Skip to main content

Regulation of Growth Cone Initiation and Actin Dynamics by ADF/Cofilin

  • Chapter
Intracellular Mechanisms for Neuritogenesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, B.J., Minamide, L.S., and Bamburg, J.R., 1995, Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site, J. Biol. Chem. 270: 17582–17587.

    PubMed  CAS  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D., 2002, Molecular Biology of the Cell, 4th ed., Garland Publishing, New York.

    Google Scholar 

  • Aizawa, H., Wakatsuki, S., Ishii, A., Moriyama, K., Sasaki, Y., Ohashi, K., et al., 2001, Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse, Nature Neurosci. 4: 367–373.

    PubMed  CAS  Google Scholar 

  • Aoki, K., Nakamura, T., and Matsuda, M., 2004, Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells, J. Biol. Chem. 279: 713–719.

    PubMed  CAS  Google Scholar 

  • Arber, S., Barbayannis, F.A., Hanser, H., Schneider, C., Stanyon, C.A., Bernard, O., et al., 1998, Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase, Nature 398: 805–809.

    Google Scholar 

  • Balcer, H.I., Goodman, A.L., Rodal, A.A., Smith, E., Kugler, J., Heuser, J.E., et al., 2003, Coordinated regulation of actin filament turnover by a high molecular weight Srv2/CAP complex, cofilin, profilin, and Aip1, Curr. Biol. 13: 2159–2169.

    PubMed  CAS  Google Scholar 

  • Bamburg, J.R., 1999, Proteins of the ADF/cofilin family: Essential regulators of actin dynamics, Annu Rev. Cell Dev. Biol. 15: 185–230.

    PubMed  CAS  Google Scholar 

  • Bamburg, J.R., and Bray, D., 1987, Distribution and cellular localization of actin depolymerizing factor, J. Cell Biol. 105: 2817–2825.

    PubMed  CAS  Google Scholar 

  • Bamburg, J.R., Harris, H.E., and Weeds, A.G., 1980, Partial purification and characterization of an actin depolymerizing factor from brain, FEBS Lett. 121: 178–181.

    PubMed  CAS  Google Scholar 

  • Bentley, D., and Toroian-Raymond, A., 1986, Disoriented pathfinding by pioneer neuron growth cones deprived of filopodia by cytochalasin treatment, Nature 323: 712–715.

    PubMed  CAS  Google Scholar 

  • Blanchoin, L., Pollard, T.D., and Mullins, R.D., 2000, Interactions of ADF/cofilin, Arp2/3 complex, capping protein, and profilin in remodeling of branched actin filament networks, Curr. Biol. 10: 1273–1282.

    PubMed  CAS  Google Scholar 

  • Bray, D., and Chapman, K., 1985, Analysis of microspike movements on the neuronal growth cone, J. Neurosci. 5: 3204–3213.

    PubMed  CAS  Google Scholar 

  • Bridgman, P.C., and Dailey, M.E., 1989, The organization of myosin and actin in rapid rozen nerve growth cones, J. Cell Biol. 108: 95–109.

    PubMed  CAS  Google Scholar 

  • Brown, M.E., and Bridgman, P.C., 2003, Retrograde flow rate is increased in growth cones from myosin IIB knockout mice, J. Cell Sci. 116: 1087–1094.

    PubMed  CAS  Google Scholar 

  • Buck, K., and Zheng, J.Q., 2002, Growth cone turning induced by local modification of microtubule dynamics, J. Neurosci. 22: 9358–9367.

    PubMed  CAS  Google Scholar 

  • Carlier, M., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.X., et al., 1997, Actin depolymerizing factor (ADF/Cofilin) enhances the rate of filament turnover: Implication in actin-based motility, J. Cell Biol. 136: 1307–1322.

    PubMed  CAS  Google Scholar 

  • Chan, A.Y., Bailly, M., Zebda, N., Segall, J.E., and Condeelis, J.S., 2000, Role of cofilin in epidermal growth factor stimulted actin polymerization and lamellipod protrusion, J. Cell Biol. 148: 531–542.

    PubMed  CAS  Google Scholar 

  • Chardin, P., Boquet, P., Madaule, P., Popoff, M.R., Rubin, E.J., and Gill, D.M., 1989, The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells, EMBO J. 8: 1087–1092.

    PubMed  CAS  Google Scholar 

  • Chua, B.T., Volbracht, C., Tan, K.O., Li, R., Yu, V.C., and Li, P., 2003, Mitochondrial translocation of cofilin is an early step in apoptosis induction, Nature Cell Biol. 5: 1083–1089.

    PubMed  CAS  Google Scholar 

  • Chen, H., Bernstein, B., Sneider, J.D., Boyle, J.A., Minamide, L.S., and Bamburg, J.R., 2004, In vitro activity differences between proteins of the ADF/cofilin family define two distinct subgroups, Biochemistry 43: 7127–7142.

    PubMed  CAS  Google Scholar 

  • Chen, T., Gehler, S., Shaw, A.E., Bamburg, J.R., and Letourneau, P., 2006, Cdc42 participates in the regulation of ADF/cofilin and retinal growth cone filopodia by brain derived neurotrophic factor, J. Neurobiol. 66: 103–114.

    PubMed  CAS  Google Scholar 

  • Cramer, L.P., Bamburg, J.R., and Mseka, T. (submitted), Microtubules spatially regulate ADF/cofilin activity to control cell polarity and directed migration.

    Google Scholar 

  • Dailey, M.E., and Bridgman, P.C., 1991, Structure and organization of membrane organelles along distal microtubule segments in growth cones, J. Neurosci. Res. 30: 242–258.

    PubMed  CAS  Google Scholar 

  • Dash, P.K., Orsi, S.A., Moody, M., and Moore, A.N., 2004, A role for hippocampal Rho-ROCK pathway in long-term spatial memory, Biochem. Biophys. Res. Commun. 322: 893–898.

    PubMed  CAS  Google Scholar 

  • DaSilva, J.S., and Dotti, C., 2002, Breaking the neuronal sphere: Regulation of the actin cytoskeleton in neuritogenesis, Nature Rev. Neurosci. 3: 694–704.

    CAS  Google Scholar 

  • DaSilva, J.S, Medina, M., Zuliani, C., Di Nardo, A., Witke, W., and Dotti, C., 2003, RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability, J. Cell Biol. 162: 1267–1279.

    CAS  Google Scholar 

  • Dawe, H.R., Minamide, L.S., Bamburg, J.R., and Cramer, L.P., 2003, ADF/cofilin controls cell polarity during fibroblast migration, Curr. Biol. 13: 252–257.

    PubMed  CAS  Google Scholar 

  • Dawid, I.B., Breen, J.J., Toyama, R., 1998, LIM domains: Multiple roles as adapters and functional modifiers in protein interactions, Trends Genet. 14: 156–162.

    PubMed  CAS  Google Scholar 

  • Dehmelt, L., Smart, F.M., Ozer, R.S., and Halpain, S., 2003, The role of microtubule associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation, J. Neurosci. 23: 9479–9490.

    PubMed  CAS  Google Scholar 

  • Edwards, D.C., Sanders, L.C. Bokoch, G.M., and Gill, G.N., 1999, Activation of LIM-kinase by pak1 couples rac/cdc42 GTPase signalling to the cytoskeletal dynamics, Nature Cell Biol. 1: 253–259.

    PubMed  CAS  Google Scholar 

  • Endo, M., Ohshi, K., Sasaki, Y., Goshima, Y., Niwa, R., Uemura, T., et al., 2003, Control of growth cone motility and morphology by LIM kinase and slingshot via phosphorylation and dephosphorylation of cofilin, J. Neurosci. 23: 2527–2537.

    PubMed  CAS  Google Scholar 

  • Endo, M., Ohashi, K., and Mizuno, K., 2005, Role of cofilin phosphocycle by LIM-kinase and slingshot in NGF-induced neurite outgrowth, Mol. Biol. Cell 16: 676a.

    Google Scholar 

  • Fan, J., and Raper, J.A., 1995, Localized collapsing cues can steer growth cones without inducing their full collapse, Neuron 14: 263–274.

    PubMed  CAS  Google Scholar 

  • Fass, J., Gehler, S., Sarmiere, P., Letourneau, P., and Bamburg, J.R., 2004, Regulating filopodial dynamics through actin-depolymerizing factor/cofilin, Anat. Sci. Internat. 79: 173–183.

    CAS  Google Scholar 

  • Foletta, V.C., Moussi, N., Sarmiere, P.D., Bamburg, J.R., and Bernard, O., 2004, LIM kinase, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues, Exp. Cell Res. 294: 392–405.

    PubMed  CAS  Google Scholar 

  • Forscher, P., and Smith, S.J., 1988, Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone, J. Cell Biol. 107: 1505–1516.

    PubMed  CAS  Google Scholar 

  • Gallo, G., Yee, H.F., and Letourneau, P., 2002, Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility, J. Cell Biol. 158: 1219–1228.

    PubMed  CAS  Google Scholar 

  • Gebuhr, T.C., Kovaley, G.I. Bultman, S., Godfrey, V., Su, L., and Magnuson, T., 2003, The role of Brg1, a catalytic subunit of mammalian chromatin remodeling complexes, in T cell development, J. Exp. Med. 198: 1937–1949.

    PubMed  CAS  Google Scholar 

  • Gehler, S., Gallo, G., Veien, E., and Letourneau, P.C., 2004a, p75NTR signaling regulates growth cone filopodial dynamics through modulating RhoA activity, J Neurosci. 24: 4363–4372.

    CAS  Google Scholar 

  • Gehler, S., Shaw, A.E., Sarmiere, P.D., Bamburg, J.R., and Letourneau, P.C., 2004b, Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin, J. Neurosci. 24: 10741–10749.

    PubMed  CAS  Google Scholar 

  • Gherardi, E., Love, C.A., Esnouf, R.M., and Jones, E.Y., 2004, The sema domain, Curr. Opin. Struct. Biol. 14: 669–678.

    PubMed  CAS  Google Scholar 

  • Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D.S., and Condeelis, J.S., 2005, Cofilin promotes actin polymerization and defines the direction of cell motility, Science 304: 743–746.

    Google Scholar 

  • Giuliano, K.A., Khatib, F.A., Hayden, S.M., Daoud, E.W., Adams, M.E., Amorese, D.A., et al., 1988, Properties of purified actin depolymerizing factor from chick brain, Biochemistry 27: 8931–8937.

    PubMed  CAS  Google Scholar 

  • Gohla, A., and Bokoch, G.M., 2002, 14–3-3 regulates actin dynamics by stabilizing phosphorylated cofilin, Curr. Biol. 12: 1704–1710.

    PubMed  CAS  Google Scholar 

  • Gohla, A., Birkenfeld, J., and Bokoch, G.M., 2005, Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics, Nat. Cell Biol. 7: 21–29.

    PubMed  CAS  Google Scholar 

  • Goldberg, D.J., and Burmeister, D.W., 1989, Looking into growth cones, Trends Neurosci. 12: 503–506.

    PubMed  CAS  Google Scholar 

  • Govek, E., Newey, S.E., and Van Aelst, L., 2005, The role of the rho GTPases in neuronal development, Genes Dev. 19: 1–49.

    PubMed  CAS  Google Scholar 

  • Gurniak, C.B., Perlas, E., and Witke, W., 2005, The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration, Dev. Biol. 278: 231–241.

    PubMed  CAS  Google Scholar 

  • Hendricks, K.B., Shanahan, F., and Lees, E., 2004, Role for BRG1 in cell cycle control and tumor suppression, Mol. Cell Biol. 24: 362–376.

    PubMed  CAS  Google Scholar 

  • Henley, J., and Poo, M., 2004, Guiding neuronal growth cones using Ca2+ signals, Trends Cell Biol. 14: 320–330.

    PubMed  CAS  Google Scholar 

  • Hiraoka, J., Okano, I., Higuchi, O., Yang, N., and Mizuno, K., 1996, Self-association of LIM kinase 1 mediated by the interaction between an N-terminal LIM domain and a C-terminal kinase domain, FEBS Lett. 399: 117–121.

    PubMed  CAS  Google Scholar 

  • Hofmann, W., Reichart, B., Ewald, A., Muller, E., Schmitt, I., Stauber, R.H., et al., 2001, Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin, J.Cell Biol. 152: 895–910.

    PubMed  CAS  Google Scholar 

  • Hotulainen, P., Paunola, E., Vartianen, M.K., and Lappalainen, P., 2005, Actin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells, Mol. Biol. Cell 16: 649–664.

    PubMed  CAS  Google Scholar 

  • Hu, H., Marton, T.F., and Goodman, C.S., 2001, Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active Rac and enhancing RhoA signaling, Neuron 32: 39–51.

    PubMed  CAS  Google Scholar 

  • Huber, A.B., Kolodkin, A.L., Ginty, D.D., and Cloutier, J.F., 2003, Signaling at the growth cone: Ligand-receptor complexes and the control of axon growth and guidance, Annu. Rev. Neurosci. 26: 509–563.

    PubMed  CAS  Google Scholar 

  • Kanamuri, T., Suzuki, M., and Titani, K., 1998, Complete amino acid sequences and phosphorylation sites, determined by Edman degradation and mass spectrometry, of rat parotid destrin- and cofilin-like proteins, Arch. Oral. Biol. 43: 955–967.

    Google Scholar 

  • Kang, H., Cui, K., and Zhao, K., 2004, BRG1 controls the activity of the retinoblastoma protein via the regulation of p21CIP1/WAF1/SDI, Mol. Cell Biol. 24: 1188–1199.

    PubMed  CAS  Google Scholar 

  • Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., et al., 1996, Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase), Science 273: 245–248.

    PubMed  CAS  Google Scholar 

  • Kimura, T., Hashimoto, I., Yamamoto, A., Nishikawa, M., and Fujisawa, J.I., 2000, Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B, Genes Cells. 5: 289–307.

    PubMed  CAS  Google Scholar 

  • Kuhn, T.B., Brown, M.D., Wilcox, C.L., Raper, J.A., and Bamburg, J.R., 1999, Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: Inhibition of collapse by opposing mutants of rac-1, J. Neurosci. 19: 1965–1975.

    PubMed  CAS  Google Scholar 

  • Kuhn, T.B., Meberg, P.J., Brown, M.D., Bernstein, B.W., Minamide, L.S., Jensen, J.R., et al., 2000, Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases, J. Neurobiol. 44: 126–144.

    PubMed  CAS  Google Scholar 

  • Lappalainen, P., Kessels, M.M., Cope, M.J., and Drubin, D.G., 1998, The ADF homology (ADF-H) domain: A highly exploited actin-binding module, Mol. Biol. Cell 9: 1951–1959.

    PubMed  CAS  Google Scholar 

  • Lee, H., Engel, U., Rusch, J., Scherrer, S., Sheard, K., and Van Vactor, D., 2004, The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance, Neuron 42: 913–926.

    PubMed  CAS  Google Scholar 

  • Letourneau, P.C., 1983, Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos, J. Cell Biol. 97: 963–973.

    PubMed  CAS  Google Scholar 

  • Letourneau, P.C., 1996, The cytoskeleton in nerve growth cone motility and axonal pathfinding, Perspect. Dev. Neurobiol. 4: 111–123.

    PubMed  CAS  Google Scholar 

  • Leung, T., Manser, E., Tan, L., and Lim, L., 1995, A novel serine/threonine kinase binding the ras-related RhoA GTPase which translocates the kinase to peripheral membranes, J. Biol. Chem. 270: 29051–29054.

    PubMed  CAS  Google Scholar 

  • Lewis, A.K., and Bridgman, P.C., 1992, Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, J. Cell Biol. 119: 1219–1243.

    PubMed  CAS  Google Scholar 

  • Lin, C.H., and Forscher, P., 1995, Growth cone advance is inversely proportional to retrograde F-actin flow, Neuron 14: 763–771.

    PubMed  CAS  Google Scholar 

  • Lin, C.H., Thompson, C.A., and Forscher, P., 1994, Cytoskeletal reorganization underlying growth cone motility, Curr. Opin. Neurobiol. 4: 640–647.

    PubMed  CAS  Google Scholar 

  • Lin, C.H., Espreafico, E.M., Mooseker, M.S., and Forscher, P., 1996, Myosin drives retrograde F-actin flow in neuronal growth cones, Neuron 16: 769–782.

    PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz, J., Roberts, T.H., and Hirschberg, K., 2000, Secretory protein trafficking and organelle dynamics in living cells, Annu. Rev. Cell Dev. Biol. 16: 557–589.

    PubMed  CAS  Google Scholar 

  • Maciver, S.K., and Weeds, A.G., 1994, Actophorin preferentially binds momomeric ADP-actin over ATP-bound actin: Consequences for cell locomotion, FEBS Lett. 347: 251–256.

    PubMed  CAS  Google Scholar 

  • Maciver, S.K., Pope, B.J., Whytock, S., and Weeds, A.G., 1998, The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba actophorin, Eur. J. Biochem. 256: 388–397.

    PubMed  CAS  Google Scholar 

  • Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., et al., 1999, Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM kinase, Science 285: 895–898.

    PubMed  CAS  Google Scholar 

  • Manser, E., Leung, T., Salihuddin, H., and Lim, L., 1994, A brain serine/threonine protein kinase activated by Cdc42 and Rac1, Nature 367: 40–46.

    PubMed  CAS  Google Scholar 

  • Marsh, L., and Letourneau, P.C., 1984, Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B, J. Cell Biol. 99: 2041–2047.

    PubMed  CAS  Google Scholar 

  • Mcgee, A.W., and Bredt, D.S., 1999, Identification of an intramolecular interaction beween the SH3 and guanylate kinase domains of PSD-95, J. Biol. Chem. 274: 17431–17436.

    PubMed  CAS  Google Scholar 

  • Meberg, P.J., 2000, Signal-regulated ADF/cofilin activity and growth cone motility, Mol. Neurobiol. 21: 97–107.

    PubMed  CAS  Google Scholar 

  • Meberg, P., and Bamburg, J.R., 2000, Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor, J. Neurosci. 20: 2459–2469.

    PubMed  CAS  Google Scholar 

  • Meberg, P., Ono, S., Minamide, L., Takahashi, M., and Bamburg, J.R., 1998, Actin depolymerizing factor and cofilin phosphorylation dynamics: Response to signals that regulate neurite extension, Cell Motil. Cytoskel. 39: 172–190.

    CAS  Google Scholar 

  • Meyer, G., and Feldman, E.L., 2002, Signaling mechanisms that regulate actin-based motility processes in the nervous system, J. Neurochem. 83: 490–503.

    PubMed  CAS  Google Scholar 

  • Mizuno, K., Okano, I., Ohashi, K., Nunoue, K., Kuma, K., Miyata, T., et al., 1994, Identification of a human cDNA encoding a novel protein kinase with two repeats of LIM/double zinc finger motif, Oncogene 9: 1605–1612.

    PubMed  CAS  Google Scholar 

  • Morgan, T.E., Lockerbie, R.O., Minamide, L.S., Browning, M.D., and Bamburg, J.R., 1993, Isolation and characterization of a regulated form of actin depolymerizing factor, J. Cell Biol. 122: 623–633.

    PubMed  CAS  Google Scholar 

  • Moriyama, K., and Yahara, I., 1999, Two activities of cofilin, severing and accelerating directional depolymerization of actin filaments, are affected differentially by mutations around the actin-binding helix, EMBO J. 18: 6752–6761.

    PubMed  CAS  Google Scholar 

  • Moriyama, K., and Yahara, I., 2002, The actin severing activity of cofilin is exerted by the interplay of three distinct sites on cofilin and essential for cell viability, Biochem. J. 365: 147–155.

    PubMed  CAS  Google Scholar 

  • Moriyama, K., Iida, K., and Yahara, I., 1996, Phosphorylation of Ser-3 of cofilin regulates its essential function on actin, Genes Cells 1: 73–86.

    PubMed  CAS  Google Scholar 

  • Nagata-Ohashi, K., Ohta, Y., Goto, K., Chiba, S., Mori, R., Nishita, M., et al., 2004, A pathway of neuregulin-induced activation of cofilin phosphatase slingshot and cofilin in lamellipodia, J. Cell Biol. 165: 465–471.

    PubMed  Google Scholar 

  • Nakamura, F., Kalb, R.G., and Strittmatter, S.M., 2000, Molecular basis of semaphorin-mediated axon guidance, J. Neurobiol. 44: 219–229.

    PubMed  CAS  Google Scholar 

  • Ng, J., and Luo, L., 2004, Rho GTPases regulate axon growth through convergent and divergent signaling pathways, Neuron 44: 779–793.

    PubMed  CAS  Google Scholar 

  • Nishida, E., Maekawa, S., and Sakai, H., 1984, Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin, Biochemistry 23: 5307–5313.

