp. 1910–1911, Nov. 2006.

    Google Scholar 

  2. S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.

    Article  Google Scholar 

  3. R. Pfeifer and C. Scheier, Understanding intelligence, pp. 5–6. MIT Press, 1999.

    Google Scholar 

  4. S. Haykin, Neural networks: A comprehensive foundation, 2nd ed. Prentice-Hall, 1999.

    Google Scholar 

  5. P. N. Johnson-Laird, The Computer and the mind: An introduction to cognitive science. Harvard University Press, 1988.

    Google Scholar 

  6. J. Mitola, “Cognitive radio: An integrated agent architecture for software defined radio,” Dissertation, Doctor of Technology, Royal Institute of Technology (KTH), Sweden, May 8, 2000.

    Google Scholar 

  7. J. Mitola, Cognitive radio architecture: The engineering foundations of radio XML.Wiley, 2006.

    Google Scholar 

  8. Federal Communications Commission, “Spectrum Policy Task Force,” Report ET Docket No. 02,135, Nov. 2002.

    Google Scholar 

  9. “Wolfram Research.” http://scienceworld.Wolfram.com/physics/antennatemperature.html.

    Google Scholar 

  10. B. Bale et al., “Noise in wireless systems produced by solar radio bursts,” Radio Sci., vol. 37, 2002.

    Google Scholar 

  11. L. J. Lanzerotti et al., “Engineering issues in space weather,” in M. A. Stucthly, editor, Modern Radio Science, pp. 25–50, Oxford University Press, 1999.

    Google Scholar 

  12. S. Haykin and M. Moher, Introduction to analog and digital communications.Wiley, 2001.

    Google Scholar 

  13. S. Haykin, Communication systems, 4th ed., p. 61. Wiley, 2001.

    Google Scholar 

  14. M. Lo‘eve, “Fonctions alatoires de second ordre,” Rev. Sci., Paris, vol. 84, pp. 195–206, 1946.

    MathSciNet  Google Scholar 

  15. M. Lo‘eve, Probability theory. Van Nostrand, 1963.

    Google Scholar 

  16. L. Cohen, Time–frequency analysis. Prentice-Hall, 1995.

    Google Scholar 

  17. Lord Rayleigh, “On the spectrum of an irregular disturbance,” Philos. Mag., vol. 41, pp. 238–243, 1903. (Note: This paper is reproduced in the Scientific Papers by Lord Rayleigh, Volume V, Article 285, pp. 98–102, Dover Publications, 1964.)

    Google Scholar 

  18. D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc. IEEE, vol. 20, pp. 1055–1096, Sept. 1982.

    Article  Google Scholar 

  19. P. D. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time-averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust., vol. AU-15, pp. 70–73, 1967.

    Article  MathSciNet  Google Scholar 

  20. D. B. Percival and A. T. Walden, Spectral analysis for physical applications. Cambridge University Press, 1993.

    Google Scholar 

  21. D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty”, Bell Syst. Tech. J., vol. 57, pp. 1371–1430, 1978.

    Google Scholar 

  22. A. Drosopoulos and S. Haykin,“Angle-of-arrival estimation in the presence of multipath,” in S. Haykin, editor, Adaptive Radar Signal Processing, pp. 11–89, Wiley, 2007.

    Google Scholar 

  23. D. J. Thomson and A. D. Chave, “Jackknifed error estimates for spectra, coherences, and transfer functions,” in S. Haykin, editor, Advances in Spectrum Analysis and Array Processing, vol. 1, pp. 58–113, Prentice-Hall, 1991.

    Google Scholar 

  24. P. Stoica and T. Sundin, “On nonparametric spectral estimation,” Circuits Syst. Signal Process., vol. 16, pp. 169–181, 1999.

    Article  Google Scholar 

  25. D. J. Thomson and S. Haykin, “Time-frequency analysis of sea clutter,” in S. Haykin, editor, Adaptive Radar Signal Processing, pp. 91–115, Wiley, 2007.

    Google Scholar 

  26. M. E. Mann and J. Park, “Oscillatory spatiotemporal signal detection in climate studies: A multiple-taper spectral domain approach,” in R. Dnowska and B. Saltzman, editors, Advances in Geophysics, vol. 41, pp. 1–131, Academic Press, 1999.

    Google Scholar 

  27. G. H. Golub and C. F. VanLoan, Matrix computations, 3rd ed. Johns Hopkins University Press, 1996.

    Google Scholar 

  28. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,”jtyWireless Pers. Commun., vol. 6, pp. 311–335, 1998.

    Google Scholar 

  29. S. Haykin, K. Huber, and Z. Chen, “Bayesian sequential state estimation for MIMO wireless communications,” Proc IEEE, Special Issue on Sequential State Estimation, vol. 92, pp. 439–454, 2004.

    Google Scholar 

  30. I. Arasarathnam and S. Haykin, “Improved channel tracking for wireless PAT,” submitted to IEEE Trans. Commun.

    Google Scholar 

  31. A. Ephirenides and T. Truong, “Schedule broadcasts in multihop radio networks,” IEEE Trans. Commun., vol. 38, pp. 456–460, 1990.

    Article  Google Scholar 

  32. K. Scott and N. Bambos, “Formation and maintenance of self-organizing wireless networks,” Conference Record 3rd Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp. 31–35, Nov. 1997.

    Google Scholar 

  33. C. E. Perkins, Ad hoc networking. Addison-Wesley, 2001.

    Google Scholar 

  34. O. K. Tonguz and G. Ferrari, Ad hoc wireless networks.Wiley, 2006.

    Google Scholar 

  35. M. A. Arbib, The handbook of brain theory and neural networks, 2nd ed. MIT Press, 2003.

    Google Scholar 

  36. T. J. Shepard, “Decentralized channel management in scalable multihop spread-spectrum packet radio networks,” PhD Thesis, MIT, July 1995.

