Skip to main content

Abstract

X rays are used to obtain diagnostic information and for cancer therapy. They are photons of electromagnetic radiation with higher energy than photons of visible light. Gamma rays are photons emitted by radioactive nuclei; except for their origin, they are identical to x-ray photons of the same energy. Section 16.1 describes the production of x rays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AAPM Report 87 (2005). Diode in Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy. College Park, MD. American Association of Physicists in Medicine. Report of Task Group 62 of the Radiation Therapy Committee.

    Google Scholar 

  • Attix, F. H. (1986). Introduction to Radiological Physics and Radiation Dosimetry. New York, Wiley.

    Book  Google Scholar 

  • Ayotte, P., B. Lévesque, D. Gauvin, R. G. McGregor, R. Martel, S. Gingras, W. B. Walker, and E. G. Létourneau (1998). Indoor exposure to 222Rn: A public health perspective. Health Phys. 75(3): 297–302.vesque, B. tourneau, E. G.

    Article  Google Scholar 

  • Barth, R. F. (2003). A critical assessment of boron neutron capture therapy: an overview. J. Neuro-Oncol. 62: 1–5. The entire issue of the journal is devoted to a review of BNCT.

    Article  ADS  Google Scholar 

  • BEIR Report V (1990). Health Effects of Exposure to Low Levels of Ionizing Radiation. Washington, DC, National Academy Press. Committee on the Biological Effects of Ionizing Radiation.

    Google Scholar 

  • BEIR VI (1999). Committee on Health Risks of Exposure to Radon. Health Effects of Exposure to Radon. Washington, D.C., National Academy Press.

    Google Scholar 

  • BEIR Report VII (2005). Health Risks from Exposure to Low Levels of Ionizing Radiation. Washington, DC, National Academy Press. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation.

    Google Scholar 

  • Birch, R., and M. Marshall (1979). Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector. Phys. Med. Biol. 24: 505–517.

    Article  Google Scholar 

  • Boice, J. D., Jr. (1996). Risk estimates for radiation exposures. In W. R. Hendee and F. M. Edwards, eds. Health Effects of Exposure to Low-Level Ionizing Radiation. Bristol, Institute of Physics.

    Google Scholar 

  • Brenner, D. J. and C. D. Elliston (2004). Estimated radiation risks potentially associated with full-body CT screening. Radiology 232: 735–738.

    Article  Google Scholar 

  • Broad, W. J. (1980). Riddle of the Nobel debate. Science 207: 37–38.

    Article  ADS  Google Scholar 

  • Brooks, A. L. (2003). Developing a scientific basis for radiation risk estimates: Goal of the DOE low dose research program. Health Phys. 85(1): 85–93.

    Article  Google Scholar 

  • Brooks, R. A., and G. DiChiro (1976). Principles of computer-assisted tomography in radiographic and radioisotope imaging. Phys. Med. Biol. 21: 689–732; Statistical limitations in x-ray reconstructive tomography. Med. Phys. 3: 237–240.

    Article  Google Scholar 

  • Cho, Z.-H., J. P. Jones, and M. Singh (1993). Foundations of Medical Imaging. New York, Wiley-Interscience.

    Google Scholar 

  • Cohen, B. L. (1995). Test of the linear–no threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Phys. 68(2): 157–174.

    Article  Google Scholar 

  • Cohen, B. L. (1998). Response to Lubin's proposed explanations of the discrepancy. Health Phys. 75(1): 18–22.

    Article  Google Scholar 

  • Cohen, B. L. (1999). Response to the Lubin rejoinder. Health Phys. 76(4): 437–439.

    Google Scholar 

  • Cohen, B. L. (2002). Cancer risk from low-level radiation.[see comment]. AJR. Amer. J. Roentgenology. 179(5):1137–43.

    Google Scholar 

  • Cohen, L. (1993). History and future of empirical and cell kinetic models for risk assessment in radiation oncology. In B. Paliwal, et al., eds. Prediction of Response in Radiation Therapy: Radiosensitivity and Repopulation. Woodbury, NY, AIP for the American Association of Physicists in Medicine.

    Google Scholar 

  • Cormack, A. M. (1980). Nobel award address: Early two-dimensional reconstruction and recent topics stemming from it. Med. Phys. 7(4): 277–282.

    Article  MathSciNet  Google Scholar 

  • Dainty, J. C., and R. Shaw (1974). Image Science. New York, Academic.

    Google Scholar 

  • DeVita, V. T. (2003). Hodgkin's disease—Clinical trials and travails. New Engl. J. Med. 348 (24): 2375–2376.

