Skip to main content

Geophysical Parameters and Algorithms for High Latitude Applications

  • Chapter
  • First Online:
Polar Oceans from Space

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 41))

Abstract

The parameters of interest for polar studies that can be derived from satellite data are surface temperature, sea ice concentration, albedo, cloud cover, winds, sea ice drift, and sea ice thickness. The basic radiative and physical characteristics that enable the detection and characterization of various surfaces and parameters are discussed. The different types of sensors are evaluated with a view of assessing which one is best suited for the retrieval of each parameter. The algorithms that convert digital data to geophysical parameters are presented and assessments of errors in the retrieval are provided. There are limitations in the use of these data, but some of these can be overcome through the concurrent use of ancillary data that include in situ measurements and modeling results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken J, Moore GF, Trees CC, Hooker SB, Clark, DK (1995) The SeaWiFS CZCS-Type Pigment Algorithm. SeaWiFS Technical Report Series, Vol. 29, Hooker SB, Firestone ER (eds) NASA Tech. Memo 104566, Greebelt MD

    Google Scholar 

  • Allison I, Brandt RE, Warren SG (1993) East Antarctic sea ice: albedo, thickness distribution, and snow cover. J Geophys Res 98(C7):12,417-12429

    Google Scholar 

  • Arcone SA, Gow AJ, McGrew S (1986) Structure and dielectric properties at 4.8 and 9.5 GHz of saline ice. J Geophys Res 91:14,281-14,303

    Google Scholar 

  • Arking A (1991) The radiative effects of clouds and their impact on climate. Bull Amer Meteorol Soc 71:795-813

    Google Scholar 

  • Arrigo KR, Worthen DL, Schnell A, Lizzote MP (1998) Primary production in Southern Ocean waters. J Geophys Res 103:15,587-15,600

    Google Scholar 

  • Barton IJ (1995) Satellite-derived sea surface temperatures: current status. J Geophys Res 100:8777-8790

    Google Scholar 

  • Behrenfeld MJ Falkowski PG (1997) A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr, 42:1479-1491

    Google Scholar 

  • Bernstein RL (1982) Sea surface temperature estimation using the NOAA 6 satellite advanced very high resolution radiometer. J Geophys Res 87(C12):9455-9465

    Google Scholar 

  • Brown JW, Brown OB, Evans RH (1993) Calibration of Advanced Very High Resolution Radiometer infrared channels: a new approach to nonlinear correction. J Geophys Res 98(18):18257-18268

    Google Scholar 

  • Carsey F (1992) Microwave Remote Sensing of Sea Ice, AGU Monograph 68, Washington, DC

    Google Scholar 

  • Casey KS, Cornillon P (1999) A comparison of satellite and in situ-based sea surface temperature climatologies. J Climate 12:1848-1863

    Google Scholar 

  • Cavalieri, DJ (1992) The validation of geophysical products using multisensory data. In: Carsey F (ed) Microwave remote sensing of sea ice, Geophysical Monograph 68, American Geophysical Union, Washington DC

    Google Scholar 

  • Cavalieri DJ, Gloersen P, Campbell WJ (1984) Determination of sea ice parameters with the Nimbus 7 SMMR. J Geophys Res 89:5355-5369

    Google Scholar 

  • Chandrasekhar S (1960) Radiative transfer. Dover Publications, Inc., New York

    Google Scholar 

  • Chelton DB, Freilich MH, Sienkiewicz JM, Von Ahn JM (2006) On the use of QuikScat Scatterometer measurements of surface winds for marine weather prediction. Monthly Weather Rep 134:2055-2071

    Google Scholar 

  • Cho K, Sasaki N, Shimoda H, Sakata T, Nishio F (1996) Evaluation and improvement of SSM/I sea ice concentration algorithms for the Sea of Okhotsk. J Remote Sensing of Japan 16(2):47-58

    Google Scholar 

  • Coakley JA Jr, Bretherton FP (1982) Cloud cover from high resolution scanner data: Detecting and allowing for partially filled fields of view. J Geophys Res 87(C7):4917-4932

    Google Scholar 

  • Comiso JC (1986) Characteristics of winter sea ice from satellite multispectral microwave observations. J Geophys Rev 91(C1):975-994

