Skip to main content

Monte Carlo Simulations of the Underpotential Deposition of Metal Layers on Metallic Substrates: Phase Transitions and Critical Phenomena

  • Chapter
  • First Online:
Modern Aspects of Electrochemistry No. 44

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 44))

  • 1075 Accesses

Summary

The underpotential deposition (UPD) of metal submonolayers and monolayers on metal substrates for the systems Ag/Au(100), Au/Ag(100), Ag/Pt(100), Pt/Ag(100), Au/Pt(100), Pt/Au(100), Au/Pd(100), and Pd/Au(100) is studied by means of lattice Monte Carlo simulations. Interaction energies among different metal atoms are evaluated by using the embedded-atom method. A wide variety of physical situations are found and discussed, including systems exhibiting the sequential adsorption of atoms on kink and step sites, prior to the completion of the monolayer. On the other hand, for other systems, we observe the formation of 2D alloys between substrate and adsorbate atoms, and our predictions are compared with available experimental data. The adsorption isotherms determined for most of the systems studied exhibit sharp transitions in the coverage when the chemical potential is finely tuned. In particular, on the basis of the fact that the UPD of Ag atoms on the Au(100) surface exhibits a sharp first-order phase transition, at a well-defined value of the (coexistence) chemical potential, we also performed extensive simulations aimed at investigating the hysteretic dynamic behavior of the system close to coexistence upon the application of a periodic potential signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Acharyya, Phys. Rev. E 56 (1997) 1234.

    Article  CAS  Google Scholar 

  2. M. Acharyya, Phys. Rev. E 56 (1997) 2407.

    Article  CAS  Google Scholar 

  3. M. Acharyya, Int. J. Mod. Phys. C 16 (2005) 1631.

    Article  CAS  Google Scholar 

  4. E. V. Albano, Appl. Phys. A 55 (1992) 226.

    Article  Google Scholar 

  5. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.

    Google Scholar 

  6. A. Aramata, Underpotential deposition on single-crystal metals, in Modern Aspects of Electrochemistry, Vol 31, pp 181–250, J. O’M. Bockris, Ralphe E. White and B. E. Conway (eds), Springer,New York, 2002.

    Google Scholar 

  7. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, Springer, Berlin, 1988.

    Google Scholar 

  8. E. Budevski, G. Staikov and W. J. Lorenz, Electrochemical Phase Formation and Growth, VCH, Weinheim, 1996.

    Book  Google Scholar 

  9. B. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71 (1999) 847.

    Article  CAS  Google Scholar 

  10. K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. 95 (1991) 1090; Phys. Rev. Lett. 68 (1992) 604.

    Google Scholar 

  11. S. M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B 33 (1986) 7983.

    Article  CAS  Google Scholar 

  12. H. Fujisaka, H. Tutu and P. A. Rikvold, Phys. Rev. E 63 (2001) 016120; 63 (2001) 059903(E).

    Google Scholar 

  13. S. G. García, D. Salinas, C. Mayer, E. Schmidt, G. Staikov, W. J. Lorenz, Electrochim. Acta 43(1998) 3007.

    Article  Google Scholar 

  14. H. Gerischer, D. M. Kolb and M. Przasnyski, Surf. Sci. 43 (1974) 662.

    Article  CAS  Google Scholar 

  15. M. C. Giménez, M. G. del Pópolo and E. P. M. Leiva, Electrochim. Acta 45 (1999) 699–712.

    Article  Google Scholar 

  16. M. C. Giménez and E. P. M. Leiva, Langmuir 19 (2003) 10538–10549.

    Article  Google Scholar 

  17. M. C. Giménez and E. V. Albano, J. Phys. Chem. C 111 (2007) 1809–1815.

    Article  Google Scholar 

  18. W. Herzog and D. W. M. Arrigan, Trends Anal. Chem. 24(3) (2005) 208–217.

    Article  CAS  Google Scholar 

  19. T. Hill, Nano Lett. 1 (2001) 273–275.

    Article  CAS  Google Scholar 

  20. H. Jang and J. Grimson, Phys. Rev. E 63 (2001) 066119.

    Article  CAS  Google Scholar 

  21. H. Jang, J. Grimson and C. K. Hall, Phys. Rev. B 67 (2003) 094411; Phys. Rev. E 68 (2003) 046115.

    Google Scholar 

  22. L. A. Kibler, M. Kleinert and D. M. Kolb, Surf. Sci. 461 (2000) 155.

    Article  CAS  Google Scholar 

  23. D. M. Kolb in Advances in Electrochemistry and Electrochemical Engineering, Vol 11, p. 125, H. Gerischer and C. W. Tobias (eds), Wiley, New York, 1978.