    Article  Google Scholar 

  • DiChiro, G., and R. A. Brooks (1979). The 1979 Nobel prize in physiology or medicine. Science. 206: 1060–1062.

    Article  ADS  Google Scholar 

  • Doi, K., H. K. Genant, and K. Rossman (1976). Comparison of image quality obtained with optical and radiographic magnification techniques in fine-detail skeletal radiography: Effect of object thickness. Radiology. 118: 189–195.

    Google Scholar 

  • Douglas, J. G., W. J. Koh, M. Austin-Seymour and G. E. Laramore (2003). Treatment of salivary gland neoplasms with fast neutron radiotherapy. Arch. Otolaryngol.–Head & Neck Surg. 129(9): 944–948.

    Article  Google Scholar 

  • Duncan, W. (1994). An evaluation of the results of neutron therapy trials. Acta Oncolog. 33(3): 299–306. This issue of the journal is devoted to fast-neutron therapy.

    Article  Google Scholar 

  • Evans, R. D. (1955). The Atomic Nucleus. New York, McGraw-Hill.

    MATH  Google Scholar 

  • Goodsitt, M., E. Christodoulou, P. Strouse, A. Chien, J. Platt and E. Kazerooni (2002). Radiation doses for corresponding CT and radiographi/cfluoroscopic exams. Med. Phys. 29(6): 1298. (Meeting abstract)

    Google Scholar 

  • Habrand, J. L., P. Schlienger, L. Schwartz, D. Pontvert, C. Lenir-Cohen-Solal, S. Helfre, C. Haie, A. Mazal, and J. M. Cosset. (1995). Clinical applications of proton therapy. Experiences and ongoing studies. Radiat. Environment. Biophys. 34(1): 41–44.

    Article  Google Scholar 

  • Hall, E. J. (2000). Radiobiology for the Radiologist. 5th ed. Philadelphia, Lippincott Williams & Wilkins.

    Google Scholar 

  • Hall, E. J. (2002). Helical CT and cancer risk: Introduction to session I. Pediatr. Radiol. 32: 225–227.

    Article  Google Scholar 

  • Hall, E. J. (2003). The bystander effect. Health Phys. 85(1): 31–35.

    Article  Google Scholar 

  • Hendee, W. R., and R. Ritenour (2002). Medical Imaging Physics, 4th. ed. New York, Wiley-Liss.

    Book  Google Scholar 

  • Higson, D. J. (2004). The bell tolls for LNT. Health Phys. 87(Supplement 2): S47–S50.

    Article  Google Scholar 

  • Holmes, T. W., T. R. Mackie, and P. Reckwerdt (1995). An iterative filtered backprojection inverse treatment planning algorithm for tomotherapy. Int. J. Radiation Oncolog. Biol. Phys. 32(4): 1215–1225.

    Article  Google Scholar 

  • Hubbell, J. H., and S. M. Seltzer (1996). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest. National Institute of Standards and Technology Report NISTIR 5632. physics.nist.gov/PhysRefData/XrayMassCoef/cover.html

    Google Scholar 

  • Hounsfield, G. N. (1980). Nobel award address: Computed medical imaging. Med. Phys. 7(4): 283–290.

    Article  Google Scholar 

  • Huda, W. (2002). Adult and pediatric dose in CT. Med. Phys. 29(6): 1363. Meeting abstract.

    MathSciNet  Google Scholar 

  • Hunt, D. C., S. S. Kirby, and J. A. Rowlands (2002). X-ray imaging with amorphous selenium: X-ray to charge conversion gain and avalanche multiplication gain. Med. Phys. 29(11): 2464–2471.

    Article  Google Scholar 

  • ICRP (1991). 1990 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. 21 no. 1–3.

    Google Scholar 

  • ICRU Report 31 (1979). Average Energy to Produce an Ion Pair. Bethesda, MD, International Commission on Radiation Units and Measurements.

    Google Scholar 

  • ICRU Report 33 (1980, Reprinted 1992). Radiation Quantities and Units. Bethesda, MD, International Commission on Radiation Units and Measurements.

    Google Scholar 

  • ICRU Report 37 (1984). Stopping Powers for Electrons and Positrons. Bethesda, MD, International Commission on Radiation Units and Measurements.

    Google Scholar 

  • ICRU Report 39 (1985). Determination of Dose Equivalents Resulting from External Radiation Sources. Bethesda, MD, International Commission on Radiation Units and Measurements.