    Google Scholar 

  37. P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  38. P. Gupta and P. R. Kumer, “Internets in the sky: The capacity of three-dimensional wireless networks,” Commun. Inf. Syst., vol. 1, pp. 39–49, 2001.

    Google Scholar 

  39. S. Haykin and M. Moher, Modern wireless communications.Prentice-Hall, 2003.

    Google Scholar 

  40. L. Hanzo and T. Keller, OFDM and MC-CDMA.Wiley, 2006.

    Google Scholar 

  41. J. A. C. Bingham, ADSL, VDSL, and multicarrier modulation.Wiley, 2000.

    Google Scholar 

  42. C. Berrou, “The ten-year old turbo codes are entering into service,” IEEE Commun. Mag., vol. 42, pp. 110–116, Aug. 2003.

    Article  Google Scholar 

  43. V. Tarokh, H. Jafarkhni, and A. R. Calderbank, “Space–time block coding for wireless communication: Performance results,” IEEE J. Select. Areas Commun., vol. 17, pp. 451– 460, May 1999.

    Article  Google Scholar 

  44. P. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun., vol. 42, pp. 2908–2914, 1994.

    Article  Google Scholar 

  45. T. M. Cover and J. A. Thomas, Elements of information theory.Wiley, 1991.

    Google Scholar 

  46. J. von Neumann and O. Morgenstein, Theory of games and economic behavior.Princeton University Press, 1947.

    Google Scholar 

  47. D. Fudenberg and D. K. Levine, The theory of learning in games.MIT Press, 1999.

    Google Scholar 

  48. T. Basar and G. J. Olsder, Dynamic noncooperative game theory, 2nd ed. SIAM, 1999.

    Google Scholar 

  49. M. J. Osborne and A. Rubinstein, A course in game theory.MIT Press, 1994.

    Google Scholar 

  50. G. Gordon, “No-regret algorithms for structured prediction problems,” Technical report 112, Carnegie-Mellon University, Center for Automated Learning and Discovery, 2005.

    Google Scholar 

  51. P. W. Glimcher, Decisions, uncertainty, and the brain: The science of neuroeconomics. MIT Press, 2003.

    Google Scholar 

  52. A. B. McKenzie, L. Dasilva, andW. Tranter, Game theory for wireless engineers.Morgan and Claypool Publishers, 2006.

    Google Scholar 

  53. J. F. Nash, “Non-cooperative games,” Ann. Math., vol. 54, pp. 286–295, 1951.

    Article  MathSciNet  Google Scholar 

  54. J. F. Nash, “Equilibrium points in n-person games,” in Proc. Natl Acad. Sci., vol. 36, pp. 48–49, 1950.

    Article  MATH  MathSciNet  Google Scholar 

  55. M. Felegyhazi and J. P. Hubaux, “Game theory in wireless networks: A tutorial,” EPFL Technical report, LCA-REPORT-2006-002, EPFL, Switzerland.

    Google Scholar 

  56. W. Yu, “Competition and cooperation in multi-user communication environments,” Doctoral Dissertation, Stanford University, 2002.

    Google Scholar 

  57. W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser power control for digital subscriber lines,” IEEE J. Select. Areas Commun., vol. 20, pp. 1105–1115, June 2002.

    Article  Google Scholar 

  58. S. T. Chung, “Transmission schemes for frequency selective Gaussian interference channels,” Dissertation, Doctor of Philosophy, Stanford University, CA, Nov. 2003.

    Google Scholar 

  59. T. Starr, J. M. Cioffi, and P. J. Silverman, Understanding digital subcarrier line technology. Prentice-Hall, 1999.

    Google Scholar 

  60. A. Boyd and L. Vandenbarghe, Convex optimization.Cambridge University Press, 2004.

    Google Scholar 

  61. H. K. Khalil, Nonlinear systems. Prentice-Hall, 1992.

    Google Scholar 

  62. J. Maynard Smith, “The theory or games and the evolution of animal conflicts,” J. Theor. Biol., vol. 47, pp. 209–221, 1974.

    Article  MathSciNet  Google Scholar 

  63. J. Maynard Smith, Evolution and the theory of games.Cambridge University Press, 1982.

    Google Scholar 

  64. H. G. Schuster, Complex adaptive systems: An introduction.Springer-Verlag, 2001.

    Google Scholar 

  65. D. L. Stein, editor, Lectures in the Sciences of Complexity.Addison-Wesley, 1989.

    Google Scholar 

  66. E. Jen, editor, 1989 Lectures in Complex Systems.Addison-Wesley, 1990.

    Google Scholar 

  67. G. G. Weisbunch, Complex system dynamics.Addison-Wesley, 1991.

    Google Scholar 

  68. G. Nicolis and I. Progogine, Exploring complexity: An introduction.W. H. Freeman and Company, 1989.

    Google Scholar 

  69. S. Haykin, editor, Adaptive Radar Signal Processing, pp. 153–155. Wiley, 2007.

    Google Scholar 

  70. J. Zhao, H. Zheng, and G. H. Yang, “Distributed coordination in dynamic spectrum allocation networks,” in IEEE Workshop(Baltimore, MA), pp. 259–268, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haykin, S. (2007). Fundamental Issues in Cognitive Radio. In: Hossain, E., Bhargava, V. (eds) Cognitive Wireless Communication Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68832-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68832-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68830-5

  • Online ISBN: 978-0-387-68832-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics