Skip to main content

On Important Stages of Geosphere and Biosphere Evolution

  • Chapter
Biosphere Origin and Evolution

Abstract

The necessary conditions for the existence of protein–nucleic acid life are the presence of liquid water, some protection against high-amplitude temperature jumps and cosmic factors (these may be the atmosphere and or a thick layer of water or same rocks) and the accessibility of biogenes, which are macroelements and microelements. Two geosphere-related canalizing vectors of biosphere evolution can be discerned. One is associated with an irreversible cooling and oxygenation of the planet and the associated complex pattern of interplaying endogenous cycles, which affect climates as well as the amount and composition of the biogenes in the “liquid water zone.” Change of the convection mode in the mantle between 3 and 2 Byr ago had the most important implications for the biosphere: the formation of plate tectonics (a deep ocean and continents), enrichment of the chemical composition of the effusive material and the “plume dropper,” which changes the oceanic-to-continental area ratio and the mantle-to-island-arc volcanism intensity ratio every 30 Myr. The World Ocean operates as a homeostatic system: it tempers climates, distributes biogene concentrations evenly over the globe and provides the hydrosphere with direct biogene supply from the mantle, which is how the second vector of biosphere evolution is set. Life is a homeostatic system too—not due to a tremendously high buffer’s capacity, but due to high rates of chemical reactions and a special program (the genome), which warrants autonomy from the environment. Reduction in methane concentrations and increase in atmospheric O2 in the course of the Earth's geological evolution caused the extinction of chemotrophic ecosystems. Autotrophic photosynthesis provided the biosphere with a source of energy that was not associated with the geosphere and helped the biosphere for the first time to gain independence (autonomization) from the geosphere. As a result, the biosphere develops a solid film of life spread out over the continents, pelagic and abyssal zones, and the geosphere supplemented its geochemical cycles with biogeochemical ones which are comparable, if not by the mass of the matter involved, by annual balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleshin, V.V. and Petrov, N.B. (2003) Conditionally neutral characters. Priroda 12, 25–34 (in Russ.).

    Google Scholar 

  • Balavoine, G., de Rosa, R. and Adoutte, A. (2002) Hox clusters and bilaterian phylogeny. Mol. Phylogenet. Evol. 24. 366–373.

    Article  PubMed  CAS  Google Scholar 

  • Bernal, J.D. (1967) The Origin of Life. World, New York.

    Google Scholar 

  • Braudel, F. (1990) La Méditerranée et le monde méditerranéen à l’époque de Philippe II, tome 2: Destins collectifs et mouvements d’ensemble. Armand Colin, Paris.

    Google Scholar 

  • Cairns-Smith, A.G. (2005) Sketches for a mineral genetic material. Elements 1, 157–161.

    Article  CAS  Google Scholar 

  • Carroll, S.B. (2001) Chance and necessity; the evolution of morphological complexity and diversity. Nature 409, 1102–1109.

    Article  PubMed  CAS  Google Scholar 

  • Castresana, J. and Moreira, D. (1999) Respiratory chains in the last common ancestor of living organisms. J. Mol. Evol. 49, 453–460.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T. (2002a) The phagotrophic origin of eucaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354.

    CAS  Google Scholar 

  • Cavalier-Smith, T. (2002b) Origins of the machinery of recombination and sex. Heredity 88, 125–141.

    Article  CAS  Google Scholar 

  • Chetverin, A.B. (1999) The puzzle of RNA recombination. FEBS Lett. 460, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Chetverina, H.V. and Chetverin, A.B. (1993) Cloning of RNA molecules in vitro. NAR 21, 2349–2353.

    Article  PubMed  CAS  Google Scholar 

  • Chyba, C.F. and McDonald, G.D. (1995) The origin of life in the solar system: current issues. Annu. Rev. Earth Planet. Sci. 23, 215–249.

    Article  PubMed  CAS  Google Scholar 

  • Condie, K.C. (1989) Plate Tectonics and Crustal Evolution. Pergamon Press, Oxford.

    Google Scholar 

  • Dobretsov, N.L. and Chumakov, N.N. (2001) Global periodical variations in litologspheric and biospheric evolution. In: N.L. Dobretsov and N.I. Kovalenko (Eds), Global Environmental Changes. SO RAN, filial GEO, Novosibirsk, pp. 11–26 (in Russ.).

    Google Scholar 

  • Dobretsov, N.L. and Kirdyashkin, A.G. (1998) Assessment of global matter exchange between the Earth's layers: comparing geological and theoretical data. Geol. Geofiz. 39, 1269–1279 (in Russ.).

    CAS  Google Scholar 

  • Dobretsov, N.L. and Kovalenko, N.I. (1995) Global environmental changes. Geol. Geofiz. 36, 7–30 (in Russ.).

    CAS  Google Scholar 

  • Dobretsov, N.L., Kirdyashkin A.G. and Kirdyashkin, A.A. (2001) Depth Geodynamics. Geya, Novosibirsk (in Russ.).

    Google Scholar 

  • Fedonkin, M.A. (2003). The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research 7, 9–41.

    Article  Google Scholar 

  • Ferris, J.P. (2005) Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements 1, 145–149.

    Article  CAS  Google Scholar 

  • Grigoryev, D.P. (1956) Further insights into mineralogical objects; minerals as per A.K. Boldyrev. Zap. Vses. Mineral. O-va. 85, 463–471 (in Russ.).

    Google Scholar 

  • Hazen, R.M. (2005) Genesis: rocks, minerals and the geochemical origin of life. Elements 1, 135–137.

    Article  CAS  Google Scholar 

  • Hedges, S.B. and Kumar, S. (2003) Genomic clocks and evolutionary timescales. Trends Genet. 19, 200–206.

    Article  Google Scholar 

  • Hedges, S.B. and Kumar, S. (2004) Precision of molecular time estimates. Trends Genet. 20, 242–247.

    Article  PubMed  CAS  Google Scholar 

  • Ivanisenko, V.A., Pintus, S.S., Grigorovich, D.A. and Kolchanov, N.A. (2005) PDBSite: a database of the 3D structure of protein functional sites. NAR 33, D183–D187.

    Article  PubMed  CAS  Google Scholar 

  • Izokh, E.P. (1978) Assessment of the Ore-Bearing Capacity of Granitoid Formations with a View to Making Predictions. Nedra, Moscow (in Russ.).

    Google Scholar 

  • Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E. and Bartel, D.P. (2001) RNA-catalyzed RNA polimerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325.

    Article  PubMed  CAS  Google Scholar 

  • Kalandadze, N.N. and Rautian, A.S. (1993) Symptomatology of ecological crises. Stratigr. Geol. korrel. 1, 3–8 (in Russ.).

    Google Scholar 

  • Kanygin, A.V. (2001) The Ordovician explosive divergence of the earth's organic realm: causes and effects of the biosphere evolution. Russ. Geol. Geophis. 42, 599–633.

    Google Scholar 

  • Khain, V.E. (2003) Main Challenges in Modern Geology. Nauchnyy Mir, Moscow (in Russ.).

    Google Scholar 

  • Kirdyashkin, A.G. and Dobretsov, N.L. (2001) The effects of the structure of convective flows and plume flows in the Earth’s mantle on the periodicity of endogenous processes. In: N.L. Dobretsov and N.I. Kovalenko (Eds), Global Environmental Changes. SO RAN, filial GEO, Novosibirsk, pp. 27–41 (in Russ.).

    Google Scholar 

  • Knoll, A.H. (1994) Neoproterozoic evolution and environmental change. In: S. Bengtson (Ed.), Early Life on Earth. Columbia Univ. Press, New York, pp. 439–449.

    Google Scholar 

  • Kolchanov, N.A., Suslov, V.V. and Shumny, V.K. (2003) Molecular evolution of genetic systems. Paleontol. J. 37, 617–629.

    Google Scholar 

  • Krasilov, V.A. (1986) Unsolved Problems of Evolution Theory. FERSAS SSSR, Vladivistok (in Russ.).

    Google Scholar 

  • de Laeter, J.R. and Trendall, A.F. (2002) The oldest rocks: the Western Australian connection. J. R. S. West. Aust. 85, 153-160.

    Google Scholar 

  • Lisitsyn, A.P. (1980) The history of oceanic volcanism. In: A.S. Monin and A.P. Lisitsyn (Eds), The Geological History of the Ocean. Nauka, Moscow, pp. 278–319 (in Russ.).

    Google Scholar 

  • Lisitsyn, A.P. (1993) Hydrothermal systems of the World Ocean as a supplier of endogenous matter In: A.P. Lisitsyn (Ed.), Hydrothermal Systems and Sediment Formations of Mid-oceanic Ridges. Nauka, Moscow, pp. 147–247 (in Russ.).

