Skip to main content

Classes of Permutation Polynomials Based on Cyclotomy and an Additive Analogue

  • Chapter
  • First Online:
Additive Number Theory

Summary

I present a construction of permutation polynomials based on cyclotomy, an additive analogue of this construction, and a generalization of this additive analogue which appears to have no multiplicative analogue. These constructions generalize recent results of José Marcos.

Mathematics Subject Classifications (2010). 11T06, 11T22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ahmad: Split dilations of finite cyclic groups with applications to finite fields. Duke Math. J. 37, 547–554 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Akbary, S. Alaric and Q. Wang: On some classes of permutation polynomials. Int. J. Number Theory 4, 121–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Akbary and Q. Wang: On some permutation polynomials over finite fields. Int. J. Math. Math. Sci. 16, 2631–2640 (2005)

    Article  MathSciNet  Google Scholar 

  4. A. Akbary and Q. Wang: A generalized Lucas sequence and permutation binomials. Proc. Am. Math. Soc. 134, 15–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Akbary and Q. Wang: On polynomials of the form \({x}^{r}f({x}^{(q-1)/l})\). Int. J. Math. Math. Sci. (2007) art. ID 23408

    Google Scholar 

  6. E. Betti: Sopra la risolubilitá per radicali delle equazioni algebriche irriduttibili di grado primo. Ann. Sci. Mat. Fis. 2, 5–19 (1851) [ = Op. Mat. 1, 17–27 (1903)]

    Google Scholar 

  7. F. Brioschi: Des substitutions de la forme \(\theta (r) \equiv \epsilon ({r}^{n-2} + a{r}^{(n-3)/2})\) pour un nombre n premier de lettres. Math. Ann. 2, 467–470 (1870) [ = Op. Mat. 5, 193–197 (1909)]

    Article  MathSciNet  Google Scholar 

  8. L. Carlitz: Some theorems on permutation polynomials. Bull. Am. Math. Soc. 68, 120–122 (1962)

    Article  MATH  Google Scholar 

  9. L. Carlitz: Permutations in finite fields. Acta Sci. Math. (Szeged) 24, 196–203 (1963)

    MathSciNet  MATH  Google Scholar 

  10. L. Carlitz and C. Wells: The number of solutions of a special system of equations in a finite field. Acta Arith. 12, 77–84 (1966)

    MathSciNet  MATH  Google Scholar 

  11. S. D. Cohen and R. W. Matthews: A class of exceptional polynomials. Trans. Am. Math. Soc. 345, 897–909 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. D. Cohen and R. W. Matthews: Exceptional polynomials over finite fields. Finite Fields Appl. 1, 261–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. E. Dickson: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. of Math. 11, 65–120 (1896)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. E. Dickson: Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig (1901) [Reprinted by Dover, New York (1958)]

    MATH  Google Scholar 

  15. A. B. Evans: Orthomorphism Graphs of Groups, Springer, Heidelberg (1992)

    MATH  Google Scholar 

  16. A. B. Evans: Cyclotomy and orthomorphisms: a survey. Congr. Numer. 101, 97–107 (1994)

    MathSciNet  MATH  Google Scholar 

  17. J. P. Fillmore: A note on split dilations defined by higher residues. Proc. Am. Math. Soc. 18, 171–174 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. M. Guralnick and M. E. Zieve: Polynomials with PSL(2) monodromy. Ann. Math., to appear, arXiv:0707.1835

    Google Scholar 

  19. Ch. Hermite: Sur les fonctions de sept lettres. C. R. Acad. Sci. Paris. 57, 750–757 (1863) [ = Ouvres 2, 280–288 (1908)]

    Google Scholar 

  20. N. S. James and R. Lidl: Permutation polynomials on matrices. Linear Algebra Appl. 96, 181–190 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Y. Kim and J. B. Lee: Permutation polynomials of the type \({x}^{1+(q-1)/m} + ax\). Commun. Korean Math. Soc. 10, 823–829 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Y. Laigle-Chapuy: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. B. Lee and Y. H. Park: Some permuting trinomials over finite fields. Acta Math. Sci. 17, 250–254 (1997)