    Google Scholar 

  • ICRU Report 41 (1986). Modulation Transfer Function of Screen-Film Systems. Bethesda, MD, International Commission on Radiation Units and Measurements.

    Google Scholar 

  • ICRU Report 54 (1996). Medical Imaging—The Assessment of Image Quality. Bethesda, MD, International Commission on Radiation Units and Measurements.

    Google Scholar 

  • Kalender, W. A. (2000). Computed Tomography: Fundamentals, System Technology, Image Quality and Applications. Munich, Publicis MCD.

    Google Scholar 

  • Kassis, A. I. (2004).The amazing world of Auger electrons. Int. J. Rad. Biol., 80(11-12): 789–803.

    Article  Google Scholar 

  • Kathren, R. L. (1996). Pathway to a paradigm: The linear nonthreshold dose-response model in historical context: The American Academy of Health Physics 1995 Radiology Centennial Hartman Oration. Health Phys. 70(5): 621–635.

    Article  Google Scholar 

  • Khan, F. M. (2003). The Physics of Radiation Therapy. 3rd ed. Philadelphia, Lippincott Williams & Wilkins.

    Google Scholar 

  • Kondo, S. (1993). Health Effects of Low-Level Radiation. Osaka, Japan, Kinki University Press. English translation: Madison, WI, Medical Physics.

    Google Scholar 

  • Lubin, J. H. (1998). On the discrepancy between epidemiologic studies in individuals of lung cancer and residential radon and Cohen's ecologic regression. Health. Phys. 75(1): 4–10.

    Article  ADS  Google Scholar 

  • Lubin, J. H. (1998b). Rejoinder: Cohen's response to “On the discrepancy between epidemiologic studies in individuals of lung cancer and residential radon and Cohen's ecologic regression.” Health Phys. 85(1): 29–30.

    Article  ADS  Google Scholar 

  • Lubin, J. H. (1999). Response to Cohen's comments on the Lubin rejoinder. Health Phys. 77(3): 330–332.

    ADS  Google Scholar 

  • Lutz, G. (1999). Semiconductor Radiation Detectors. New York, Springer.

    Google Scholar 

  • Macovski, A. (1983). Medical Imaging Systems. Englewood Cliffs, NJ, Prentice-Hall.

    Google Scholar 

  • McCollough, C. H. and B. A. Schueler (2000). Educational Treatise: Calculation of effective dose. Med. Phys. 27(5): 828–837.

    Article  Google Scholar 

  • Metz, C. E., and K. Doi (1979). Transfer function analysis of radiographic imaging systems. Phys. Med. Biol. 24(6): 1079–1106.

    Article  Google Scholar 

  • Miralbell, R., A. Lomax, L. Cella, and U. Schneider (2002). Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiation Oncology Biol. Phys. 54(3): 824–829.

    Article  Google Scholar 

  • Mossman, K. L. (2001). Deconstructing radiation hormesis. Health Phys. 80(3): 263–269.

    Article  Google Scholar 

  • Moulder, J. E., and J. D. Shadley (1996). Radiation interactions at the cellular and tissue levels. In W. R. Hendee and F. M. Edwards, eds. Health Effects of Exposure to Low-Level Ionizing Radiation. Bristol, Institute of Physics.

    Google Scholar 

  • Moyers, M. (2003). Proton therapy refresher course, Part II. Practical challenges and opportunities for proton therapy. Med. Phys. 30(6): 1445–1446.

    Google Scholar 

  • Nagel, H. D., M. Galanski, N. Hidajat, W. Maer and T. Schmidt (2000). Radiation Exposure in Computed Tomography: Fundamentals, Influencing Parameters, Dose Assessment, Optimisation, Scanner Data, Terminology. COCIR, European Coordination Committee of the Radiological and Electromedical Industries. Hamburg, CTB Publications (ctb-publications@gmx.de)

    Google Scholar 

  • NCRP Report 93 (1987) Ionizing Radiation Exposure of the Population of the United States. Bethesda, MD, National Council on Radiation Protection and Measurements.

    Google Scholar 

  • NCRP Report 94 (1987). Exposure of the Population in the United States and Canada from Natural Background Radiation. Bethesda, MD, National Council of Radiation Protection and Measurements.

    Google Scholar 

  • NCRP Report 100 (1989). Exposure of the U.S. Population from Diagnostic Medical Radiation. Bethesda, MD, National Council of Radiation Protection and Measurements.

    Google Scholar 

  • NCRP Report 136 (2001). Evaluation of the Linear-Nonthreshold Dose-Response Model for Ionizing Radiation. Bethesda, MD, National Council of Radiation Protection and Measurements.