    PubMed  CAS  Google Scholar 

  • Nishita, M., Tomizawa, T., Yamamoto, M., Horita, Y., Ohashi, K., and Mizuno, K., 2005, Spatial and temporal regulation of cofilin activity by LIM kinase and slingshot is critical for directional cell migration, J. Cell Biol. 171: 349–359.

    PubMed  CAS  Google Scholar 

  • Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., and Uemura, T., 2002, Control of actin reorganization by slingshot, a family of phosphatases that dephosphorylate ADF/cofilin, Cell 108: 233–246.

    PubMed  CAS  Google Scholar 

  • O'Connor, T.P., Duerr, J.S., and Bentley, D., 1990, Pioneer growth cone steering decisions mediated by single filopodial contacts in situ, J. Neurosci. 10: 3935–3946.

    PubMed  Google Scholar 

  • Oinuma, I., Katoh, H., Harada, A., and Negishi, M., 2003, Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-mediated Rho activation by plexin-B1 and induces cell contraction in Cos-7 cells, J. Biol. Chem. 278: 25671–25677.

    PubMed  CAS  Google Scholar 

  • Okabe, S., and Hirokawa, N., 1991, Actin dynamics in growth cones, J. Neurosci. 11: 1918–1929.

    PubMed  CAS  Google Scholar 

  • Ono, S., and Benian, G.M., 1998, Two Caenorhabditis elegans actin depolymerizing factor/cofilin proteins, encoded by the unc-60 gene, differentially regulate actin filament dynamics, J. Biol. Chem. 273: 3778–3783.

    PubMed  CAS  Google Scholar 

  • Ono, S., Mohri, K., and Ono, K., 2004, Microscopic evidence that actin-interacting protein 1 actively disassembles actin-depolymerizing factor/cofilin-bound filaments, J. Biol. Chem. 279: 14207–14212.

    PubMed  CAS  Google Scholar 

  • Pendleton, A., Pope, B., Weeds, A., and Koffer, A., 2003, Latruncluin B or ATP depletion induces cofilin-dependent translocation of actin into the nuclei of mast cells, J. Biol. Chem. 278: 14394–14400.

    PubMed  CAS  Google Scholar 

  • Percival, J.M., Hughes, J.A., Brown, D.L., Schevzov, G., Heimann, K., Vrhovski, B., et al., 2004, Targeting of tropomyosin isoform to short microfilaments with the Golgi complex, Mol. Biol. Cell 15: 268–280.

    PubMed  CAS  Google Scholar 

  • Pope, B.J., Gonsior, S.M., Yeoh, S., McGough, A., and Weeds, A.G., 2000, Uncoupling actin filament fragmentation by cofilin from increased subunit turnover, J. Mol. Biol. 298: 649–661.

    PubMed  CAS  Google Scholar 

  • Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M., and Waterman-Storer, C.M., 2003, Conserved microtubule-actin interactions in cell movement and morphogenesis, Nature Cell Biol. 5: 599–609.

    PubMed  CAS  Google Scholar 

  • Rohm, B., Ottemeyer, A., Lohrum, M., and Puschel, A.W., 2000, Plexin/Neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A, Mech. Dev. 93: 95–104.

    PubMed  CAS  Google Scholar 

  • Rosenblatt, J., Agnew, B.J., Abe, H., Bamburg, J.R., and Mitchison, T.J., 1997, Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails, J. Cell Biol. 136: 1323–1332.

    PubMed  CAS  Google Scholar 

  • Rosso, S., Bollati, F., Bisbal, M., Peretti, D., Sumi, T., Nakamura, T., et al., 2004, LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons, Mol. Biol. Cell 15: 3433–3449.

    PubMed  CAS  Google Scholar 

  • Sahin, M., Greer, P.L., Lin, M.Z., Poucher, H., Eberhart, J., Schmidt, S., et al., 2005, Eph-dependent tyrosine phosphorylation of ephexin-1 modulates growth cone collapse, Neuron 46: 191–204.

    PubMed  CAS  Google Scholar 

  • Samstag, Y., and Nebl, G., 2003, Interaction of cofilin with the serine phosphatases PP1A and PP2A in normal and neoplastic human T-lymphocytes, Adv. Enzyme Regul. 43: 197–211.