    Google Scholar 

  • Comiso JC (1995) SSM/I sea ice concentrations using the Bootstrap Algorithm, NASA RP1380

    Google Scholar 

  • Comiso JC (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J Clim 13(10):1674-1696

    Google Scholar 

  • Comiso JC (2003) Warming Trends in the Arctic. J Clim 16(21):3498-3510

    Google Scholar 

  • Comiso JC (2009) Enhanced sea ice concentrations and ice extents from AMSR-E data, J. Remote Sens Soc Japan 29:199-215

    Google Scholar 

  • Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J Geophys Res 113:C02S07, doi: 10.1029/2007JC004257

    Google Scholar 

  • Comiso JC, Steffen K (2001) Studies of Antarctic sea ice concentrations from satellite data and their applications. J Geophys Res 106(C12):31361-31385

    Google Scholar 

  • Comiso JC, Sullivan CW (1986) Satellite microwave and in-situ observations of the Weddell Sea ice cover and its marginal ice zone. J Geophys Res 91(C8):9663-9681

    Google Scholar 

  • Comiso JC, Ackley SF, Gordon AL (1984) Antarctic Sea Ice Microwave Signature and their correlation with In-Situ Ice Observations. J Geophys Res 89(C1):662-672

    Google Scholar 

  • Comiso JC, Cavalieri DJ, Markus T (2003) Sea ice concentration, ice temperature, and snow depth, using AMSR-E data. IEEE TGRS, 41(2), 243-252

    Google Scholar 

  • Comiso JC, Cavalieri D, Parkinson C, Gloersen P (1997) Passive microwave algorithms for sea ice concentrations. Remote Sensing Environ 60(3):357-384

    Google Scholar 

  • Comiso JC, Wadhams P, Krabill W, Swift R, Crawford J, Tucker W (1991) Top/Bottom multisensor remote sensing of Arctic sea ice. J Geophy Res 96(C2):2693-2711

    Google Scholar 

  • Cota G, Wang G, Comiso JC (2004) Transformation of global satellite chlorophyll retrievals with a regionally tuned algorithm. Remote Sensing Environ 90:373-377

    Google Scholar 

  • Cumming WA (1952) The dielectric properties of ice and snow at 3.2 centimeters. J App Phuys 23(7):768-774

    Google Scholar 

  • Curry JA, Webster PJ (1999) Thermodynamics of Atmospheres and Oceans, International Geophysics Series, vol 65. Academic Press, London s4.2.1

    Google Scholar 

  • Curry JA, Schramm JL, Perovich DK, Pinto JO (2001) Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parametrizations. J Geophys Res 106(D14):15,245-15,355

    Google Scholar 

  • Cummings W (1952) The dielectric properties of ice and snow at 3.2 cm. J Appl Phys 23:768-773

    Google Scholar 

  • Debye P (1929) Polar molecules, Dover, New York

    Google Scholar 

  • Donlon CJ, Minnett, PJ, Gentelmann C, Nightingale TJ, Barton IJ, Ward B (2002) Toward improved validation of satellite sea surface skin temperature measurements for climate research. J Clim 15:353-369

    Google Scholar 

  • El-Sayed SZ, Biggs DC Holm-Hansen (1983) Phytoplankton standing crop, primary productivity and near-surface nitrogenenous nutirient fields in the Ross Sea, Antarctica. Deep-Sea Res, Part A 30:871-886

    Google Scholar 

  • Emery WJ, Fowler CW, Hawkins J, Preller RH, (1991) Fram Strait image-derived ice motions. J Geophys Res 96:4751-4768

    Google Scholar 

  • Eppler D, Farmer LD, Lohanick AW, Anderson MR, Cavalieri DJ, Comiso JC, Gloersen P, Garrity C, Grenfell T, Hallikainen M, Maslanik JA, Maetzler C, Melloh RA, Rubinstein I, Swift CT (1992) Passive microwave signatures of sea ice. In: Carsey F (ed) Chapter 4, Microwave Remote Sensing of Sea Ice, American Geophysical Union, Washington, DC, pp 47-71

    Google Scholar 

  • Evans S (1965) Dielectric properties of snow and ice - A review. J Glaciol 5(42):773-792

    Google Scholar 

  • Evans R, and Podesta G (1996) AVHRR Pathfinder SST approach and results. Eos Trans Amer Geophys Union 77(Suppl):F354

