Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arquint, M., Roder, J., Chia, L.S., Down, J., Wilkinson, D., Bayley, H., et al., 1987, Molecular cloning and primary structure of myelin-associated glycoprotein, Proc. Natl. Acad. Sci. USA 84: 600–604.

    PubMed  CAS  Google Scholar 

  • Bareyre, F.M., Kerschensteiner, M., Misgeld, T., and Sanes, J.R., 2005, Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury, Nat. Med. 11: 1355–1360.

    PubMed  CAS  Google Scholar 

  • Bareyre, F.M., Kerschensteiner, M., Reinetaeu, O., Mettenleiter, T.C., Weinmann, O., and Schwab, M.E., 2004, The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neusosci. 7: 269–277.

    CAS  Google Scholar 

  • Bartsch, U., Bandtlow, C.E., Schnell, L., Bartsch, S., Spillmann, A.A., Rubin, B.P., et al., 1995, Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS, Neuron 15: 1375–1381.

    PubMed  CAS  Google Scholar 

  • Benson, M.D., Romero, M.I., Lush, M.E., Lu, Q.R., Henkemeyer, M., and Parada, L.F., 2005, Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc. Natl. Acad. Sci. USA 102: 10694–10699.

    PubMed  CAS  Google Scholar 

  • Bradbury, E.J., Moon, L.D., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., et al., 2002, Chondroitinase ABC promotes functional recovery after spinal cord injury, Nature 416: 636–640.

    PubMed  CAS  Google Scholar 

  • Bregman, B.S., Kunkel-Bagden, E., Schnell, L., Dai, H.N., Gao, D., and Schwab, M.E., 1995, Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors, Nature 378: 498–501.

    PubMed  CAS  Google Scholar 

  • Bregman, B.S., McAtee, M., Dai, H.N., and Kuhn, P.L., 1997, Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat, Exp. Neurol. 148: 475–494.

    PubMed  CAS  Google Scholar 

  • Brushart, T.M., 1998, Preferential reinnervation of motor nerves by regenerating motor axons, J. Neurosci. 8: 1026–1031.

    Google Scholar 

  • Cai, D., Shen, Y., De Bellard, M., Tang, S., and Filbin, M.T., 1999, Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism, Neuron 22: 89–101.

    PubMed  CAS  Google Scholar 

  • Cai, D., Deng, K., Mellado, W., Lee, J., Ratan, R.R., and Filbin, M.T., 2002, Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro, Neuron 35: 711–719.

    PubMed  CAS  Google Scholar 

  • Camand, E., Morel, M.P., Faissner, A., Sotelo, C., and Dusart, I., 2004, Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord, Eur. J. Neurosci. 20: 1161–1176.

    PubMed  Google Scholar 

  • Carbonetto, S., Evans, D., and Cochard, P., 1987, Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems, J. Neurosci. 7: 610–620.

    PubMed  CAS  Google Scholar 

  • Caroni, P., and Schwab, M.E., 1988a, Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter, Neuron 1: 85–96.

    PubMed  CAS  Google Scholar 

  • Caroni, P., and Schwab, M.E., 1988b, Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading, J. Cell Biol. 106: 1281–1288.

    PubMed  CAS  Google Scholar 

  • Chan, C.C., Khodarahmi, K., Liu, J., Sutherland, D., Oschipok, L.W., Steeves, J.D., et al., 2005, Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury, Exp. Neurol. 196: 352–364.

    PubMed  CAS  Google Scholar 

  • Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., et al., 2000, Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1, Nature 403: 434–439.

    PubMed  CAS  Google Scholar 

  • Crutcher, K.A., 1989, Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: Extensive growth on gray matter but little growth on white matter, Exp. Neurol. 104: 39–54.

    PubMed  CAS  Google Scholar 

  • David, S., Bouchard, C., and Tsatas, O., and Giftochristos, N., 1990, Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system, Neuron 5: 463–469.

    PubMed  CAS  Google Scholar 

  • Davies, S.J., Fitch, M.T., Memberg, S.P., Hall, A.K., Raisman, G., and Silver, J., 1997, Regeneration of adult axons in white matter tracts of the central nervous system, Nature 390: 680–683.