    Google Scholar 

  • Lisitsyn, A.P. (2001) The lithology of lithospheric plates. Geol. Geofiz. 42, 522–559 (in Russ.).

    CAS  Google Scholar 

  • Liubischev, A.A. (1982) On the Form, Systematics and Evolution of Organisms. Nauka, Moscow (in Russ.).

    Google Scholar 

  • Lockwood, J.A., Bomar, C.R., Williams, S.E., Dodd, J.L., Quan, M. and Li, H. (1993) Insect ecology on the Asian and North American steppes: striking differences and remarkable similarities. In: Li Bo (Ed.), Proceedings of the International Symposium on Grassland Resources. August, 1993. Agricultural Scientech Press, Beijing, pp. 513–527.

    Google Scholar 

  • Malakhov, V.V. and Galkin, S.V. (1998) The Vestimentifera: Acoelic Invertebrates of the Deep. KMK, Moscow (in Russ.).

    Google Scholar 

  • Markov, A.V. (2001) Dynamics of the marine faunal diversity in the Phanerozoic: a new approach. Paleontol. J. 35, 1–9.

    Google Scholar 

  • Markov, A.V. (2002) Mechanisms responsible for the increase in the taxonomic diversity in the Phanerozoic Marine Biota. Paleontol. J. 36, 121–130.

    Google Scholar 

  • Maslennikov, V.V. (1999) Sedimentogenesis, Halmyrolysis and the Ecology of Pyritiferous Paleohydrothermal Fields: a South Urals Case. Geotur, Miass (in Russ.).

    Google Scholar 

  • Natochin, Yu.V. (2005.) The role of sodium ions as a stimulus for the evolution of cells and multicellular animals. Paleonotol. J. 39, 358–363.

    Google Scholar 

  • Peterson, K.J. and Eernisse, D.J. (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol. Dev. 3, 170–205.

    Article  PubMed  CAS  Google Scholar 

  • Polevoy, V.V. (1985) The living state of the cell. In: V.V. Polevoy and Yu.I. Maslov (Eds), The Evolution of Function in Plants. LGU, Leningrad, pp. 36–45 (in Russ.),

    Google Scholar 

  • Prozorov, A.A. (2002) Altruism in the bacterial world? Uspekhi Sovremennoy Biol. 122, 403–413 (in Russ.).

    CAS  Google Scholar 

  • Rozanov, A.Yu. (2006) Precambrian geobiology. Paleontol. J. 40, S434–S443.

    Article  Google Scholar 

  • Rozhnov, S.V. (2005) Morphological patterns in the formation and evolution of higher taxa of echinodermata. In: E.I. Vorobjeva and B.R. Striganova (Eds), Evolutionary Factors of the Formation of Animal Life Diversity. KMK Scientific Press, Moscow, pp. 156–170 (in Russ.).

    Google Scholar 

  • Rundkvist, D.V. (1968) Issues in mineral research. Zap. Vses. Mineral. O-va. 97, 191–209 (in Russ.).

    CAS  Google Scholar 

  • Rundkvist, D.V., Denisenko, V.K. and Pavlova, I.G. (1971) Greisen Deposits (Ontogenesis and Phylogenesis). Nedra, Moscow (in Russ.).

    Google Scholar 

  • Ruvinsky, A.O. (1991) Sex, meiosis and progressive evolution. In: V.K. Shumny, N.A. Kolchanov and A.O. Ruvinsky (Eds), Problems of Genetics and Evolutional Theory. Nauka, Novosibirsk, pp. 214–228 (in Russ.).

    Google Scholar 

  • Schidlowski, M. (1988) A 3,800 million-year old record of life from carbon in sedimentary rocks. Nature 333, 313–318.

    Article  CAS  Google Scholar 

  • Semikhatov, M.A. (1993) The most recent scales for general division of the Precambrian: a comparison. Stratigr. Geol. korrel. 1, 6–16 (in Russ.).

    Google Scholar 

  • Sepkoski, J.J. (1994) Limits to randomness in paleobiologic models: the case of Phanerozoic species diversity. Acta Palaeontol. Polon. 38, 175–198.

    Google Scholar 

  • Sepkoski, J.J. (1996.) Patterns of Phanerozoic extinction: a perspective from global data bases. In: O.H. Walliser (Ed.), Global Events and Event Stratigraphy. Springer, Berlin, pp. 35–51.