    Google Scholar 

  • Gille ST (1994) Mean surface height of the Antarctic circumpolar current from Geosat data: Method and application. J Geophys Res 99:18,255-18,273

    Google Scholar 

  • Gille ST, Kelly KA (1996) Scales of spatial and temporal variability in the Southern Ocean. J Geophys. Res 101(C4): 8759-8773

    Google Scholar 

  • Giles KA, Laxon SW, Worby AP (2008) Antarctic sea ice elevation from satellite radar altimetry. Geophys Res Letts 35, L03503, doi:10.1029/2007GL031572

    Google Scholar 

  • Gregg WW, Carter KL (1990) A simple spectral solar irradiance model for cloudless marine atmosphere. Limnol Oceanogr 35(8):1657-1675

    Google Scholar 

  • Gregg WW, Conkright ME (2002) Decadal changes in global ocean chlorophyll. Geophys Res Lett 29(15), doi:10.1029/2002GL014689

    Google Scholar 

  • Grenfell TC, Comiso JC, Lange MA, Eicken H, Wenshahan MR (1994) Passive microwave observations of the Weddell Sea during austral winter and early spring. J Geophys Res 99(C5):9995-10,010

    Google Scholar 

  • Hallikainen M, Winebrenner DP (1992) The physical basis for sea ice remote sensing. In: Carsey FD (ed) Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68, AGU, Washington, DC, pp 9-28

    Google Scholar 

  • Hanesiak JM, Barber DG, De Abreu RA, Yackel JJ (2001) Local and regional albedo observations of first-year sea ice during meltponding. J Geophys Res 106(C1):1005-1016

    Google Scholar 

  • Hoepffner N, Sathyendranath S (1993) Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter. J Geophys Res 98:22,789-803

    Google Scholar 

  • Hooker SB, McClain CR (2000) The calibration and validation of SeaWiFS data. Prog Oceanogr 45:427-465

    Google Scholar 

  • Intieri JM, Shupe MD, Uttal T, McCarty BJ (2002) An annual cycle of Arctic cloud characteristics observed by radar and lidar at Sheba. J Geophys Res 107(C), 8090, doi:10.1029/ 2000JC000423

    Google Scholar 

  • Irvine WM, Pollack JC (1968) Infrared optical properties of water and ice spheres. Icarus 8:324

    Google Scholar 

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173-199

    Google Scholar 

  • Kalle K (1949) Fluoreszenz und Gelbstoff im bottnischen und finnischen Meerbusen. Deut Hydrograph 2.2:117-124

    Google Scholar 

  • Key J, Haefliger M (1992) Arctic ice surface temperature retrieval from AVHRR thermal channels. 97(D5):5855-5893

    Google Scholar 

  • Key JR et al (1989a) Cloud classification from satellite data using a fuzzy sets algorithm. Int J Remote Sens 10(12):1823-1842

    Google Scholar 

  • Key J, Maslanik JA, Schwiger AJ (1989b) Classification of merged AVHRR and SMMR arctic data with neural networks. Photogramm Eng Remote Sens 55:1331-1338

    Google Scholar 

  • Key JR, Schweiger AJ, Stone RS (1997) Expected uncertainty in satellite-derived estimates of the surface radiation budget at high latitudes. J Geophys Res 102(C7):15,837-15,847

    Google Scholar 

  • Kidder SQ, Wu HT (1984) Dramatic contrast between low clouds and snow cover if daytime 3.7 imagery. Monthly Weather Review 112:2345-2346

    Google Scholar 

  • Kidwell KB (1991) NOAA polar orbiter data users guide. NOAA/NESDIS, Washington DC

    Google Scholar 

  • Kilpatrick KA, Podesta GP, Evans R (2001) Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res 106(C5):9179-9197

    Google Scholar 

  • Kirk JTO (1984) Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnol Oceanogr 29:350-356

    Google Scholar 

  • Kirk JTO (1994) Light and Photosynthesis in aquatic ecosystems. University Press, Cambridge

    Google Scholar 

  • Klein LA, Swift CT (1977) An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans Antennas Propagation AP-25(1):104-111

    Google Scholar 

  • Koepke P (1989) Removal of atmospheric effects from AVHRR albedos. J Appl Meteorol 28:1341-1348

