Skip to main content

Corrosion Behavior

  • Chapter
Bulk Metallic Glasses

There has been a growing interest in the corrosion behavior of bulk metallic glasses (BMGs). The enhanced glass formability of these amorphous alloys has made the fabrication of bulk size components easier and thereby improving their prospects for engineering applications. The corrosion behavior of BMGs is particularly pertinent when considering biomedical applications and is also relevant for other applications, e.g., watches and electronic casings. The corrosion resistance is also a critical factor for the consideration of their use in hostile or chemical environments.

The corrosion properties of an amorphous alloy are expected to be superior to those of its crystalline counterpart due to its chemical homogeneity and lack of microstructure. Amorphous alloys lack grain boundaries, dislocations, and other defects that are commonly the culprits behind the localized corrosion observed in crystalline alloys. The rapid cooling rates required to produce amorphous alloys are believed to promote chemical homogeneity since there is no time for appreciable solid-state diffusion. The short time available for significant diffusion suggests that amorphous alloys should lack second phases, precipitates, and segregates. However, this assertion has been shown not to always be true for BMGs. It should be noted that the second phases (crystalline inclusions) observed in some BMGs are a result of heterogeneous nucleation often caused by impurities in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. L. Johnson, Bulk metallic glasses – A new engineering material, Curr. Opin. Solid State Mater. Sci. 1(3), 383-386 (1996).

    Article  CAS  Google Scholar 

  2. K. Hashimoto, in Amorphous Metallic Alloys, edited by F. E. Luborsky (Butterworths, London, 1983), pp. 471-486.

    Google Scholar 

  3. A. Gebert, J. Eckert, and L. Schultz, Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass, Acta Mater. 46(15), 5475- 5482 (1998).

    Article  Google Scholar 

  4. C. T. Liu, M. F. Chisholm, and M. K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy, Intermetallics 10(11-12), 1105-1112 (2002).

    Article  CAS  Google Scholar 

  5. B. S. Murty, D. H. Ping, K. Hono, and A. Inoue, Direct evidence for oxygen stabilization of icosahedral phase during crystallization of Zr65Cu27.5Al7.5 metallic glass, Appl. Phys. Lett. 76(1), 55-57 (2000).

    Article  CAS  ADS  Google Scholar 

  6. D. J. Sordelet, X. Yang, E. A. Rozhkova, M. F. Besser, and M. J. Dramer, Influence of oxygen content in phase selection during quenching of Zr80Pt20 melt spun ribbons, Intermetallics 12(10-11), 1211-1217 (2004).

    CAS  Google Scholar 

  7. C. T. Liu and Z. P. Lu, Effect of minor alloying additions on glass formation in bulk metallic glasses, Intermetallics 13, 415-418 (2005).

    Article  CAS  Google Scholar 

  8. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48(1), 279-306 (2000).

    Article  CAS  Google Scholar 

  9. E. E. Stansbury and R. A. Buchanan, Fundamentals of Electrochemical Corrosion (ASM International, Materials Park, 2000).

    Google Scholar 

  10. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed. (Prentice Hall, Upper Saddle River, 1995).

    Google Scholar 

  11. H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, 3rd ed. (WileyInterscience, New York, 1985).

    Google Scholar 

  12. W. H. Peter, R. A. Buchanan, C. T. Liu, P. K. Liaw, M. L. Morrison, C. A. Carmichael, Jr., and J. L. Wright, Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state, Intermetallics 10(11-12), 1157-1162 (2002).

    Article  CAS  Google Scholar 

  13. M. L. Morrison, R. A. Buchanan, R. V. Leon, C. T. Liu, B. A. Green, P. K. Liaw, and J. A. Horton, The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte, J. Biomed. Mater. Res. A 74(3), 430-438 (2005).

    CAS  PubMed  Google Scholar 

  14. G. S. Frankel, Pitting corrosion of metals: A review of the critical factors, J. Electrochem. Soc. 145(6), 2186-2198 (1998).

    Article  CAS  Google Scholar 

  15. H. Böhni, in Uhlig’s Corrosion Handbook, edited by R. W. Revie (Wiley, New York, 2000), pp. 173-190.

    Google Scholar 

  16. H.-H. Strehblow, in Corrosion Mechanisms in Theory and Practice, edited by P. Marcus and J. Oudar (Dekker, New York, 1995).

    Google Scholar 

  17. Z. Szklarska-Smialowska, Mechanism of pit nucleation by electrical breakdown of the passive film, Corros. Sci. 44(5), 1143-1149 (2002).

    Article  CAS  Google Scholar 

  18. . U. R. Evans, The passivity of metals. Part I. The isolation of the protective film, J. Chem. Soc., Chem. Commun. 1020-1040 (1927).

    Google Scholar 

  19. T. P. Hoar, The breakdown and repair of oxide films on iron, Trans. Faraday Soc. 45, 683-693 (1949).

    Article  CAS  Google Scholar 

  20. K. Asami, C.-L. Qin, T. Zhang, and A. Inoue, Effect of additional elements on the corrosion behavior of a Cu-Zr-Ti bulk metallic glass, Mater. Sci. Eng. A 375-377, 235-239 (2004).

    Article  CAS  Google Scholar 

  21. B. Liu and L. Liu, The effect of microalloying on thermal stability and corrosion resistance of Cu-based bulk metallic glasses, Mater. Sci. Eng. A 415(1-2), 286-290 (2006).

    Article  CAS  Google Scholar 

  22. C. L. Qin, K. Asami, T. Zhang, W. Zhang, and A. Inoue, Corrosion behavior of Cu-ZrTi-Nb bulk glassy alloys, Mater. Trans. 44(4), 749-753 (2003).

    Article  CAS  Google Scholar 

  23. C. L. Qin, W. Zhang, K. Asami, N. Ohtsu, and A. Inoue, Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu-Hf-Ti-Nb alloys, Acta Mater. 53 (14), 3903-3911 (2005).

    Article  CAS  Google Scholar 

  24. L. Liu and B. Liu, Influence of the micro-addition of Mo on glass forming ability and corrosion resistance of Cu-based bulk metallic glasses, Electrochim. Acta 51(18), 3724- 3730 (2006).

    Article  CAS  Google Scholar 

  25. M. K. Tam, S. J. Pang, and C. H. Shek, Effects of niobium on thermal stability and corrosion behavior of glassy Cu-Zr-Al-Nb alloys, J. Phys. Chem. Solids 67(4), 762-766 (2006).

    Article  CAS  ADS  Google Scholar 

  26. C. L. Qin, W. Zhang, H. Kimura, K. Asami, and A. Inoue, New Cu-Zr-Al-Nb bulk glassy alloys with high corrosion resistance, Mater. Trans. 45(6), 1958-1961 (2004).

    Article  CAS  Google Scholar 

  27. B. Liu, L. Liu, M. Sun, C. L. Qiu, and Q. Chen, Influence of Cr micro-addition on the glass forming ability and corrosion resistance of Cu-based bulk metallic glasses, Acta Metall. Sin. 41(7), 738-742 (2005).

    CAS  Google Scholar 

  28. C. L. Qin, K. Asami, T. Zhang, W. Zhang, and A. Inoue, Effects of additional elements on the glass formation and corrosion behavior of bulk glassy Cu-Hf-Ti alloys, Mater. Trans. 44(5), 1042-1045 (2003).

    Article  CAS  Google Scholar 

  29. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance, Corros. Sci. 44(8), 1847-1856 (2002).

    Article  CAS  Google Scholar 

  30. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Formation of bulk glassy Fe75−x−yCrxMoyC15B10 alloys and their corrosion behavior, J. Mater. Res. 17(3), 701-704 (2002).

    Article  CAS  ADS  Google Scholar 

  31. K. Asami, S. J. Pang, T. Zhang, and A. Inoue, Preparation and corrosion resistance of Fe-Cr-Mo-C-B-P bulk glassy alloys, J. Electrochem. Soc. 149(8), B366-B369 (2002).

    Article  CAS  Google Scholar 

  32. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance, Acta Mater. 50(3), 489-497 (2002).

    Article  CAS  Google Scholar 

  33. J. Jayaraj, Y. C. Kim, K. B. Kim, H. K. Seok, and E. Fleury, Corrosion studies on Febased amorphous alloys in simulated PEM fuel cell environment, Sci. Tech. Adv. Mater. 6 (3-4), 282-289 (2005).

    Article  CAS  Google Scholar 

  34. H. Katagiri, S. Meguro, M. Yamasaki, H. Habazaki, T. Sato, A. Kawashima, K. Asami, and K. Hashimoto, An attempt at preparation of corrosion-resistant bulk amorphous Ni -Cr-Ta-Mo-P-B alloys, Corros. Sci. 43(1), 183-191 (2001).

    Article  CAS  Google Scholar 

  35. H. Habazaki, H. Ukai, K. Izumiya, and K. Hashimoto, Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6M HCl solution, Mater. Sci. Eng. A 318 (1-2), 77-86 (2001).

    Article  Google Scholar 

  36. H. Habazaki, T. Sato, A. Kawashima, K. Asami, and K. Hashimoto, Preparation of corrosion-resistant amorphous Ni-Cr-P-B bulk alloys containing molybdenum and tantalum, Mater. Sci. Eng. A 304-306, 696-700 (2001).

    Article  Google Scholar 

  37. C. L. Qin, W. Zhang, H. Nakata, H. Kimura, K. Asami, and A. Inoue, Effect of tantalum on corrosion resistance of Ni-Nb(-Ta)-Ti-Zr glassy alloys at high temperature, Mater. Trans. 46(4), 858-862 (2005).

    Article  CAS  Google Scholar 

  38. K. Shimamura, A. Kawashima, K. Asami, and K. Hashimoto, Corrosion behavior of amorphous nickel-valve metal-alloys in boiling concentrated nitric and hydrochloric acids, Sci. Rep. Res. Tohoku A 33(1), 196-210 (1986).

    CAS  Google Scholar 

  39. A. Mitsuhashi, K. Asami, A. Kawashima, and K. Hashimoto, The corrosion behavior of amorphous nickel base alloys in a hot concentrated phosphoric acid, Corros. Sci. 27(9), 957-970 (1987).

    Article  CAS  Google Scholar 

  40. H.-J. Lee, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The effect of phosphorus addition on the corrosion behavior of amorphous Ni-30Ta-P alloys in 12 M HCl, Corros. Sci. 37(2), 321-330 (1995).

    Article  CAS  Google Scholar 

  41. H.-J. Lee, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The effect of phosphorus on the passivation behavior of Ni-10Ta-P alloys in 12 M HCl, Corros. Sci. 37(8), 1313-1324 (1995).

    Article  CAS  Google Scholar 

  42. H.-J. Lee, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The roles of tantalum and phosphorus in the corrosion behavior of Ni-Ta-P alloys in 12 M HCl, Corros. Sci. 39(2), 321-332 (1997).

    Article  CAS  Google Scholar 

  43. A. Kawashima, H. Habazaki, and K. Hashimoto, Highly corrosion-resistant Ni-based bulk amorphous alloys, Mater. Sci. Eng. A 304-306, 753-757 (2001).

    Article  Google Scholar 

  44. S. Pang, T. Zhang, K. Asami, and A. Inoue, Bulk glassy Ni(Co-)Nb-Ti-Zr alloys with high corrosion resistance and high strength, Mater. Sci. Eng. A 375-377, 368-371 (2004).

    Article  CAS  Google Scholar 

  45. S.-J. Pang, C.-H. Shek, T. Zhang, K. Asami, and A. Inoue, Corrosion behavior of glassy Ni55Co5Nb20Ti10Zr10 alloy in 1N HCl solution studied by potentiostatic polarization and XPS, Corros. Sci. 48(3), 625-633 (2006).

    Article  CAS  Google Scholar 

  46. K. Hashimoto, 2002 W. R. Whitney Award Lecture: In pursuit of new corrosion-resistant alloys, Corrosion 58(9), 715-722 (2002).

    Article  CAS  Google Scholar 

  47. M. Mehmood, B.-P. Zhang, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, Experimental evidence for the critical size of heterogeneity areas for pitting corrosion of Cr-Zr alloys in 6 M HCl, Corros. Sci. 40(1), 1-17 (1998).

    Article  CAS  Google Scholar 

  48. A. Gebert, U. Kuehn, S. Baunack, N. Mattern, and L. Schultz, Pitting corrosion of zirconium-based bulk glass-matrix composites, Mater. Sci. Eng. A 415(1-2), 242-249 (2006).

    Article  CAS  Google Scholar 

  49. K. Asami, H. Habazaki, A. Inoue, and K. Hashimoto, Recent development of highly corrosion resistant bulk glassy alloys, Mater. Sci. Forum 502, 225-230 (2005).

    Article  CAS  Google Scholar 

  50. C. L. Qiu, L. Liu, M. Sun, and S. M. Zhang, The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid, J. Biomed. Mater. Res. A 75(4), 950-956 (2005).

    CAS  PubMed  Google Scholar 

  51. K. Mondal, B. S. Murty, and U. K. Chatterjee, Electrochemical behaviour of amorphous and nanoquasicrystalline Zr-Pd and Zr-Pt alloys in different environments, Corros. Sci. 47 (11), 2619-2635 (2005).

    Article  CAS  Google Scholar 

  52. L. Liu, C. L. Qiu, H. Zou, and K. C. Chan, The effect of the microalloying of Hf on the corrosion behavior of ZrCuNiAl bulk metallic glass, J. Alloys Compd. 399(1-2), 144- 148 (2005).

    Article  CAS  Google Scholar 

  53. A. Dhawan, S. Roychowdhury, P. K. De, and S. K. Sharma, Potentiodynamic polarization studies on bulk amorphous alloys and Zr46.75Ti8.25Cu7.5Ni10Be27.5 and Zr65Cu17.5Ni10Al7.5, J. Non-Cryst. Solids 351(10-11), 951-955 (2005).

    Article  CAS  ADS  Google Scholar 

  54. F.-Q. Zu, Z.-H. Chen, J.-J. Tao, L.-J. Liu, J. Yu, and Y. Xi, Corrosion resistance of ZrAl-Ni-Cu (Nb) bulk amorphous alloys, Trans. Nonferr. Metal. Soc. 14(5), 961-965 (2004).

    CAS  Google Scholar 

  55. M. L. Morrison, R. A. Buchanan, A. Peker, W. H. Peter, J. A. Horton, and P. K. Liaw, Cyclic-anodic-polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5, Intermetallics 12(10- 11), 1177-1181 (2004).

    CAS  Google Scholar 

  56. U. K. Mudali, S. Baunack, J. Eckert, L. Schultz, and A. Gebert, Pitting corrosion of bulk glass-forming zirconium-based alloys, J. Alloys Compd. 377, 290-297 (2004).

    Article  CAS  Google Scholar 

  57. D. Zander and U. Köster, Corrosion of amorphous and nanocrystalline Zr-based alloys, Mater. Sci. Eng. A 375-377, 53-59 (2004).

    Article  CAS  Google Scholar 

  58. F. X. Qin, H. F. Zhang, Y. F. Deng, B. Z. Ding, and Z. Q. Hu, Corrosion resistance of Zrbased bulk amorphous alloys containing Pd, J. Alloys Compd. 375(1-2), 318-323 (2004).

    Article  CAS  Google Scholar 

  59. F. X. Qin, H. F. Zhang, P. Chen, F. F. Chen, D. C. Qiao, and Z. Q. Hu, Corrosion behavior of bulk amorphous Zr55Al10Cu30Ni5−xPdx alloys, Mater. Lett. 58(7-8), 1246-1250 (2004).

    Article  CAS  Google Scholar 

  60. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Formation, corrosion behavior, and mechanical properties of bulk glassy Zr-Al-Co-Nb alloys, J. Mater. Res. 18(7), 1652-1658 (2003).

    Article  CAS  ADS  Google Scholar 

  61. T. C. Chieh, J. Chu, C. T. Liu, and J. K. Wu, Corrosion of Zr52.2Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions, Mater. Lett. 57(20), 3022-3025 (2003).

    Article  CAS  Google Scholar 

  62. S. Hiromoto, A. P. Tsai, M. Sumita, and T. Hanawa, Polarization behavior of bulk Zrbase amorphous alloy immersed in cell culture medium, Mater. Trans. 43(12), 3112- 3117 (2002).

    Article  CAS  Google Scholar 

  63. V. R. Raju, U. Kühn, U. Wolff, F. Schneider, J. Eckert, R. Reiche, and A. Gebert, Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti, Mater. Lett. 57(1), 173-177 (2002).

    Article  CAS  Google Scholar 

  64. S. Hiromoto, K. Asami, A. P. Tsai, M. Sumita, and T. Hanawa, Surface composition and anodic polarization behavior of zirconium-based amorphous alloys in a phosphatebuffered saline solution, J. Electrochem. Soc. 149(4), B117-B122 (2002).

    Article  CAS  Google Scholar 

  65. U. Wolff, A. Gebert, J. Eckert, and L. Schultz, Effect of surface pretreatment on the electrochemical activity of a glass-forming Zr-Ti-Al-Cu-Ni alloy, J. Alloys Compd. 346 (1-2), 222-229 (2002).

    Article  CAS  Google Scholar 

  66. S. Hiromoto and T. Hanawa, Re-passivation current of amorphous Zr65Al7.5Ni10Cu17.5 alloy in a Hanks’ balanced solution, Electrochim. Acta 47(9), 1343-1349 (2002).

    Article  CAS  Google Scholar 

  67. A. Gebert, K. Buchholz, A. M. El-Aziz, and J. Eckert, Hot water corrosion behaviour of Zr-Cu-Al-Ni bulk metallic glass, Mater. Sci. Eng. A 316(1-2), 60-65 (2001).

    Article  Google Scholar 

  68. G. He, Z. Bian, and G. L. Chen, Corrosion behavior of a Zr-base bulk glassy alloy and its crystallized counterparts, Mater. Trans. 42(6), 1109-1111 (2001).

    Article  CAS  Google Scholar 

  69. S. J. Pang, T. Zhang, H. Kimura, K. Asami, and A. Inoue, Corrosion behavior of Zr(Nb-)Al-Ni-Cu glassy alloys, Mater. Trans. 41(11), 1490-1494 (2000).

    CAS  Google Scholar 

  70. S. Hiromoto, A. P. Tsai, M. Sumita, and T. Hanawa, Effects of surface finishing and dissolved oxygen on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution, Corros. Sci. 42(12), 2167-2185 (2000).

    Article  Google Scholar 

  71. S. Hiromoto, A. P. Tsai, M. Sumita, and T. Hanawa, Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution, Corros. Sci. 42(9), 1651-1660 (2000).

    Article  CAS  Google Scholar 

  72. A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, and L. Schultz, Investi- gations on the electrochemical behaviour of Zr-based bulk metallic glasses, Mater. Sci. Eng. A 267(2), 294-300 (1999).

    Article  Google Scholar 

  73. V. Schroeder, C. J. Gilbert, and R. O. Ritchie, Comparison of the corrosion behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22, with its crystallized form, Scripta Mater. 38(10), 1481-1485 (1998).

    CAS  Google Scholar 

  74. A. Gebert, K. Mummert, J. Eckert, L. Schultz, and A. Inoue, Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy, Mater. Corros. 48(5), 293-297 (1997).

    Article  CAS  Google Scholar 

  75. K. Asami, Y. Murakami, H. M. Kimura, and M. Kikuchi, Characterization of amorphous Zr-Cu alloy surfaces by electron-probe microanalysis and auger-electron spectroscopy, Sci. Rep. Res. Tohoku A 41(1), 77-81 (1995).

    CAS  Google Scholar 

  76. G. K. Dey, R. T. Savalia, S. K. Sharma, and S. K. Kulkarni, Corrosion studies on amorphous and crystalline Zr67Ni33, Corros. Sci. 29(7), 823-831 (1989).

    Article  CAS  Google Scholar 

  77. M. L. Morrison, R. A. Buchanan, O. N. Senkov, D. B. Miracle, and P. K. Liaw, Electrochemical behavior of Ca-based bulk metallic glasses, Metall. Mater. Trans. A 37 (4), 1239-1245 (2006).

    Article  Google Scholar 

  78. A. Gebert, R. V. Subba Rao, U. Wolff, S. Baunack, J. Eckert, and L. Schultz, Corrosion behaviour of the Mg65Y10Cu15Ag10 bulk metallic glass, Mater. Sci. Eng. A 375-377, 280- 284 (2004).

    Article  CAS  Google Scholar 

  79. A. Gebert, U. Wolff, A. John, J. Eckert, and L. Schultz, Stability of the bulk glassforming Mg65Y10Cu25 alloy in aqueous electrolytes, Mater. Sci. Eng. A 299(1-2), 125- 135 (2001).

    Article  Google Scholar 

  80. A. Gebert, U. Wolff, A. John, and J. Eckert, Corrosion behaviour of Mg65Y10Cu25 metallic glass, Scripta Mater. 43(3), 279-283 (2000).

    Article  CAS  Google Scholar 

  81. M. L. Morrison, R. A. Buchanan, A. Peker, P. K. Liaw, and J. A. Horton, Electrochemical behavior of a Ti-based bulk metallic glass, J. Non-Cryst. Solids 353 (22-23), 2115-2124 (2007).

    Article  CAS  ADS  Google Scholar 

  82. X. H. Lin and W. L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallic glasses, J. Appl. Phys. 78(11), 6514-6519 (1995).

    Article  CAS  ADS  Google Scholar 

  83. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Mater. 49(14), 2645-2652 (2001).

