Skip to main content

Exocytic Mechanisms for Axonal and Dendritic Growth

  • Chapter
Intracellular Mechanisms for Neuritogenesis
  • 363 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Advani, R.J., Yang, B., Prekeris, R., Lee, K.C., Klumperman, J., and Scheller, R.H., 1999, VAMP-7 mediates vesicular transport from endosomes to lysosomes, J. Cell Biol. 146: 765–775.

    PubMed  CAS  Google Scholar 

  • Alberts, P., Rudge, R., Hinners, I., Muzerelle, A., MartinezArca, S., Irinopoulou, T., et al., 2003, Cross talk between tetanus neurotoxin-insensitive vesicle-associated membrane protein-mediated transport and L1-mediated adhesion, Mol. Biol. Cell 14: 4207–4220.

    PubMed  CAS  Google Scholar 

  • Alberts, P., Rudge, R., Irinopoulou, T., Danglot, L., Gauthier-Rouviere, C., Galli, T., 2006, Cdc42 and actin control polarized expression of TI-VAMP vesicles to neuronal growth cones and their fusion with the plasma membrane, Mol. Biol. Cell. 17: 1194–203.

    PubMed  CAS  Google Scholar 

  • Allen, W.E., Zicha, D., Ridley, A.J., and Jones, G.E., 1998, A role for Cdc42 in macrophage chemotaxis, J. Cell Biol. 141: 1147–1157.

    PubMed  CAS  Google Scholar 

  • Andrews, N.W., 2000, Regulated secretion of conventional lysosomes, Trends Cell Biol. 10: 316–321.

    PubMed  CAS  Google Scholar 

  • Antonin, W., Holroyd, C., Fasshauer, D., Pabst, S., vonMollard, G.F., and Jahn, R., 2000, A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function, EMBO J. 19: 6453–6464.

    Google Scholar 

  • Aravamudan, B., Fergestad, T., Davis, W.S., Rodesch, C.K., and Broadie, K., 1999, Drosophila Unc-13 is essential for synaptic transmission, Nat. Neurosci. 2: 965–971.

    PubMed  CAS  Google Scholar 

  • Balch, W.E., Dunphy, W.G., Braell, W.A., and Rothman, J.E., 1984, Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine, Cell 39: 405–416.

    PubMed  CAS  Google Scholar 

  • Baumert, M., Maycox, P.R., Navone, F., De Camilli, P., and Jahn, R., 1989, Synaptobrevin: An integral membrane protein of 18, 000 daltons present in small synaptic vesicle of rat brain, EMBO J. 8: 379–384.

    PubMed  CAS  Google Scholar 

  • Bennett, M.K., Calakos, N., and Scheller, R.H., 1992, Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones, Science 257: 255–259.

    PubMed  CAS  Google Scholar 

  • Bentley, D., and Toroian-Raymond, A., 1986, Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment, Nature 323: 712–715.

    PubMed  CAS  Google Scholar 

  • Blasi, J., Chapman, E.R., Link, E., Binz, T., Yamasaki, S., De Camilli, P., et al., 1993a, Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25, Nature 365: 160–163.

    PubMed  CAS  Google Scholar 

  • Blasi, J., Chapman, E.R., Yamasaki, S., Binz, T., Niemann, H., and Jahn, R., 1993b, Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin, EMBO J. 12: 4821–4828.

    PubMed  CAS  Google Scholar 

  • Block, M.R., and Rothman, J.E., 1992, Purification of N-ethylmaleimide-sensitive fusion protein, Methods Enzymol 219: 300–309.

    PubMed  CAS  Google Scholar 

  • Bogdanovic, A., Bruckert, F., Morio, T., and Satre, M., 2000, A syntaxin 7 homologue is present in Dictyostelium discoideum endosomes and controls their homotypic fusion, J. Biol. Chem. 275: 36691–36697.

    PubMed  CAS  Google Scholar 

  • Bogdanovic, A., Bennett, N., Kieffer, S., Louwagie, M., Morio, T., Garin, J., et al., 2002, Syntaxin 7, Syntaxin 8, Vti1 and VAMP7 form an active SNARE complex for early macropinocytic compartment fusion in Dictyostelium discoideum, Biochem. J. 15: 29–39.

    Google Scholar 

  • Braun, V., Fraisier, V., Raposo, G., Hurbain, I., Sibarita, J.B., Chavrier, P., et al., 2004, TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages, EMBO J. 23: 4166–4176.

    PubMed  CAS  Google Scholar 

  • Brummendorf, T., Kenwrick, S., and Rathjen, F.G., 1998, Neural cell recognition molecule L1: From cell biology to human hereditary brain malformations, Curr. Opin. Neurobiol. 8: 87–97.

    PubMed  CAS  Google Scholar 

  • Buchstaller, A., Kunz, S., Berger, P., Kunz, B., Ziegler, U., Rader, C., et al., 1996, Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion, J. Cell Biol. 135: 1593–1607.

    PubMed  CAS  Google Scholar 

  • Castellani, V., Chedotal, A., Schachner, M., Faivre-Sarrailh, C., and Rougon, G., 2000, Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance, Neuron 27: 237–249.

    PubMed  CAS  Google Scholar 

  • Castellani, V., De Angelis, E., Kenwrick, S., and Rougon, G., 2002, Cis and trans interactions of L1 with neuropilin-1 control axonal responses to semaphorin 3A, EMBO J. 21: 6348–6357.

    PubMed  CAS  Google Scholar 

  • Castellani, V., Falk, J., and Rougon, G., 2004, Semaphorin3A-induced receptor endocytosis during axon guidance responses is mediated by L1 CAM, Mol. Cell. Neurosci. 26: 89–100.

    PubMed  CAS  Google Scholar 

  • Challacombe, J.F., Snow, D.M., and Letourneau, P.C., 1996, Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue, J. Cell Sci. 109: 2031–2040.

    PubMed  CAS  Google Scholar 

  • Chien, C.B., Rosenthal, D.E., Harris, W.A., and Holt, C.E., 1993, Navigational errors made by growth cones without filopodia in the embryonic Xenopus brain, Neuron 11: 237–251.

    PubMed  CAS  Google Scholar 

  • Chieregatti, E., Chicka, M.C., Chapman, E.R., and Baldini, G., 2004, SNAP-23 functions in docking/fusion of granules at low Ca2+, Mol. Biol. Cell 15: 1918–1930.

    PubMed  CAS  Google Scholar 

  • Clary, D.O., Griff, I.C., and Rothman, J.E., 1990, SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast, Cell 61: 709–721.

    PubMed  CAS  Google Scholar 

  • Coco, S., Raposo, G., Martinez, S., Fontaine, J.J., Takamori, S., Zahraoui, A., et al., 1999, Subcellular localization of tetanus neurotoxin-insensitive vesicle-associated membrane protein (VAMP)/VAMP7 in neuronal cells: Evidence for a novel membrane compartment, J. Neurosci. 19: 9803–9812.

    PubMed  CAS  Google Scholar 

  • Cohen, N.R., Taylor, J.S., Scott, L.B., Guillery, R.W., Soriano, P., and Furley, A.J., 1998, Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1, Curr. Biol. 8: 26–33.

    PubMed  CAS  Google Scholar 

  • Cole, R.A., Synek, L., Zarsky, V., and Fowler, J.E., 2005, SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth, Plant Physiol. 138: 2005–2018.

    PubMed  CAS  Google Scholar 

  • Craig, A.M., Wyborski, R.J., and Banker, G., 1995, Preferential addition of newly synthesized membrane protein at axonal growth cones, Nature 375: 592–594.

    PubMed  CAS  Google Scholar 

  • D'Esposito, M., Ciccodicola, A., Gianfrancesco, F., Esposito, T., Flagiello, L., Mazzarella, R., et al., 1996, A synaptobrevin-like gene in the Xq28 pseudoautosomal region undergoes X inactivation, Nat. Genet. 13: 227–229.

    PubMed  Google Scholar 

  • Dahme, M., Bartsch, U., Martini, R., Anliker, B., Schachner, M., and Mantei, N., 1997, Disruption of the mouse L1 gene leads to malformations of the nervous system, Nat. Genet. 17: 346–349.

    PubMed  CAS  Google Scholar 

  • Davis, J.Q., and Bennett, V., 1994, Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules, J. Biol. Chem. 269: 27163–27166.

    PubMed  CAS  Google Scholar 

  • de Anda, F.C., Pollarolo, G., Da Silva, J.S., Camoletto, P.G., Feiguin, F., and Dotti, C.G., 2005, Centrosome localization determines neuronal polarity, Nature 436: 704–708.

    PubMed  Google Scholar 

  • Deitcher, D.L., Ueda, A., Stewart, B.A., Burgess, R.W., Kidokoro, Y., and Schwarz, T.L., 1998, Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin, J. Neurosci. 18: 2028–2039.

    PubMed  CAS  Google Scholar 

  • Dent, E.W., and Kalil, K., 2001, Axon branching requires interactions between dynamic microtubules and actin filaments, J. Neurosci. 21: 9757–9769.

    PubMed  CAS  Google Scholar 

  • DiAntonio, A., Haghighi, A.P., Portman, S.L., Lee, J.D., Amaranto, A.M., and Goodman, C.S., 2001, Ubiquitination-dependent mechanisms regulate synaptic growth and function, Nature 412: 449–452.

    PubMed  CAS  Google Scholar 

  • Dickson, B.J., 2002, Molecular mechanisms of axon guidance, Science 298: 1959–1964.

    PubMed  CAS  Google Scholar 

  • Dickson, T.C., Mintz, C.D., Benson, D.L., and Salton, S.R., 2002, Functional binding interaction identified between the axonal CAM L1 and members of the ERM family, J. Cell Biol. 157: 1105–1112.

    PubMed  CAS  Google Scholar 

  • Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Sudhof, T.C., et al., 1999, A conformational switch in syntaxin during exocytosis: Role of munc18, EMBO J. 18: 4372–4382.

    PubMed  CAS  Google Scholar 

  • Etienne-Manneville, S., and Hall, A., 2001, Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta, Cell 106: 489–498.

    PubMed  CAS  Google Scholar 

  • Filippini, F., Rossi, V., Galli, T., Budillon, A., D'Urso, M., and D'Esposito, M., 2001, Longins: A new evolutionary conserved VAMP family sharing a novel SNARE domain, Trends Biochem. Sci. 26: 407–409.

    PubMed  CAS  Google Scholar 

  • Forscher, P., and Smith, S.J., 1988, Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone, J. Cell Biol. 107: 1505–1516.

    PubMed  CAS  Google Scholar 

  • Futerman, A.H., and Banker, G.A., 1996, The economics of neurite outgrowth–the addition of new membrane to growing axons, Trends. Neurosci. 19: 144–149.

    PubMed  CAS  Google Scholar 

  • Galli, T., Zahraoui, A., Vaidyanathan, V.V., Raposo, G., Tian, J.M., Karin, M., et al., 1998, A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells, Mol. Biol. Cell 9: 1437–1448.

    PubMed  CAS  Google Scholar 

  • Gasman, S., Kalaidzidis, Y., and Zerial, M., 2003, RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase, Nat. Cell Biol. 5: 195–204.

    PubMed  CAS  Google Scholar 

  • Gonzalez, L.C., Weis, W.I., and Scheller, R.H., 2001, A novel SNARE N-terminal domain revealed by the crystal structure of Sec22b, J. Biol. Chem. 276: 24203–24211.

    PubMed  CAS  Google Scholar 

  • Grindstaff, K.K., Yeaman, C., Anandasabapathy, N., Hsu, S.C., RodriguezBoulan, E., Scheller, R.H., et al., 1998, Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells, Cell 93: 731–740.

    PubMed  CAS  Google Scholar 

  • Grosse, G., Grosse, J., Tapp, R., Kuchinke, J., Gorsleben, M., Fetter, I., et al., 1999, SNAP-25 requirement for dendritic growth of hippocampal neurons, J. Neurosci. Res. 56: 539–546.

    PubMed  CAS  Google Scholar 

  • Hammer, J.A., III, and Wu, X.S., 2002, Rabs grab motors: Defining the connections between Rab GTPases and motor proteins, Curr. Opin. Cell Biol. 14: 69–75.

    PubMed  CAS  Google Scholar 

  • Hattula, K., and Peranen, J., 2000, FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis, Curr. Biol. 10: 1603–1606.

    PubMed  CAS  Google Scholar 

  • Hattula, K., Furuhjelm, J., Arffman, A., and Peranen, J., 2002, A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport, Mol. Biol. Cell 13: 3268–3280.

    PubMed  CAS  Google Scholar 

  • Hausauer, D.L., Gerami-Nejad, M., Kistler-Anderson, C., and Gale, C.A., 2005, Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p, Eukaryot. Cell 4: 1273–1286.

    PubMed  CAS  Google Scholar 

  • Hibi, T., Hirashima, N., and Nakanishi, M., 2000, Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes, Biochem. Biophys. Res. Commun. 271: 36–41.

    PubMed  CAS  Google Scholar 

  • Higgins, D., Burack, M., Lein, P., and Banker, G., 1997, Mechanisms of neuronal polarity, Curr. Opin. Neurobiol. 7: 599–604.

    PubMed  CAS  Google Scholar 

  • Hoppe, A.D., and Swanson, J.A., 2004, Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis, Mol. Biol. Cell 15: 3509–3519.

    PubMed  CAS  Google Scholar 

  • Hu, C., Ahmed, M., Melia, T.J., Sollner, T.H., Mayer, T., and Rothman, J.E., 2003, Fusion of cells by flipped SNAREs, Science 300: 1745–1749.

    PubMed  CAS  Google Scholar 

  • Ignelzi, M.A., Jr., Miller, D.R., Soriano, P., and Maness, P.F., 1994, Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1, Neuron 12: 873–884.

    PubMed  CAS  Google Scholar 

  • Ikin, A.F., Annaert, W.G., Takei, K., De Camilli, P., Jahn, R., Greengard, P., et al., 1996, Alzheimer amyloid protein precursor is localized in nerve terminal preparations to Rab5-containing vesicular organelles distinct from those implicated in the synaptic vesicle pathway, J. Biol. Chem. 271: 31783–31786.

    PubMed  CAS  Google Scholar 

  • Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C., and Simons, K., 1995, Different requirements for NSF, SNAP, and rab proteins in apical and basolateral transport in MDCK cells, Cell 81: 571–580.

    PubMed  CAS  Google Scholar 

  • Jahn, R., Lang, T., and Sudhof, T.C., 2003, Membrane fusion, Cell. 112: 519–533.

    PubMed  CAS  Google Scholar 

  • Jareb, M., and Banker, G., 1997, Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture, J. Neurosci. 17: 8955–8963.

    PubMed  CAS  Google Scholar 

  • Kamiguchi, H., and Lemmon, V., 2000, Recycling of the cell adhesion molecule L1 in axonal growth cones, J. Neurosci. 20: 3676–3686.

    PubMed  CAS  Google Scholar 

  • Kamiguchi, H., and Yoshihara, F., 2001, The role of endocytic l1 trafficking in polarized adhesion and migration of nerve growth cones, J. Neurosci. 21: 9194–9203.

    PubMed  CAS  Google Scholar 

  • Kamiguchi, H., Long, K.E., Pendergast, M., Schaefer, A.W., Rapoport, I., Kirchhausen, T., et al., 1998, The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway, J. Neurosci. 18: 5311–5321.

    PubMed  CAS  Google Scholar 

  • Kaplan, K.B., Swedlow, J.R., Varmus, H.E., and Morgan, D.O., 1992, Association of p60c-src with endosomal membranes in mammalian fibroblasts, J. Cell Biol. 118: 321–333.

    PubMed  CAS  Google Scholar 

  • Kaufmann, N., Wills, Z.P., and Van Vactor, D., 1998, Drosophila Rac1 controls motor axon guidance, Development 125: 453–461.

    PubMed  CAS  Google Scholar 

  • Kayyem, J.F., Roman, J.M., de la Rosa, E.J., Schwarz, U., and Dreyer, W.J., 1992, Bravo/Nr-CAM is closely related to the cell adhesion molecules L1 and Ng-CAM and has a similar heterodimer structure, J. Cell Biol. 118: 1259–1270.

    PubMed  CAS  Google Scholar 

  • Lafont, F., Verkade, P., Galli, T., Wimmer, C., Louvard, D., and Simons, K., 1999, Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells, Proc. Nat. Acad. Sci. USA 96: 3734–3738.

    PubMed  CAS  Google Scholar 

  • Lemmon, V., Farr, K.L., and Lagenaur, C., 1989, L1-mediated axon outgrowth occurs via a homophilic binding mechanism, Neuron 2: 1597–1603.

    PubMed  CAS  Google Scholar 

  • Li, Z., Van Aelst, L., and Cline, H.T., 2000, Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo, Nat. Neurosci. 3: 217–225.

    PubMed  CAS  Google Scholar 

  • Lin, C.H., and Forscher, P., 1995, Growth cone advance is inversely proportional to retrograde F-actin flow, Neuron 14: 763–771.

    PubMed  CAS  Google Scholar 

  • Lin, C.H., Espreafico, E.M., Mooseker, M.S., and Forscher, P., 1996, Myosin drives retrograde F-actin flow in neuronal growth cones, Neuron 16: 769–782.

    PubMed  CAS  Google Scholar 

  • Luo, L., Hensch, T.K., Ackerman, L., Barbel, S., Jan, L.Y., and Jan, Y.N., 1996, Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines, Nature 379: 837–840.

    PubMed  CAS  Google Scholar 

  • Martinez-Arca, S., Alberts, P., and Galli, T., 2000a, Clostridial neurotoxin-insensitive vesicular SNAREs in exocytosis and endocytosis, Biol. Cell 92: 449–453.

    PubMed  CAS  Google Scholar 

  • Martinez-Arca, S., Alberts, P., Zahraoui, A., Louvard, D., and Galli, T., 2000b, Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth, J. Cell Biol. 149: 889–899.

    PubMed  CAS  Google Scholar 

  • Martinez-Arca, S., Coco, S., Mainguy, G., Schenk, U., Alberts, P., Bouille, P., et al., 2001, A common exocytotic mechanism mediates axonal and dendritic outgrowth, J. Neurosci. 21: 3830–3838.

    PubMed  CAS  Google Scholar 

  • Martinez-Arca, S., Proux-Gillardeaux, V., Alberts, P., Louvard, D., and Galli, T., 2003a, Ectopic expression of syntaxin 1 in the ER redirects TI-VAMP- and cellubrevin-containing vesicles, J. Cell Sci. 116: 2805–2816.

    PubMed  CAS  Google Scholar 

  • Martinez-Arca, S., Rudge, R., Vacca, M., Raposo, G., Camonis, J., Proux-Gillardeaux, V., et al., 2003b, A dual mechanism controlling the localization and function of exocytic v-SNAREs, Proc. Natl. Acad. Sci. USA 100: 9011–9016.

    PubMed  CAS  Google Scholar 

  • May, R.C., and Machesky, L.M., 2001, Phagocytosis and the actin cytoskeleton, J. Cell Sci. 114: 1061–1077.

    PubMed  CAS  Google Scholar 

  • Murthy, M., Garza, D., Scheller, R.H., and Schwarz, T.L., 2003, Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists, Neuron 37: 433–447.

    PubMed  CAS  Google Scholar 

  • Nonet, M.L., Saifee, O., Zhao, H.J., Rand, J.B., and Wei, L.P., 1998, Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants, J. Neurosci. 18: 70–80.

    PubMed  CAS  Google Scholar 

  • Novick, P., Field, C., and Schekman, R., 1980, Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway, Cell 21: 205–215.

    PubMed  CAS  Google Scholar 

  • Osen-Sand, A., Staple, J.K., Naldi, E., Schiavo, G., Rossetto, O., Petitpierre, S., et al., 1996, Common and distinct fusion proteins in axonal growth and transmitter release, J. Comp. Neurol. 367: 222–234.

    PubMed  CAS  Google Scholar 

  • Oyler, G.A., Polli, J.W., Higgins, G.A., Wilson, M.C., and Billingsley, M.L., 1992, Distribution and expression of SNAP-25 immunoreactivity in rat brain, rat PC-12 cells and human SMS-KCNR neuroblastoma cells, Dev. Brain Res. 65: 133–146.

    CAS  Google Scholar 

  • Paglini, G., Kunda, P., Quiroga, S., Kosik, K., and Caceres, A., 1998, Suppression of radixin and moesin alters growth cone morphology, motility, and process formation in primary cultured neurons, J. Cell Biol. 143: 443–455.

    PubMed  CAS  Google Scholar 

  • Parlati, F., Weber, T., McNew, J.A., Westermann, B., Sollner, T.H., and Rothman, J.E., 1999, Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain, Proc. Natl. Acad. Sci. USA 96: 12565–12570.

    PubMed  CAS  Google Scholar 

  • Prochiantz, A., 1995, Neuronal polarity: Giving neurons heads and tails, Neuron 15: 743–746.

    PubMed  CAS  Google Scholar 

  • Rao, S.K., Huynh, C., Proux-Gillardeaux, V., Galli, T., and Andrews, N.W., 2004, Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis, J. Biol. Chem. 279: 20471–20479.

    PubMed  CAS  Google Scholar 

  • Reddy, A., Caler, E.V., and Andrews, N.W., 2001, Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes, Cell 106: 157–169.

    PubMed  CAS  Google Scholar 

  • Rothman, J.E., 1994, Mechanisms of intracellular protein transport, Nature 372: 55–63.

    PubMed  CAS  Google Scholar 

  • Rothman, J.E., and Warren, G., 1994, Implication of the SNARE hypothesis for intracellular membrane topology and dynamics, Curr. Biol. 4: 220–233.

    PubMed  CAS  Google Scholar 

  • Sabo, S.L., Ikin, A.F., Buxbaum, J.D., and Greengard, P., 2003, The amyloid precursor protein and its regulatory protein, FE65, in growth cones and synapses in vitro and in vivo, J. Neurosci. 23: 5407–5415.

    PubMed  CAS  Google Scholar 

  • Schaefer, A.W., Kamiguchi, H., Wong, E.V., Beach, C.M., Landreth, G., and Lemmon, V., 1999, Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization, J. Biol. Chem. 274: 37965–37973.

    PubMed  CAS  Google Scholar 

  • Schaefer, A.W., Kamei, Y., Kamiguchi, H., Wong, E.V., Rapoport, I., Kirchhausen, T., et al., 2002, L1 endocytosis is controlled by a phosphorylation-dephosphorylation cycle stimulated by outside-in signaling by L1, J. Cell Biol. 157: 1223–1232.

    PubMed  CAS  Google Scholar 

  • Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino de Laureto, P., DasGupta, B.R. et al., 1992, Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin, Nature 359: 832–835.

    PubMed  CAS  Google Scholar 

  • Schmid, R.S., Pruitt, W.M., and Maness, P.F., 2000, A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis, J. Neurosci. 20: 4177–4188.

    PubMed  CAS  Google Scholar 

  • Schmidt, C.E., Dai, J., Lauffenburger, D.A., Sheetz, M.P., and Horwitz, A.F., 1995, Integrin-cytoskeletal interactions in neuronal growth cones, J. Neurosci. 15: 3400–3407.

    PubMed  CAS  Google Scholar 

  • Schoch, S., Cibelli, G., Magin, A., Steinmuller, L., and Thiel, G., 2001a, Modular structure of cAMP response element binding protein 2 (CREB2), Neurochem. Int. 38: 601–608.

    PubMed  CAS  Google Scholar 

  • Schoch, S., Deak, F., Konigstorfer, A., Mozhayeva, M., Sara, Y., Sudhof, T.C., et al., 2001b, SNARE function analyzed in synaptobrevin/VAMP knockout mice, Science 294: 1117–1122.

    PubMed  CAS  Google Scholar 

  • Schwamborn, J.C., and Puschel, A.W., 2004, The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity, Nat. Neurosci. 7: 923–929.

    PubMed  CAS  Google Scholar 

  • Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., and Rothman, J.E., 1993a, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion, Cell 75: 409–418.

    PubMed  Google Scholar 

  • Söllner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., et al., 1993b, SNAP receptors implicated in vesicle targeting and fusion, Nature 362: 318–324.

    PubMed  Google Scholar 

  • Stewart, B.A., Mohtashami, M., Rivlin, P., Deitcher, D.L., Trimble, W.S., and Boulianne, G.L., 2002, Dominant-negative NSF2 disrupts the structure and function of Drosophila neuromuscular synapses, J. Neurobiol. 51: 261–271.

    PubMed  CAS  Google Scholar 

  • Suter, D.M., and Forscher, P., 1998, An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance, Curr. Opin. Neurobiol. 8: 106–116.

    PubMed  CAS  Google Scholar 

  • Suter, D.M., and Forscher, P., 2001, Transmission of growth cone traction force through apCAM-cytoskeletal linkages is regulated by Src family tyrosine kinase activity, J. Cell Biol. 155: 427–438.

    PubMed  CAS  Google Scholar 

  • Suter, D.M., Errante, L.D., Belotserkovsky, V., and Forscher, P., 1998, The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling, J. Cell Biol. 141: 227–240.

    PubMed  CAS  Google Scholar 

  • Sweeney, S.T., and Davis, G.W., 2002, Unrestricted synaptic growth in spinster-a late endosomal protein implicated in TGF-beta-mediated synaptic growth regulation, Neuron 36: 403–416.

    PubMed  CAS  Google Scholar 

  • TerBush, D.R., Maurice, T., Roth, D., and Novick, P., 1996, The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae, EMBO J. 15: 6483–6494.

    PubMed  CAS  Google Scholar 

  • Tessier-Lavigne, M., and Goodman, C.S., 1996, The molecular biology of axon guidance, Science 274: 1123–1133.

    PubMed  CAS  Google Scholar 

  • Thelen, K., Kedar, V., Panicker, A.K., Schmid, R.S., Midkiff, B.R., and Maness, P.F., 2002, The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins, J. Neurosci. 22: 4918–4931.

    PubMed  CAS  Google Scholar 

  • Tochio, H., Tsui, M.M.K., Banfield, D.K., and Zhang, M.J., 2001. An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p, Science 293: 698–702.

    PubMed  CAS  Google Scholar 

  • Van Aelst, L., and Cline, H.T., 2004, Rho GTPases and activity-dependent dendrite development, Curr. Opin. Neurobiol. 14: 297–304.

    PubMed  Google Scholar 

  • Verhage, M., Maia, A.S., Plomp, J.J., Brussaard, A.B., Heeroma, J.H., Vermeer, H., et al., 2000, Synaptic assembly of the brain in the absence of neurotransmitter secretion, Science 287: 864–869.

    PubMed  CAS  Google Scholar 

  • Vogt, L., Giger, R.J., Ziegler, U., Kunz, B., Buchstaller, A., Hermens, W., et al., 1996, Continuous renewal of the axonal pathway sensor apparatus by insertion of new sensor molecules into the growth cone membrane, Curr. Biol. 6: 1153–1158.

    PubMed  CAS  Google Scholar 

  • Volkmer, H., Hassel, B., Wolff, J.M., Frank, R., and Rathjen, F.G., 1992, Structure of the axonal surface recognition molecule neurofascin and its relationship to a neural subgroup of the immunoglobulin superfamily, J. Cell Biol. 118: 149–161.

    PubMed  CAS  Google Scholar 

  • Ward, D.M., Pevsner, J., Scullion, M.A., Vaughn, M., and Kaplan, J., 2000, Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages, Mol. Biol. Cell 11: 2327–2333.

    PubMed  CAS  Google Scholar 

  • Washbourne, P., Cansino, V., Mathews, J.R., Graham, M., Burgoyne, R.D., and Wilson, M.C., 2001, Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting, Biochem. J. 357: 625–634.

    PubMed  CAS  Google Scholar 

  • Washbourne, P., Thompson, P.M., Carta, M., Costa, E.T., Mathews, J.R., Lopez-Bendito, G., et al., 2002, Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis, Nat. Neurosci. 5: 19–26.

    PubMed  CAS  Google Scholar 

  • Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., et al., 1998, SNAREpins: Minimal machinery for membrane fusion, Cell 92: 759–772.

    PubMed  CAS  Google Scholar 

  • Wisco, D., Anderson, E.D., Chang, M.C., Norden, C., Boiko, T., Folsch, H., et al., 2003, Uncovering multiple axonal targeting pathways in hippocampal neurons, J. Cell Biol. 162: 1317–28.

    PubMed  CAS  Google Scholar 

  • Zerial, M., and McBride, H., 2001, Rab proteins as membrane organizers, Nat. Rev. Mol. Cell Biol. 2: 107–117.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Galli, T., Alberts, P. (2007). Exocytic Mechanisms for Axonal and Dendritic Growth. In: de Curtis, I. (eds) Intracellular Mechanisms for Neuritogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68561-8_5

Download citation

Publish with us

Policies and ethics