    Google Scholar 

  • Orton, C. (1997). Fractionation: Radiobiological principles and clinical practice. Chap. 11 in F. M. Khan and R. A. Potish, eds. Treatment Planning in Radiation Oncology. Baltimore, MD, Williams and Wilkins.

    Google Scholar 

  • Platzman, R. L. (1961). Total ionization in gases by high-energy particles: An appraisal of our understanding. Intl. J. Appl. Rad. Isotopes 10: 116–127.

    Article  Google Scholar 

  • Rowlands, J. A. (2002). The physics of computed radiography. Phys. Med. Biol. 47: R123–R126.

    Article  ADS  Google Scholar 

  • Schlesinger, T. E. and R. B. James, eds. (1995). Semiconductors for Room Temperature Nuclear Applications. New York, Academic Press.

    Google Scholar 

  • Schulz, R. J. and A. R. Kagan (2002). On the role of intensity-modulated radiation therapy in radiation oncology. Med. Phys. 29(7): 1473–1482.

    Article  Google Scholar 

  • Seibert, J. A. (2003). Digital fluoroscopic imaging: Acquisition, processing and display. Med. Phys. 30(6): 1413.

    Google Scholar 

  • Shabashon, L. (1996). Radiation interactions: Physical and chemical effects. In W. R. Hendee and F. M. Edwards, eds. Health Effects of Exposure to Low-Level Ionizing Radiation. Bristol, Institute of Physics.

    Google Scholar 

  • Shani, G. (1991). Radiation Dosimetry: Instrumentation and Methods. Boca Raton, CRC.

    Google Scholar 

  • Shani, G. (2001). Radiation Dosimetry: Instrumentation and Methods. 2nd. ed. Boca Raton, CRC.

    Google Scholar 

  • Slater, J. D., C. J. Rossi, Jr., L. T. Yonemoto, D. A. Bush, B. R. Jabola, R. P. Levy, R. I. Grove, W. Preston, and J. M. Slater (2004). Proton therapy for prostate cancer: The initial Loma Linda University experience. Int. J. Radiat. Oncol. Biol. Phys. 59(2): 348–352.

    Article  Google Scholar 

  • Sobol, W. T. (2002). High frequency x-ray generator basics. Med. Phys. 29(2): 132–144.

    Article  Google Scholar 

  • Steel, G. G. (1996). From targets to genes: a brief history of radiosensitivity. Phys. Med. Biol. 41(2): 205–222.

    Article  Google Scholar 

  • Suess, C., A. Polacin, and W. A. Kalender (1995). Theory of xenon/computed tomography cerebral blood flow methodology. In M. Tomanaga, A. Tanaka, and H. Yonas, eds. Quantitative Cerebral Blood Flow Measurements Using Stable Xenon/CT: Clinical Applications. Armonk, NY, Futura.

    Google Scholar 

  • Suit, H., and M. Urie (1992). Proton beams in radiation therapy. J. Natl. Cancer Inst. 84(3): 155–164.

    Article  Google Scholar 

  • Upton, A. C. (2003). The state of the art in the 1990's: NCRP Report No. 136 on the scientific bases for linearity in the dose-response relationship for ionizing radiation. Health Phys. 85(1): 15–22.

    Article  Google Scholar 

  • van Eijk, C. W. E. (2002). Inorganic scintillators in medical imaging. Phys. Med. Biol. 47: R85–R106

    Article  Google Scholar 

  • Wagner, R. F. (1977). Toward a unified view of radiological imaging systems. Part II: Noisy images. Med. Phys. 4(4): 279–296.

    Article  Google Scholar 

  • Wagner, R. F. (1983). Low contrast sensitivity of radiologic, CT, nuclear medicine, and ultrasound medical imaging systems. IEEE Trans. Med. Imaging MI-12(3): 105–121.

    Article  Google Scholar 

  • Wagner, R. F., K. E. Weaver, E. W. Denny, and R. G. Bostrom (1974). Toward a unified view of radiological imaging systems. Part I: Noiseless images. Med. Phys. 1(1): 11–24.

    Article  Google Scholar 

  • Webb, S. (2001). Intensity-Modulated Radiation Therapy. Bristol and Philadelphia. Institute of Physics Publishing.

    Google Scholar 

  • Winsor, R. (2003). CCD digital detectors. Med. Phys. 30(6): 1433. Meeting abstract.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hobbie, R.K., Roth, B.J. (2007). Medical Use of X Rays. In: Intermediate Physics for Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49885-0_16

Download citation

Publish with us

Policies and ethics