    PubMed  CAS  Google Scholar 

  • Davies, S.J., Goucher, D.R., Doller, C., and Silver, J., 1999, Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord, J. Neurosci. 19: 5810–5822.

    PubMed  CAS  Google Scholar 

  • de La Houssaye, B.A., Mikule, K., Nikolic, D., and Pfenninger, K.H., 1999, Thrombin-induced growth cone collapse: Involvement of phospholipase A(2) and eicosanoid generation, J. Neurosci. 19: 10843–10855.

    Google Scholar 

  • De Winter, F., Oudega, M., Lankhorst, A.J., Hamers, F.P., Blits, B., Ruitenberg, M.J., et al., 2002, Injury-induced class 3 semaphorin expression in the rat spinal cord, Exp. Neurol. 175: 61–75.

    PubMed  Google Scholar 

  • Dergham, P., Ellezam, B., Essagian, C., Avedissian, H., Lubell, W.D., and McKerracher, L., 2002, Rho signaling pathway targeted to promote spinal cord repair, J. Neurosci. 22: 6570–6577.

    PubMed  CAS  Google Scholar 

  • Dickson, B.J., 2002, Molecular mechanisms of axon guidance, Science 298: 1959–1964.

    PubMed  CAS  Google Scholar 

  • Domeniconi, M., Cao, Z., Spencer, T., Sivasankaran, R., Wang, K., Nikulina, E., et al., 2002, Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth, Neuron 35: 283–290.

    PubMed  CAS  Google Scholar 

  • Domeniconi, M., Zampieri, N., Spencer, T., Hilaire, M., Mellado, W., Chao, M.V., et al., 2005, MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth, Neuron 46: 849–855.

    PubMed  CAS  Google Scholar 

  • Dubreuil, C.I., Winton, M.J., and McKerracher, L., 2003, Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system, J. Cell Biol. 162: 233–243.

    PubMed  CAS  Google Scholar 

  • Fawcett, J.W., and Asher, R.A., 1999, The glial scar and central nervous system repair, Brain Res. Bull. 49: 377–391.

    PubMed  CAS  Google Scholar 

  • Fournier, A.E., GrandPre, T., and Strittmatter, S.M., 2001, Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration, Nature 409: 341–346.

    PubMed  CAS  Google Scholar 

  • Fournier, A.E., Gould, G.C., Liu, B.P., and Strittmatter, S.M., 2002, Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin, J. Neurosci. 22: 8876–8883.

    PubMed  CAS  Google Scholar 

  • Fu, S.Y., and Gordon, T., 1997. The cellular and molecular basis of peripheral nerve regeneration, Mol. Neurobiol. 14: 67–116.

    PubMed  CAS  Google Scholar 

  • Funk, C.D., Chen, X.S., Johnson, E.N., and Zhao, L., 2002, Lipoxygenase genes and their targeted disruption, Prostaglandins Other Lipid Mediat. 6869: 303–312.

    Google Scholar 

  • Ghoumari, A.M., Wehrle, R., De Zeeuw, C.I., Sotelo, C., and Dusart, I., 2002, Inhibition of protein kinase C prevents Purkinje cell death but does not affect axonal regeneration. J. Neurosci. 22: 3531–3542.

    PubMed  CAS  Google Scholar 

  • Goldberg, J.L., Klassen, M.P., Hua, Y., and Barres, B.A., 2002, Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells, Science 296: 1860–1864.

    PubMed  CAS  Google Scholar 

  • Goldshmit, Y., Galea, M.P., Wise, G., Bartlett, P.F., and Turnley, A.M., 2004, Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice, J. Neurosci. 24: 10064–10073.

    PubMed  CAS  Google Scholar 

  • Graef, I.A., Wang, F., Charron, F., Chen, L., Neilson, J., Tessier-Lavigne, et al., 2003, Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons, Cell 113: 657–670.

    PubMed  CAS  Google Scholar 

  • GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M., 2000, Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein, Nature 403: 439–444.

    PubMed  CAS  Google Scholar 

  • Grimpe, B., and Silver, J., 2002, The extracellular matrix in axon regeneration, Prog. Brain Res. 137: 333–349.

    PubMed  CAS  Google Scholar 

  • Guan, K.L., and Rao, Y., 2003, Signalling mechanisms mediating neuronal responses to guidance cues, Nat. Rev. Neurosci. 4: 941–956.

    PubMed  CAS  Google Scholar 

  • Hannila, S.S., and Kawaja, M.D., 1999, Nerve growth factor-induced growth of sympathetic axons into the optic tract of mature mice is enhanced by an absence of p75NTR expression, J. Neurobiol. 39: 51–66.

    PubMed  CAS  Google Scholar 

  • Hansson, A., Serhan, C.N., Haeggstrom, J., Ingelman-Sundberg, M., and Samuelsson, B., 1986, Activation of protein kinase C by lipoxin A and other eicosanoids. Intracellular action of oxygenation products of arachidonic acid, Biochem. Biophys. Res. Commun. 134: 1215–1222.

    PubMed  CAS  Google Scholar 

  • Hempstead, B.L., 2002, The many faces of p75NTR, Curr. Opin. Neurobiol. 12: 260–267.

    PubMed  CAS  Google Scholar 

  • Hill, C.E., Beattie, M.S., and Bresnahan, J.C., 2001, Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat, Exp. Neurol. 171: 153–169.

    PubMed  CAS  Google Scholar 

  • Huang, D.W., McKerracher, L., Braun, P.E., and David, S., 1999, A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord, Neuron 24: 639–647.

    PubMed  CAS  Google Scholar 

  • Hunt, D., Mason, M.R., Campbell, G., Coffin, R., and Anderson, P.N., 2002a, Nogo receptor mRNA expression in intact and regenerating CNS neurons, Mol. Cell Neurosci. 20: 537–552.

    PubMed  CAS  Google Scholar 

  • Hunt, D., Coffin, R.S., and Anderson, P.N., 2002b, The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review, J. Neurocytol. 31: 93–120.

    PubMed  CAS  Google Scholar 

  • Irizarry-Ramirez, M., Willson, C.A., Cruz-Orengo, L., Figueroa, J., Velazquez, I., Jones, H., et al., 2005, Upregulation of EphA3 receptor after spinal cord injury, J. Neurotrauma 22: 929–935.

    PubMed  Google Scholar 

  • Jalink, K., and Moolenaar, W.H., 1992, Thrombin receptor activation causes rapid neural cell rounding and neurite retraction independent of classic second messengers, J. Cell Biol. 118: 411–419.

    PubMed  CAS  Google Scholar 

  • Jalink, K., van Corven, E.J., Hengeveld, T., Morii, N., Narumiya, S., and Moolenaar, W.H., 1994, Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho, J. Cell Biol. 126: 801–810.

    PubMed  CAS  Google Scholar 

  • Kater, S.B., and Mills, L.R., 1991, Regulation of growth cone behavior by calcium, J. Neurosci. 11: 891–899.

    PubMed  CAS  Google Scholar 

  • Keirstead, H.S., Hasan, S.J., Muir, G.D., and Steeves, J.D., 1992, Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord, Proc. Natl. Acad. Sci. USA 89: 11664–11668.

    PubMed  CAS  Google Scholar 

  • Kerschensteiner, M., Schwab, M.E., Lichtman, J.W., and Misgeld, T., 2005, In vivo imaging of axonal degeneration and regeneration in the injured spinal cord, Nat. Med. 11: 572–577.

    PubMed  CAS  Google Scholar 

  • Koprivica, V., Cho, K.S., Park, J.B., Yiu, G., Atwal, J., Gore, B., et al., 2005, EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans, Science 310: 106–110.

    PubMed  CAS  Google Scholar 

  • Kury, P., Abankwa, D., Kruse, F., Greiner-Petter, R., and Muller, H.W., 2004, Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure, Eur. J. Neurosci. 19: 32–42.

    PubMed  Google Scholar 

  • Laskowski, M.B., and Sanes, J.R., 1988, Topographically selective reinnervation of adult mammalian skeletal muscles, J. Neurosci. 8: 3094–3099.

    PubMed  CAS  Google Scholar 

  • Lehmann, M., Fournier, A., Selles-Navarro, I., Dergham, P., Sebok, A., Leclerc, N., et al., 1999, Inactivation of Rho signaling pathway promotes CNS axon regeneration, J. Neurosci. 19: 7537–7547.

    PubMed  CAS  Google Scholar 

  • Li, M., Shibata, A., Li, C., Braun, P.E., McKerracher, L., Roder, J., et al., 1996, Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse, J. Neurosci. Res. 46: 404–414.

    PubMed  CAS  Google Scholar 

  • Liu, B.P., Fournier, A., GrandPre, T., and Strittmatter, S.M., 2002, Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor, Science 297: 1190–1193.

    PubMed  CAS  Google Scholar 

  • Mandolesi, G., Madeddu, F., Bozzi, Y., Maffei, L., Ratto, G.M., 2004, Acute physiological response of mammalian central neurons to axotomy: Ionic regulation and electrical activity, FASEB J. 18: 1934–1936.

    PubMed  CAS  Google Scholar 

  • Manitt, C., and Kennedy, T.E., 2002, Where the rubber meets the road: Netrin expression and function in developing and adult nervous systems, Prog. Brain Res. 137: 425–442.

    PubMed  CAS  Google Scholar 

  • Matsunaga, E., Tauszig-Delamasure, S., Monnier, P.P., Mueller, B.K., Strittmatter, S.M., Mehlen, P., et al., 2004, RGM and its receptor neogenin regulate neuronal survival, Nat. Cell Biol. 6: 749–755.

    PubMed  CAS  Google Scholar 

  • McKeon, R.J., Schreiber, R.C., Rudge, J.S., and Silver, J., 1991, Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes, J. Neurosci. 11: 3398–3411.

    PubMed  CAS  Google Scholar 

  • McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J., and Braun, P.E., 1994, Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth, Neuron 13: 805–811.

    PubMed  CAS  Google Scholar 

  • Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., et al., 2004, LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex, Nat. Neurosci. 7: 221–228.

    PubMed  CAS  Google Scholar 

  • Mikule, K., Gatlin, J.C., de la Houssaye, B.A., and Pfenninger, K.H., 2002, Growth cone collapse induced by semaphorin 3A requires 12/15-lipoxygenase, J. Neurosci. 22: 4932–4941.

    PubMed  CAS  Google Scholar 

  • Mikule, K., Sunpaweravong, S., Gatlin, J.C., and Pfenninger, K.H., 2003, Eicosanoid activation of protein kinase C epsilon: Involvement in growth cone repellent signaling, J. Biol. Chem. 278: 21168–21177.

    PubMed  CAS  Google Scholar 

  • Miranda, J.D., White, L.A., Marcillo, A.E., Willson, C.A., Jagid, J., and Whittemore, S.R., 1999, Induction of Eph B3 after spinal cord injury, Exp. Neurol. 156: 218–222.

    PubMed  CAS  Google Scholar 

  • Mohajeri, M.H., Bartsch, U., van der Putten, H., Sansig, G., Mucke, L., and Schachner, M., 1996, Neurite outgrowth on non-permissive substrates in vitro is enhanced by ectopic expression of the neural adhesion molecule L1 by mouse astrocytes, Eur. J. Neurosci. 8: 1085–1097.

    PubMed  CAS  Google Scholar 

  • Moolenaar, W.H., 1995, Lysophosphatidic acid signaling, Curr. Opin. Cell. Biol. 7: 203–210.

    PubMed  CAS  Google Scholar 

  • Monnier, P.P., Sierra, A., Macchi, P., Deitinghoff, L., Andersen, J.S., Mann, M., et al., 2002, RGM is a repulsive guidance molecule for retinal axons, Nature 419: 392–395.

    PubMed  CAS  Google Scholar 

  • Monnier, P.P., Sierra, A., Schwab, J.M., Henke-Fahle, S., and Mueller, B.K., 2003, The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar, Mol. Cell Neurosci. 22: 319–330.