    PubMed  CAS  Google Scholar 

  • Samstag, Y., Eckerskom, C., Wesselborg, S., Henning, S., Wallich, R., and Meuer, S.C., 1994, Costimulatory signals for human T-cell activation induce nuclear translocation of pp19/cofilin, Proc. Natl. Acad. Sci. USA 91: 4494–4498.

    PubMed  CAS  Google Scholar 

  • Sanders, L.C., Matsumura, F., Bokoch, G.M., and de Lanerolle, P., 1999, Inhibition of myosin light chain kinase by p21-activated kinase, Science 283: 2083–2085.

    PubMed  CAS  Google Scholar 

  • Sanes, D.H, Reh, T.A., and Harris, W.A., 2000, Development of the Nervous System, 1st edn. Academic Press, San Diego, pp. 92–100.

    Google Scholar 

  • Sarmiere, P.D., and Bamburg, J.R., 2004, Regulation of the neuronal cytoskeleton by ADF/cofilin, J. Neurobiol. 58: 103–117.

    PubMed  CAS  Google Scholar 

  • Schaefer, A.W., Kabir, N., and Forscher, P., 2002, Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones, J. Cell Biol. 158: 139–152.

    PubMed  CAS  Google Scholar 

  • Shi, S.H., Jan, L.Y., and Jan, Y.N., 2003, Hippocampal neuronal polarity specified by spatially localized mpar3/mpar6 and PI 3-kinase activity, Cell 112: 63–75.

    PubMed  CAS  Google Scholar 

  • Smith, S.J., 1988, Neuronal cytomechanics: The actin-based motility of growth cones, Science 242: 708–715.

    PubMed  CAS  Google Scholar 

  • Song, H., and Poo, M., 2001, The cell biology of neuronal migration, Nature Cell Biol. 3: E81–88.

    PubMed  CAS  Google Scholar 

  • Soosairajah, J., Maiti, S., Wiggan, O., Sarmeire, P., Moussi, N., Sarcevic, B., et al., 2005, Interplay between components of a novel lim kinase-slingshot phosphatase complex regulates cofilin, EMBO J. 24: 473–486.

    PubMed  CAS  Google Scholar 

  • Svitkina, T.M., Verkhovsky, A.B., McQuade, K.M., and Borisy, G.G., 1997, Analysis of the actin-myosin II system in fish epidermal keratocytes: Mechanism of cell body translocation, J. Cell Biol. 139: 397–415.

    PubMed  CAS  Google Scholar 

  • Svitkina, T.M., Bulanova, E.A., Chaga, O.Y., Vignjevic, D.M., Kojima, S., Vasiliev, J. et al., 2003, Mechanism of filopodia initiation by reorganization of a dendritic network, J. Cell Biol. 160: 409–421.

    PubMed  CAS  Google Scholar 

  • Tanaguchi, M., Yuasa, S., Fujisawa, H., Naruse, I., Saga, S., Mishina, M., et al., 1997, Disruption of semaphorin III/D gene causes severe abnormality in peripheral nerve projection, Neuron 19: 519–530.

    Google Scholar 

  • Tanaka, E.M., and Kirschner, M.W., 1991, Microtubule behavior in the growth cones of living neurons during axon elongation, J. Cell Biol. 115: 345–363.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Okubo, Y., and Abe, H., 2005, Involvement of slingshot in the rho-mediated dephosphorylation of ADF/cofilin during Xenopus cleavage, Zool. Sci. 22: 971–984.

    PubMed  CAS  Google Scholar 

  • Thirion, C., Stucka, R., Mendel, B., Gruhler, A., Jaksch, M., Nowak, K.J., et al., 2001, Characterization of human muscle type cofilin (CFL2) in normal and regenerating muscle, Eur. J. Biochem. 268: 3473–3482.

    PubMed  CAS  Google Scholar 

  • Tsui, H.C., Ris, H., and Klein, W.L., 1983, Ultrastructural networks in growth cones and neurites of cultured central nervous system neurons, Proc. Natl. Acad. Sci. USA 80: 5779–5783.

    PubMed  CAS  Google Scholar 

  • Tursun, B., Schluter, A., Peters, M.A., Viehweger, B., and Ostendorff, H.P., Soosairajah, J., et al., 2005, The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones, Genes Dev. 19: 2307–2319.