    Google Scholar 

  24. D. M. Kolb, M. Przasnyski and H. Gerischer, J. Electroanal. Chem. 54 (1974) 25.

    Article  CAS  Google Scholar 

  25. G. Korniss, P. A. Rikvold and M. A. Novotny, Phys. Rev. E 66 (2002) 056127.

    Article  CAS  Google Scholar 

  26. G. Korniss, C. J. White, P. A. Rikvold and M. A. Novotny, Phys. Rev. E 63 (2000) 016120.

    Article  Google Scholar 

  27. E. Leiva, J. Electroanal. Chem. 350 (1993) 1.

    Article  CAS  Google Scholar 

  28. E. Leiva and W. Schmickler, Chem. Phys. Lett. 160 (1989) 75.

    Article  CAS  Google Scholar 

  29. E. Leiva and W. Schmickler, Electrochim. Acta 39 (1994) 1015; Electrochim. Acta 40 (1995) 37.

    Google Scholar 

  30. A. C. Lopez and E. V. Albano, J. Chem. Phys. 112 (2000) 3890.

    Article  CAS  Google Scholar 

  31. E. Loscar and E. V. Albano, Rep. Prog. Phys. 66 (2003) 1343.

    Article  CAS  Google Scholar 

  32. E. Machado, G. Buendía, P. Rikvold and R. Ziff, Phys. Rev. E 71 (2005) 016120.

    Article  Google Scholar 

  33. E. Machado, G. Buendía and P. Rikvold, Phys. Rev. E 71 (2005) 031603.

    Article  Google Scholar 

  34. O. A. Oviedo, E. P. M. Leiva and M. I. Rojas, Electrochim. Acta 51 (2006) 3526–3536.

    Article  CAS  Google Scholar 

  35. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in FORTRAN, The Art of Scientific Computing, Second Edition, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  36. P. A. Rikvold and B. M. Gorman, in Annual Reviews of Computational Physics I, D. Stauffer (ed), World Scientific, Singapore, 1994.

    Google Scholar 

  37. P. A. Rikvold, H. Tomita, S. Miyashita and S. W. Sides, Phys. Rev. E 49 (1994) 5080.

    Article  CAS  Google Scholar 

  38. M. Rojas, Surf. Sci. 569 (2004) 76.

    Article  CAS  Google Scholar 

  39. M. I. Rojas, M. G. Del Pópolo and E. P. M. Leiva, Langmuir 16 (2000) 9539–9546.

    Article  CAS  Google Scholar 

  40. M. G. Samant, M. F. Toney, G. L. Borges, L. Blum and O. R. Melroy, J. Phys. Chem. 92 (1998) 220.

    Article  Google Scholar 

  41. C. Sánchez and E. P. M. Leiva, Handbook of fuel cell technology, in Catalysis by upd Metals, Chapter 5, Vol 2, Part 1, pp 47–61, W. Vielstich, A. Lamm and H. Gasteiger (eds), Wiley, Chichester, 2003.

    Google Scholar 

  42. C. G. Sánchez, E. P. M. Leiva and J. Kohanoff, Langmuir 17 (2001) 2219–2227.

    Article  Google Scholar 

  43. S. W. Sides, P. A. Rikvold and M. A. Novotny, Phys. Rev. Lett. 81 (1998) 834; Phys. Rev. E 59 (1999) 2710.

    Google Scholar 

  44. H. Siegenthaler, K. Jüttner, E. Schmidt and W. J. Lorenz, Electrochim. Acta 23 (1978) 1009.

    Article  CAS  Google Scholar 

  45. T. Tomé and M. J. de Oliveira, Phys. Rev. A 41 (1990) 4251.

    Article  Google Scholar 

  46. S. Trasatti, Z. Phys. Chem. N. F. 98 (1975).

    Google Scholar 

  47. H. F. Waibel, M. Kleinert, L. A. Kibler and D. M. Kolb, Electrochim. Acta 47 (2002) 1461.

    Article  CAS  Google Scholar 

  48. T. Yasui, H. Tutu, M. Yamamoto and H. Fujisaka, Phys. Rev. E 66 (2002) 036123; 67 (2003) 019901(E).

    Google Scholar 

  49. R. Ziff, E. Gulari and Y. Barshad, Phys. Rev. Lett. 56 (1986) 2553.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by CONICET, UNLP, SecyT(UNC), and Agencia Nacional de Promoción Científica y Tecnológica(Argentina), PAE nos. 22711, PICT06-00036, and PICT 06-12485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cecilia Giménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giménez, M.C., Leiva, E.P.M., Albano, E. (2009). Monte Carlo Simulations of the Underpotential Deposition of Metal Layers on Metallic Substrates: Phase Transitions and Critical Phenomena. In: Schlesinger, M. (eds) Modern Aspects of Electrochemistry No. 44. Modern Aspects of Electrochemistry, vol 44. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49586-6_6

Download citation

Publish with us

Policies and ethics