    MATH  Google Scholar 

  24. H. W. Lenstra, Jr. and M. Zieve: A family of exceptional polynomials in characteristic three. In: Finite Fields and Applications, Cambridge University Press, Cambridge 209–218 (1996)

    Chapter  Google Scholar 

  25. J. E. Marcos: Specific permutation polynomials over finite fields. arXiv:0810.2738v1 (preliminary version of [26])

    Google Scholar 

  26. J. E. Marcos: Specific permutation polynomials over finite fields. Finite Fields Appl., to appear

    Google Scholar 

  27. A. M. Masuda and M. E. Zieve: Permutation binomials over finite fields. Trans. Am. Math. Soc. 361, 4169–4180 (2009), arXiv:0707.1108

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Mathieu: Mémoire sur l’étude des fonctions de plusieurs quantités sur la manière de les former, et sur les substitutions qui les laissent invariables. J. Math. Pures Appl. 6, 241–323 (1861)

    Google Scholar 

  29. G. Mullen and H. Niederreiter: The structure of a group of permutation polynomials. J. Aust. Math. Soc. (Ser. A) 38, 164–170 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Niederreiter and K. H. Robinson: Complete mappings of finite fields. J. Aust. Math. Soc. (Ser. A) 33, 197–212 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Niederreiter and A. Winterhof: Cyclotomic \(\mathcal{R}\)-orthomorphisms of finite fields. Discrete Math. 295, 161–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. H. Park and J. B. Lee: Permutation polynomials with exponents in an arithmetic progression. Bull. Aust. Math. Soc. 57, 243–252 (1998)

    Article  MATH  Google Scholar 

  33. Y. H. Park and J. B. Lee: Permutation polynomials and group permutation polynomials. Bull. Aust. Math. Soc. 63, 67–74 (2001)

    Article  MATH  Google Scholar 

  34. L. J. Rogers: On the analytical representation of heptagrams. Proc. London Math. Soc. 22, 37–52 (1890)

    Article  Google Scholar 

  35. T. J. Tucker and M. E. Zieve: Permutation polynomials, curves without points, and Latin squares. preprint (2000)

    Google Scholar 

  36. D. Wan: Permutation polynomials over finite fields. Acta Math. Sin. 3, 1–5 (1987)

    MATH  Google Scholar 

  37. D. Wan: Permutation binomials over finite fields. Acta Math. Sin. 10, 30–35 (1994)

    Article  MATH  Google Scholar 

  38. D. Wan and R. Lidl: Permutation polynomials of the form \({x}^{r}f({x}^{(q-1)/d})\) and their group structure. Monatsh. Math. 112, 149–163 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Wang: On permutation polynomials. Finite Fields Appl. 8, 311–322 (2002)

    Article  MATH  Google Scholar 

  40. C. Wells: Groups of permutation polynomials. Monatsh. Math. 71, 248–262 (1967)

    MATH  Google Scholar 

  41. C. Wells: A generalization of the regular representation of finite abelian groups. Monatsh. Math. 72, 152–156 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. E. Zieve: Some families of permutation polynomials over finite fields. Int. J. Number Theory 4, 851–857 (2008), arXiv:0707.1111

    Article  MathSciNet  MATH  Google Scholar 

  43. M. E. Zieve: On some permutation polynomials over \({\mathbb{F}}_{q}\) of the form \({x}^{r}h({x}^{(q-1)/d})\). Proc. Am. Math. Soc. 137, 2209–2216 (2009), arXiv:0707.1110

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank José Marcos for sending me preliminary versions of his paper [26], and for encouraging me to develop consequences of his ideas while his paper was still under review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Zieve .

Editor information

Editors and Affiliations

Additional information

Dedicated to Mel Nathanson on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zieve, M.E. (2010). Classes of Permutation Polynomials Based on Cyclotomy and an Additive Analogue. In: Chudnovsky, D., Chudnovsky, G. (eds) Additive Number Theory. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68361-4_25

Download citation

Publish with us

Policies and ethics