    PubMed  CAS  Google Scholar 

  • Moon, L.D., Asher, R.A., Rhodes, K.E., and Fawcett, J.W., 2001, Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC, Nat. Neurosci. 4: 465–466.

    PubMed  CAS  Google Scholar 

  • Moreau-Fauvarque, C., Kumanogoh, A., Camand, E., Jaillard, C., Barbin, G., Boquet, I., et al., 2003. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion, J. Neurosci. 23: 9229–9239.

    PubMed  CAS  Google Scholar 

  • Morgenstern, D.A., Asher, R.A., and Fawcett, J.W, 2002, Chondroitin sulphate proteoglycans in the CNS injury response, Prog. Brain Res. 137: 313–332.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., and Filbin, M.T., 1994, A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration, Neuron 13: 757–767.

    PubMed  CAS  Google Scholar 

  • Neumann, H., Schweigreiter, R., Yamashita, T., Rosenkranz, K., Wekerle, H., and Barde, Y.A., 2002, Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism, J. Neurosci. 22: 854–862.

    PubMed  CAS  Google Scholar 

  • Niederost, B.P., Zimmermann, D.R., Schwab, M.E., and Bandtlow, C.E., 1999, Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans, J. Neurosci. 19: 8979–8989.

    PubMed  CAS  Google Scholar 

  • Niederost, B.P., Oertle, T., Fritsche, J., McKinney, R.A., and Bandtlow, C.E., 2002, Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1, J. Neurosci. 22: 10368–10376.

    PubMed  CAS  Google Scholar 

  • Prinjha, R., Moore, S.E., Vinson, M., Blake, S., Morrow, R., Christie, G., et al., 2000, Inhibitor of neurite outgrowth in humans, Nature 403: 383–384.

    PubMed  CAS  Google Scholar 

  • Qiu, J., Cai, D., Dai, H., McAtee, M., Hoffman, P.N., Bregman, B.S., et al., 2002, Spinal axon regeneration induced by elevation of cyclic AMP, Neuron 34: 895–903.

    PubMed  CAS  Google Scholar 

  • Raineteau, O., Fouad, K., Bareyre, F.M., and Schwab, M.E., 2002, Reorganization of descending motor tracts in the rat spinal cord, Eur. J. Neurosci. 16: 1761–1771.

    PubMed  Google Scholar 

  • Rajagopalan, S., Deitinghoff, L., Davis, D., Conrad, S., Skutella, T., Chedotal, A., Mueller, B.K., and Strittmatter, S.M., 2004, Neogenin mediates the action of repulsive guidance molecule, Nat. Cell Biol. 6: 756–762.

    PubMed  CAS  Google Scholar 

  • Ramakers, G.J., 2002, Rho proteins, mental retardation and the cellular basis of cognition, Trends Neurosci. 25: 191–199.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S., 1928, Degeneration and Regeneration of the Nervous System, R.M. May, ed. and tr., Oxford University Press, London.

    Google Scholar 

  • Roux, P.P., and Barker, P.A., 2002, Neurotrophin signaling through the p75 neurotrophin receptor, Prog. Neurobiol. 67: 203–233.

    PubMed  CAS  Google Scholar 

  • Sagot, Y., Swerts, J.P., Cochard, P., 1991, Changes in permissivity for neuronal attachment and neurite outgrowth of spinal cord grey and white matters during development: A study with the ‘cryoculture’ bioassay, Brain Res. 543: 25–35.

    PubMed  CAS  Google Scholar 

  • Salzer, J.L., Holmes, W.P., and Colman, D.R., 1987, The amino acid sequences of the myelin-associated glycoproteins: Homology to the immunoglobulin gene superfamily, J. Cell Biol. 104: 957–965.

    PubMed  CAS  Google Scholar 

  • Savio, T., and Schwab, M.E., 1989, Rat CNS white matter, but not gray matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth, J. Neurosci. 9: 1126–1133.

    PubMed  CAS  Google Scholar 

  • Schafer, M., Fruttiger, M., Montag, D., Schachner, M., and Martini, R, 1996, Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice, Neuron 16: 1107–1113.