    Google Scholar 

  • Koh G (1992) Dielectric constant of ice at 26.5-40 GHz. J Appl Phys 71:5119-5122

    Google Scholar 

  • Kumar A, Minnett PJ, Podesta G, Evans RH (2003) Error Characteristics of the atmosphere correction algorithms used in retrieval of sea surface temperatures from infrared satellite measurements: Global and regional aspects. J Atmos Sci 60:575-585

    Google Scholar 

  • Kumerow C (1993) On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. J Geophys Res 98:2757-2765

    Google Scholar 

  • Kwok R, Curlander JC, McConnell R, Pang SS (1990) An ice motion tracking system at the Alaska SAR Facility. IEEE J Ocean Eng 15(1):44-54

    Google Scholar 

  • Kwok R, Cunningham GF, Zwally HJ, Yi D (2007) Ice, cloud and land elevation satellite (ICESat) over Arctic sea ice: retrieval of freeboard. J Geophys Res 112:C121013, doi: 10.1029/2006JC003978

    Google Scholar 

  • Lamb J (1946) Dielectric Constants. Trans Fraday Soc. 52A:238-244

    Google Scholar 

  • Lane JA, Saxton JA (1952) Dielectric dispersion in pur polar liquids at very high radiofrequencies: 1. Measurements on water, metyl and ethyl alcohols. Proc Roy Soc 213:400-408

    Google Scholar 

  • Laxon S, Peacock N, Smith D (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947-950

    Google Scholar 

  • Lee ZP, Hu C (2006) Global distribution of Case-1 waters: An analysis from SeaWiFS measurements. Remote Sens Environ 101:270-276

    Google Scholar 

  • Lee J et al (1990) A neural network approach to cloud classification. IEEE Trans Geosci Remote Sens 28:846-855

    Google Scholar 

  • Lewis M, Cullen J, Platt T (1983) Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity of chlorophyll profile. J Geophys Res 88:2565-2570

    Google Scholar 

  • Lindsay RW, Rothrock DA (1994) Arctic sea ice albedo from AVHRR. J Clim 7(11):1737-1749

    Google Scholar 

  • Liu AK, Cavalieri DJ (1998) On sea ice drift from the wavelet analysis of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) data. Int J Remote Sens 19(7):1415-1423

    Google Scholar 

  • Liu AK, Zhao Y, Liu WT (1998) Sea-ice motion derived from satellite agrees with buoy observations. EOS Transactions 79(30):353-359

    Google Scholar 

  • Lubin D, Massom R (2006) Polar Remote Sensing Vol. I, Springer-Praxis, Berlin s 4.2.1

    Google Scholar 

  • Markus T, Cavalieri DJ (2000) An enhancement of the NASA team sea ice algorithm. IEEE Trans Geosci Remote Sensing 38:1387-1398

    Google Scholar 

  • Markus T, Dokken ST (2002) Evaluation of late summer passive microwave Arctic sea ice retrievals. IEEE Trans Geosci Remote Sensing 40:348-356

    Google Scholar 

  • Martin S (2004) An introduction to ocean remote sensing. Cambridge University Press, Cambridge

    Google Scholar 

  • Martin S, Drucker R, Kwok R, Holt B (2004) Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from SSM/I data, 1990-2001. J Geophys Res 109:C10012, doi: 10.1029/2004/JC002428

    Google Scholar 

  • Massom R, Comiso JC (1994) Sea ice classification and surface temperature determination using Advanced Very High Resolution Radiometer satellite data. J Geophys Res 99(C3):5201-5218

    Google Scholar 

  • Matzler C, Ramseier RO, Svendsen E (1984) Polarization effects in sea ice signatures. IEEE J Oceanic Eng OE-9:333-338

    Google Scholar 

  • Maxson RW (1992) Comparison of areal extent of snow as determined by AVHRR and SSM/I satellite image. MS Thesis, Naval Postgraduate School, Monterey, California

    Google Scholar 

  • McClain EP, Pichel WG, Walton CC (1985) Comparative performance of AVHRR-based multichannel sea surface temperature 90(C6):11,587-11,601

    Google Scholar 

  • McClain CR, Feldman G, Esaias W (1993) A review of the Nimbus-7 coastal zone color scanner data set and remote sensing of biological oceanic productivity. In: Parkinson C, Foster J, Gurney R (eds) Global Change Atlas, Cambridge University Press, New York

    Google Scholar 

  • McClain CR, Feldman GC, Hooker SB (2004) An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep-Sea Research Part II, 51:5-42

    Google Scholar 

  • Minnett PJ, Knuteson RO, Best RA, Osborne BJ, Hanafin JA, Brown OB (2001) The marine-atmospheric emitted radiance interferometer: A high accuracy seagoing infrared spectroradiometer. J Atm Oceanic Tech 18:994-1013

    Google Scholar 

  • Minnis P, Harrison EF (1984) Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part III: November 1978 Radiative Parameters. J Climate Appl Meteor 23:1032-1050

    Google Scholar 

  • Mitchell BG, Holm-Hansen O (1991) Bio-optical properties of Antarctic Peninsula waters: Differentiation from temperate ocean models. Deep-Sea Research, 38:1009-1028

    Google Scholar 

  • Mitchell BG, Brody E, Yeh EN, McClain C, Comiso JC, Maynard NC (1991) Meridional zonation of the Barents Sea ecosystem inferred from satellite remote sensing and in situ Bio-optical observations. Pro Mare Symp Polar Res 10(1):147-162

    Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, New York

    Google Scholar 

  • Mobley CD, Stramski D, Bissett WP, Boss E (2004) Optical modeling of ocean waters: Is the Case1-Case2 classification still useful? Oceanography 17(2):60-67

    Google Scholar 

  • Morel A (1974) Optical properties of pur water and pur sea water. In: Jerlov NG, Nielsen ES (eds) Optical aspects of oceanography, Academic New York, pp 1-24

    Google Scholar 

  • Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22(4):709-722

    Google Scholar 

  • Morel A, Antoine D, Babin M, Dandonneau Y (1996) Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill. Deep-Sea Res I 43:1273-1304

    Google Scholar 

  • Neumann Pierson (1966) Principles of physical oceanography. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • O’Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA, Kahru M, McClain C (1998) Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res 103(C11):24,937-24,953

    Google Scholar 

  • Perovich DK, Roesler CS, Pegau WS (1998) Variability in Arctic sea ice optical properties. J Geophysical Res 103:1193-1208

    Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Hobbs PV (2002a) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res 107(C10):8044, doi:10.1029/2000JC000438

    Google Scholar 

  • Perovich DK, Tucker WB III, Ligett KA (2002b) Aerial observations of the evolution of ice surface conditions. J Geophy Res 197(C10):doi: 10.1029/2000JC000449. 4.2.1

    Google Scholar 

  • Phillpot HR, Zillman JW (1970) The surface temperature inversion over the Antarctic Continent. J Geophys Res 75:4161-4169

    Google Scholar 

  • Platt T, Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613-1620

    Google Scholar 

  • Platt T, Fuentes-Yaco C, Frank KT (2003) Spring algal bloom and larval fish survival. Nature 423:398-399 4.3.5

    Google Scholar 

  • Rao CRN, Chen J (1996) Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-14 Spacecraft. Int J Remote Sensing 20(18):3485-3491

    Google Scholar 

  • Rees WG (1993) Infrared emissivities of Arctic land cover types. Int J Remote Sens 14(5):1013-1017

    Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609-1625

    Google Scholar 

  • Sathyendranath S, Cota G, Stuart V, Maass M, Platt T (2001) Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches. Appl Opt 37:2216-2227

    Google Scholar 

  • Shibata A (2004) AMSR/AMSR-E SST algorithm developments: Removal of ocean wind effect. Ital J Remote Sens 30/31, 131-142

    Google Scholar 

  • Shifrin KS (1988) Physical optics of ocean water. American Institute of Physics, New York

    Google Scholar 

  • Shuman C, Comiso JC (2002) In situ and satellite surface temperature records in Antarctica. Ann Glaciol 34:113-120

    Google Scholar 

  • Shuman CA, Alley RB, Anandakrishnana S (1995) An empirical technique for estimating near-surface temperature trends in central Greenland from SSM/I brightness temperatures. Remote Sens Environ 51:245-252

    Google Scholar 

  • Simpson JJ, Keller RH (1995) An improved fuzzy logic segmentation of sea ice, clouds, and ocean in remotely sensed Arctic Imagery. Remote Sens Environ 54:290-312 4.3.1