    Google Scholar 

  • Sergeyev, V.N., Noll, E.H. and Zavarzin, G.A. (1996) The first three billion years of life: from prokaryotes to eukaryotes. Priroda 6, 54–67 (in Russ.).

    Google Scholar 

  • Shestakov, S.V. (2005) Contribution of genomics to investigation of prokaryotic evolution. In: A. Yu Rozanov and V.N. Snytnikov (Eds) Proceedings of the International Workshop on Biosphere Origin and Evolution. IC SB RAS, Novosibirsk, pp. 24–25.

    Google Scholar 

  • Shmalgauzen, I.I. (1968) Evolutionary Factors (Stabilizing Selection Theory). Nauka, Moscow (in Russ.).

    Google Scholar 

  • Sokolov, B.S. and Fedonkin, M.A. (1988.) Modern Paleontology. Nedra, Moscow (in Russ.).

    Google Scholar 

  • Starobogatov, Ya.I. (1985.) Aspects of Speciation. VINITI, Moscow (in Russ.).

    Google Scholar 

  • Taft, R.J. and Mattick, J.S. (2003) Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genome Biol. 5. P1. Epub.

    Google Scholar 

  • Tajika, E. and Matsui, N. (1992) Evolution of terrestrial proto-CO2-atmosphere coupled with thermal history of Earth. Earth Planet. Sci. Lett. 113, 251–266.

    Article  CAS  Google Scholar 

  • Trubitsin, V.P. and Rykov V.V. (2001) Numerical models of mantle convection's evolution: In: N.L. Dobretsov and N.I. Kovalenko (Eds), Global Environmental Changes. SO RAN, filial GEO, Novosibirsk, pp. 42–55 (in Russ.).

    Google Scholar 

  • Unrau, P.J. and Bartel, D.P. (1998) RNA-catalyzed nucleotide synthesis. Nature 395, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Vasilyev, V.P., Vasilyeva, E.D. and Osipov, A.G (1983). First evidence favoring the main hypothesis of net-like speciation. Dokl. AN SSSR 271, 1009–1012 (in Russ.).

    Google Scholar 

  • Vavilov, N.I. (1967) The law of homologous series in the inheritance of variability. In: I.A.Rappoport (Ed.), Selection from the Works of N.I. Vavilov, Vol.1. Nauka, Leningrad, pp. 7–61 (in Russ.).

    Google Scholar 

  • Vernadsky, V.I. (1987) The Chemical Composition of the Earth and its Surroundings. Nauka, Moscow (in Russ.).

    Google Scholar 

  • Vinogradov, M.E. (2004) Biological Productivity of Oceanic Ecosystems. Nauka, Moscow (in Russ.).

    Google Scholar 

  • Zakrutkin, V.E. (1993) On the scale of organic matter accumulation in the Precambrian and Phanerozoic. In: A.Yu. Rozanov (Ed.), Problemy Doantropogennoy Evoliutsii Biosfery. Nauka, Moscow, pp. 202–212 (in Russ.).

    Google Scholar 

  • Zavarzin, G.A. (2001) Formation of biosphere. Vestnik RAS 71, 988–1001 (in Russ.).

    CAS  Google Scholar 

  • Zavarzin, G.A. (2003a) Lectures on Natural Resource Microbiology. Nauka, Moscow (in Russ.).

    Google Scholar 

  • Zavarzin, G.A. (2003b) The antipode of the noosphere. Vestnik RAS 73, 627–636 (in Russ.).

    Google Scholar 

  • Zhegallo, V.I., Kalandadze, N.N., Kuznetosva, T.V. and Rautian, A.S. (2001) The fate of megafauna in the Late Anthropogene. In: The Mammoth and its Neighborhood: 200 Years of Research. Geos, Moscow, pp. 287–306 (in Russ.).

    Google Scholar 

  • Zherikhin, V.V. (1986) Biocoenotic regulation of evolution. Paleontol. Zh. 1, 3–12 (in Russ.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dobretsov, N., Kolchanov, N., Suslov, V. (2008). On Important Stages of Geosphere and Biosphere Evolution. In: Dobretsov, N., Kolchanov, N., Rozanov, A., Zavarzin, G. (eds) Biosphere Origin and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68656-1_1

Download citation

Publish with us

Policies and ethics