    PubMed  CAS  Google Scholar 

  • Schnell, L., and Schwab, M.E., 1990, Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors, Nature 343: 269–272.

    PubMed  CAS  Google Scholar 

  • Schnell, L., Schneider, R., Kolbeck, R., Barde, Y.A., and Schwab, M.E, 1994, Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion, Nature 367: 170–173.

    PubMed  CAS  Google Scholar 

  • Schwab, J.M., Hirsch, S., Brechtel, K., Stiefel, A., Leppert, C.A., Schluesener, H.J., et al., 2002, The Rho-GTPase inhibitor C2IN-C3 induces functional neuronal recovery in a rat model of severe spinal cord injury, Soc. Neurosci. [Abstract 204.7].

    Google Scholar 

  • Schwab, J.M., Monnier, P.P., Schluesener, H.J., Conrad, S., Beschorner, R., Chen, L., et al., 2005a, Central nervous system injury-induced repulsive guidance molecule expression in the adult human brain, Arch. Neurol. 62: 1561–1568.

    PubMed  Google Scholar 

  • Schwab, J.M., Conrad, S., Monnier, P.P., Julien, S., Mueller, B.K., and Schluesener, H.J., 2005b. Spinal cord injury-induced lesional expression of the repulsive guidance molecule, RGM, Eur. J. Neurosci. 21: 1569–1576.

    PubMed  Google Scholar 

  • Schwab, J.M., Failli, V., and Chedotal, A., 2005c, Injury-related dynamic myelin/oligodendrocyte axon-outgrowth inhibition in the central nervous system, Lancet 365: 2055–2057.

    PubMed  CAS  Google Scholar 

  • Schwab, M.E., and Caroni, P., 1988, Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro, J. Neurosci. 8: 2381–2393.

    PubMed  CAS  Google Scholar 

  • Schwab, M.E., and Thoenen, H., 1985, Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors, J. Neurosci. 5: 2415–2423.

    PubMed  CAS  Google Scholar 

  • Shearman, M.S., Naor, Z., Sekiguchi, K., Kishimoto, A., and Nishizuka, Y., 1989, Selective activation of the gamma-subspecies of protein kinase C from bovine cerebellum by arachidonic acid and its lipoxygenase metabolites, FEBS Lett. 243: 177–182.

    PubMed  CAS  Google Scholar 

  • Silver, J., and Miller, J.H., 2004, Regeneration beyond the glial scar, Nat. Rev. Neurosci. 5: 146–156.

    PubMed  CAS  Google Scholar 

  • Sivasankaran, R., Pei, J., Wang, K.C., Zhang, Y.P., Schields, C.B., Xu, X.M., and He, Z., 2004, PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat. Neurosci. 7: 261–268.

    PubMed  CAS  Google Scholar 

  • Soileau, L.C., Silberstein, L., Blau, H.M., and Thompson, W.J., 1987, Reinnervation of muscle fiber types in the newborn rat soleus, J. Neurosci. 7: 4176–4194.

    PubMed  CAS  Google Scholar 

  • Song, H.J., Ming, G.L., and Poo, M.M., 1997, cAMP-induced switching in turning direction of nerve growth cones, Nature 388: 275–279.

    PubMed  CAS  Google Scholar 

  • Song, X.Y., Zhong, J.H., Wang, X, and Zhou, X.F., 2004, Suppression of p75NTR does not promote regeneration of injured spinal cord in mice, J. Neurosci. 24: 542–546.

    PubMed  CAS  Google Scholar 

  • Sotelo, C., and Palay, S.L., 1971, Altered axons and axon terminals in the lateral vestibular nucleus of the rat. Possible example of axonal remodeling, Lab. Invest. 25: 653–671.

    PubMed  CAS  Google Scholar 

  • Spillmann, A.A., Bandtlow, C.E., Lottspeich, F., Keller, F., and Schwab, M.E., 1998, Identification and characterization of a bovine neurite growth inhibitor, bNI-220, J. Biol. Chem. 273: 19283–19293.

    PubMed  CAS  Google Scholar 

  • Stahl, B., Muller, B., von Boxberg, Y., Cox, E.C., and Bonhoeffer, F., 1990, Biochemical characterization of a putative axonal guidance molecule of the chick visual system, Neuron 5: 735–743.