    Google Scholar 

  • Simpson JJ, Yhann SR (1994) Reduction of noise in AVHRR Channel 3 data with minimum distortion. IEEE Trans Geosci Remote Sens 32(2): 315-328 4.3.1

    Google Scholar 

  • Schneider DP and Steig EJ (2002) Spatial and temporal variability of Antarctic ice sheet microwave brightness temperatures. Geophys Res Lett 29, 1984, doi:10.129/2002GL15490

    Google Scholar 

  • Schneider DP, Steig EJ, Comiso JC (2004) Recent climate variability in Antarctica from satellite derived temperature data. J Clim 17:1569-1583

    Google Scholar 

  • Schuerman DW (1980) Light scattering by irregularly shaped particles. Plenum Press, New York

    Google Scholar 

  • Shifrin KS and Oliver D (1988) Physical optics of ocean water. American Institute of Physics, New York

    Google Scholar 

  • Spinhirne JD, Palm SP, Hart WD, Hlavka DL (2005) Cloud and aerosol measurements from GLAS: Overview and initial results. Geophy Res Lett 32, L22S03, doi:10.1029/2005GL023507

    Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice sheet surface since the 1957 International Geophysical Year. Nature 457:459-463

    Google Scholar 

  • Steffen K, Bindchadler R, Casassa C, Comiso JC et al (1993) Snow and ice applications of AVHRR in polar regions. Ann Glaciol 17:1-16

    Google Scholar 

  • Stogryn A (1988) Investigation of extensions to the distorted Born approximation in strong fluctuation theory, RN 9316, Aerojet Electrosystem, Azusa, CA

    Google Scholar 

  • Stowe LL, Yeh HYM, Eck TF, Wellemeyer CG, Kyle HL (1989) Nimbus-7 global cloud climatology, Part I: First-year results. J Climate 2:671-681

    Google Scholar 

  • Stroeve JC, Box JE, Fowler C, Haran T, Key J (2001) Intercomparison between in situ and AVHRR polar pathfinder-derived surface albedo over Greenland. Rem Sens Environ 25:360-374

    Google Scholar 

  • Sullivan CW, Arrigo KR, McClain R, Comiso JC, Firestone J (1993) Distributions of phytoplankton blooms in the Southern Ocean. Science 262:1832-1837

    Google Scholar 

  • Suttles JT, Green RN, Minnis P et al (1988) Angular radiation models for Earth-atmosphere system. Volume I-Shortwave radiation. NASA Reference Publication 1184, NASA, Washington DC

    Google Scholar 

  • Svendsen E, Matzler C, Grenfell TC (1987) A model for retrieving total sea ice concentration from a spaceborne dual-plarized passive microwave instrument operating near 90 GHz. Int J Remote Sens 8:1479-14877

    Google Scholar 

  • Svendsen EK, Kloster K, Farrelly B, Johannessen OM, Johhannessen JA, Campbell WJ, Gloersen P, Cavalieri DJ, Matzler C (1983) Norwegian Remote Sensing Experiment: Evaluation of the Nimbus 7 Scanning Multichannel Microwave Radiometer. J Geophys Res 88(C5): 2781-2792

    Google Scholar 

  • Swift CT (1980) Passive microwave remote sensing of the ocean - a review. Boundary-Layer Meteorol 18:25-54

    Google Scholar 

  • Swift CT, Fedor LS, Ramseier RO (1985) An algorithm to measure sea ice concentration with microwave radiometers. J Geophys Res 90(C1):1087-1099

    Google Scholar 

  • Taylor VR, Stowe LL (1984) Atlas of reflectance patterns for uniform earth and cloud surfaces. NOAA/NESDIS Technical Report, Washington DC

    Google Scholar 

  • Tschudi M, Curry JA, Maslanik JA (2001) Airborne observations of summertime surface features and their effect on surface albedo during SHEBA. J Geophys Res 106:15335-15344

    Google Scholar 

  • Tjuatja S, Fung AK, Dawson MS (1993) An analysis of scattering and emission from sea ice. Remote Sens Rev 7:83-106

    Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sending, Active and Passive: Theory and Applications. Artech House, Inc., Dedham, MA USA

    Google Scholar 

  • Van de Hulst (1981) Light scattering by small particles. Dover Publications Inc., New York