    PubMed  CAS  Google Scholar 

  • Vartiainen, M.K., Mustonen, T., Mattila, P.K., Ojala, P.J., Thesleff, I., Partanen, J., et al., 2002, The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics, Mol. Biol. Cell 13: 183–194.

    PubMed  CAS  Google Scholar 

  • Vasiliev, J.M., Gelfand, I.M, Domnina, L.V., Ivanova, O.Y., Komm, S.G., Olshevskaja, L.V., 1970, Effect of colcemid on the locomotory behaviour of fibroblasts, J. Embryol. Exp. Morphol. 24: 625–640.

    PubMed  CAS  Google Scholar 

  • Vignjevic, D., Yarar, D., Welch, M.D., Peloquin, J., Svitkina, T., and Borisy, G.G., 2003, Formation of filopodia-like bundles in vitro from a dendritic network, J. Cell Biol. 160: 951–962.

    PubMed  CAS  Google Scholar 

  • Vikis, H.G., Li, W., He, Z., and Guan, K.L., 2000, The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner, Proc. Natl. Acad. Sci. USA 97: 12457–12462.

    PubMed  CAS  Google Scholar 

  • Visa, N., 2005, Actin in transcription. Actin is required for transcription by all three RNA polymerases in the eukaryotic cell nucleus, EMBO Rep. 6: 218–219.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Shibiaski, F., and Mizuno, K., 2005, Calcium signal-induced cofilin dephosphorylation is mediated by slingshot via calcineurin, J. Biol. Chem. 280: 12683–12689.

    PubMed  CAS  Google Scholar 

  • Worthylake, R.A., and Burridge, K., 2003, RhoA and Rock promote migration by limiting membrane protrusions, J. Biol. Chem. 278: 13578–13584.

    PubMed  CAS  Google Scholar 

  • Wu, K.Y., Hengst, U., Cox, L.J., Macosko, E.Z., Jeromin, A., Urquhart, E.R., et al., 2005, Local translation of RhoA regulates growth cone collapse, Nature 436: 1020–1024.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Katoh, H., Yasui, H., Mori, K., and Negishi, M., 2001, RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway, J. Biol. Chem. 276: 18977–18983.

    PubMed  CAS  Google Scholar 

  • Yamashiro, S., and Ono, S., 2005, The two Caenorhabditis elegans actin-depolymerizing factor/cofilin proteins differently enhance actin filament severing and depolymerization, Biochemistry 44: 14238–14247.

    PubMed  CAS  Google Scholar 

  • Yamashita, T., and Tohyama, M., 2003, The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI, Nature Neurosci. 6: 461–467.

    PubMed  CAS  Google Scholar 

  • Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kagawa, K., et al., 1998, Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin organization, Nature 393: 809–812.

    PubMed  CAS  Google Scholar 

  • Yeoh, S., Pope, B., Mannherz, H.G., and Weeds, A.G., 2002, Determining the differences in actin binding by human ADF and cofilin, J. Mol. Biol. 315: 911–925.

    PubMed  CAS  Google Scholar 

  • Zhang, S., Buder, K., Burkhardt, C., Schlott, B., Gorlach, M., and Grosse, F., 2002, Nuclear DNA helicase II/RNA helicase A binds to filamentous actin, J. Biol. Chem. 277: 843–853.

    PubMed  CAS  Google Scholar 

  • Zheng, J.Q., Wang, J., and Poo, M., 1996, Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient, J. Neurosci. 16: 1140–1149.

    PubMed  CAS  Google Scholar 

  • Zhou, F.Q., and Cohan, C.S., 2003, How actin filaments and microtubules steer growth cones to their targets, J. Neurobiol. 58: 84–91.

    Google Scholar 

  • Zhou, F.Q., Waterman-Storer, C.M., and Cohan, C.S., 2002, Focal loss of actin bundles causes microtubule redistribution and growth cone turning, J. Cell Biol. 157: 839–849.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Flynn, K., Pak, C., Bamburg, J.R. (2007). Regulation of Growth Cone Initiation and Actin Dynamics by ADF/Cofilin. In: de Curtis, I. (eds) Intracellular Mechanisms for Neuritogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68561-8_2

Download citation

Publish with us

Policies and ethics