    PubMed  CAS  Google Scholar 

  • Stichel, C.C., and Muller, H.W., 1998, The CNS lesion scar: New vistas on an old regeneration barrier, Cell Tissue Res. 294: 1–9.

    PubMed  CAS  Google Scholar 

  • Tang, S., Woodhall, R.W., Shen, Y.J., deBellard, M.E., Saffell, J.L., Doherty, P., et al., 1997, Soluble myelin-associated glycoprotein (MAG) found in vivo inhibits axonal regeneration, Mol. Cell Neurosci. 9: 333–346.

    PubMed  CAS  Google Scholar 

  • Thallmair, M., Metz, G.A., Z'Graggen, W.J., Raineteau, O., Kartje, G.L., Schwab, M.E., 1998, Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions, Nat. Neurosci. 1: 124–131.

    PubMed  CAS  Google Scholar 

  • Tom, V.J., Steinmetz, M.P., Miller, J.H., Doller, C.M., and Silver, J., 2004, Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury, J. Neurosci. 24: 6531–6539.

    PubMed  CAS  Google Scholar 

  • Vanek, P., Thallmair, M., Schwab, M.E., and Kapfhammer, J.P., 1998, Increased lesion-induced sprouting of corticospinal fibres in the myelin-free rat spinal cord, Eur. J. Neurosci. 10: 45–56.

    PubMed  CAS  Google Scholar 

  • Walsh, G.S., Krol, K.M., Crutcher, K.A., and Kawaja, M.D., 1999, Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor, J. Neurosci. 19: 4155–4168.

    PubMed  CAS  Google Scholar 

  • Wang, K.C., Koprivica, V., Kim, J.A., Sivasankaran, R., Guo, Y., Neve, R.L., et al., 2002a, Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth, Nature 417: 941–944.

    PubMed  CAS  Google Scholar 

  • Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R., and He, Z., 2002b, P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp, Nature 420: 74–78.

    PubMed  CAS  Google Scholar 

  • Wang, X., Chun, S.J., Treloar, H., Vartanian, T., Greer, C.A., and Strittmatter, S.M., 2002c, Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact, J. Neurosci. 22: 5505–5515.

    PubMed  CAS  Google Scholar 

  • Wehrle, R., Camand, E., Chedotal, A., Sotelo, C., and Dusart, I., 2005, Expression of netrin-1, slit-1 and slit-3 but not of slit-2 after cerebellar and spinal cord lesions, Eur. J. Neurosci. 22: 2134–2144.

    PubMed  Google Scholar 

  • Willson, C.A., Irizarry-Ramirez, M., Gaskins, H.E., Cruz-Orengo, L., Figueroa, J.D., Whittemore, S.R., et al., 2002, Upregulation of EphA receptor expression in the injured adult rat spinal cord, Cell Transplant 11: 229–239.

    PubMed  Google Scholar 

  • Willson, C.A., Miranda, J.D., Foster, R.D., Onifer, S.M., and Whittemore, S.R., 2003, Transection of the adult rat spinal cord upregulates EphB3 receptor and ligand expression, Cell Transplant 12: 279–290.

    PubMed  Google Scholar 

  • Wizenmann, A., Thies, E., Klostermann, S., Bonhoeffer, F., and Bahr, M., 1993, Appearance of target-specific guidance information for regenerating axons after CNS lesions, Neuron 11: 975–983.

    PubMed  CAS  Google Scholar 

  • Wong, S.T., Henley, J.R., Kanning, K.C., Huang, K.H., Bothwell, M., and Poo, M.M., 2002, A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein, Nat. Neurosci. 5: 1302–1308.

    PubMed  CAS  Google Scholar 

  • Yamashita, T., Higuchi, H., and Tohyama, M., 2002, The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho, J. Cell Biol. 157: 565–570.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schwab, J.M., He, Z. (2007). Mechanisms of Axon Regeneration. In: de Curtis, I. (eds) Intracellular Mechanisms for Neuritogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68561-8_14

Download citation

Publish with us

Policies and ethics