    Google Scholar 

  • Vant MR, Gray RB, Ramseier RO, Makios V (1974) Dielectric properties of fresh and sea ice at 10 and 35 GHz. J Appl Phys 45(11):4712-4717

    Google Scholar 

  • Vant MR, Ramseier RO, Makios V (1978) The complex-dielectric constant of sea ice at frequencies in the range 0.1-40 GHz. J Appl Phys 49(3):1234-1280 et al 1978

    Google Scholar 

  • Vincent RF, Marsden RF, Minnett PJ, Buckley (2008) Arctic waters and marginal ice zones: 2. An investigation of Arctic atmospheric infrared absorption for AVHRR sea surface temperture estimates. J Geophys Res 113, C08044, doi:10.1029/2007JC004354

    Google Scholar 

  • Walton CC, Pichel WG, Sapper JF (1998) The development and operational application of non-linear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J Geophys Res 103:27,999-28,012

    Google Scholar 

  • Wang J, Cota GF, Comiso JC (2005) Phytoplankton in the Beaufort and Chukchi Seas; Distributions, dynamics, and environmental forcing. Deep Sea Res II 52:3355-3368

    Google Scholar 

  • Warren SG (1982) Optical properties of snow. Rev Geophys Space Phys 20:67-89

    Google Scholar 

  • Warren SG (1984) Optical constants of ice from ultraviolet to the microwave. Applied Optics 23:1206-1225

    Google Scholar 

  • Welch RM, Kuo KS, Sengupta SK (1990) Cloud and surface textural features in polar regions. IEEE Trans Geosci Remote Sens 28:520-528 4.3.1

    Google Scholar 

  • Welch RM, Sengupta SK, Goroch AK, Rabindra P, Ragaraj N, Navar MS (1992) AVHRR imagery: an intercomparison of methods. J Appl Meteorl 31:405-420

    Google Scholar 

  • Wentz JF (1983) A model function for ocean microwave brightness temperature. J Geophys Res 898(C3):1892-1908

    Google Scholar 

  • Wentz JF (1992) Measurement of oceanic wind vector using satellite microwave radiometer. IEEE Trans Geosci Remote Sens 30(5):960-972

    Google Scholar 

  • Wentz FJ, Gentemann C, Smith D, Chelton D (2000) Satellite measurements of sea surface temperature through clouds. Science 288:847-850

    Google Scholar 

  • Williams J (1973) Optical properties of the ocean. Rep Prog Phys 36:1567-1608

    Google Scholar 

  • Winebrenner DP, Bredow J, Fiung AK, Drinkwater MR, Nghiem S, Gow AJ, Perovich DK, Grenfell TC, Han HC, Kong JA, Lee JK, Mudaliar S, Onstott RV, Tsang L, West RD (1992) Microwave sea ice signature modeling. In: Carsey F (Ed) Microwave Remote Sensing of Sea Ice, Geophysical Monography 68, American Geophysical Union, Washington DC

    Google Scholar 

  • Xiong X, Stamnes K, Lubin D (2002) Surface albedo over the Arctic Ocean derived from AVHRR and its validation with SHEBA data. J Appl Meteorol 41:413-425

    Google Scholar 

  • Yaguchi R, Cho K (2009) Validation of sea ice drift vector extraction from AMSR-E and SSM/I data using MODIS data. J Remote Sens Jpn 29(1):242-252

    Google Scholar 

  • Yamonouchi T, Suzuki K, Kauragouchi S (1987) Detection of clouds in Antarctica from infrared multispectral data of AVHRR. J Meteorol Soc Jpn 65:949-961

    Google Scholar 

  • Yhann SR, Simpson JJ (1995) Application of neural networks to AVHRR cloud segmentation. IEEE Trans Geosci Remote Sens 33(3):590-604

    Google Scholar 

  • Zwally JZ, Yi D, Kwok R, Zhao Y (2008) ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J Geophys Res 113: doi: 10.1029/2007/JC004284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefino Comiso .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 United States Government as represented by the Administrator of the National Aeronautics and Space Administration.

About this chapter

Cite this chapter

Comiso, J. (2010). Geophysical Parameters and Algorithms for High Latitude Applications. In: Polar Oceans from Space. Atmospheric and Oceanographic Sciences Library, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68300-3_4

Download citation

Publish with us

Policies and ethics