    Article  CAS  Google Scholar 

  84. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, Thermal and mechanical properties of Cu-based Cu-Zr-Ti bulk glassy alloys, Mater. Trans. 42(6), 1149-1151 (2001).

    Article  CAS  Google Scholar 

  85. A. Inoue and W. Zhang, Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys, Mater. Trans. 43(11), 2921-2925 (2002).

    Article  CAS  Google Scholar 

  86. M. Naka, K. Hashimoto, and T. Masumoto, Corrosion resistivity of amorphous Fe alloys containing Cr, J. Jpn. Inst. Metals 38(9), 835-841 (1974).

    CAS  Google Scholar 

  87. M. Naka, K. Hashimoto, and T. Masumoto, High corrosion resistance of Cr-bearing amorphous Fe alloys in neutral and acidic solutions containing chloride, Corrosion 32(4), 146-152 (1976).

    CAS  Google Scholar 

  88. M. Naka, K. Hashimoto, and T. Masumoto, Effect of metalloidal elements on corrosion resistance of amorphous iron-chromium alloys, J. Non-Cryst. Solids 28(3), 403-413 (1978).

    Article  CAS  ADS  Google Scholar 

  89. M. Naka, K. Hashimoto, and T. Masumoto, Effect of addition of chromium and molybdenum on the corrosion behavior of amorphous Fe-20B, Co-20B and Ni-20B alloys, J. Non-Cryst. Solids 34(2), 257-266 (1979).

    Article  CAS  ADS  Google Scholar 

  90. M. Naka, K. Hashimoto, A. Inoue, and T. Masumoto, Corrosion-resistant amorphous FeC alloys containing chromium and/or molybdenum, J. Non-Cryst. Solids 31(3), 347-354 (1979).

    Article  CAS  ADS  Google Scholar 

  91. T. Masumoto and K. Hashimoto, Chemical properties of amorphous metals, Annu. Rev. Mater. Sci. 8, 215-233 (1978).

    Article  CAS  Google Scholar 

  92. A. Inoue, T. Zhang, and A. Takeuchi, Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM=IV-VIII group transition metal) system, Appl. Phys. Lett. 71(4), 464-466 (1997).

    Article  CAS  ADS  Google Scholar 

  93. T. D. Shen and R. B. Schwarz, Bulk ferromagnetic glasses prepared by flux melting and water quenching, Appl. Phys. Lett. 75(1), 49-51 (1999).

    Article  CAS  ADS  Google Scholar 

  94. A. Inoue, Y. Shinohara, and J. S. Gook, Thermal and magnetic properties of bulk Febased glassy alloys prepared by copper mold casting, Mater. Trans. 36(12), 1427-1433 (1995).

    CAS  Google Scholar 

  95. A. Inoue, B. L. Shen, A. R. Yavari, and A. L. Greer, Mechanical properties of Fe-based bulk glassy alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si systems, J. Mater. Res. 18(6), 1487-1492 (2003).

    Article  CAS  ADS  Google Scholar 

  96. . D. C. Qiao, P. K. Liaw, C. T. Liu, M. Morrison, R. A. Buchanan, and C. R. Brooks, Unpublished.

    Google Scholar 

  97. . D. C. Qiao, P. K. Liaw, S. J. Poon, and R. A. Buchanan, Unpublished.

    Google Scholar 

  98. B.-P. Zhang, A. Kawashima, H. Habazaki, K. Asami, and K. Hashimoto, The effect of structural heterogeneity on the pitting corrosion behavior of melt-spun amorphous Ni-Zr alloys, Corros. Sci. 39(10-11), 2005-2018 (1997).

    Article  CAS  Google Scholar 

  99. B.-P. Zhang, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The corrosion behavior of amorphous Ni-Cr-P alloys in concentrated hydrofluoric acid, Corros. Sci. 33 (10), 1519-1528 (1992).

    Article  CAS  Google Scholar 

  100. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy, Mater. Trans. 34(12), 1234-1237 (1993).

    CAS  Google Scholar 

  101. A. Peker and W. L. Johnson, A highly processable metallic-glass - Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett. 63(17), 2342-2344 (1993).

    Article  ADS  Google Scholar 

  102. X. H. Lin and W. L. Johnson, Formation of Ti-Zr-Cu-Ni bulk metallic glasses, J. Appl. Phys. 78(11), 6514-6519 (1995).

    Article  CAS  ADS  Google Scholar 

  103. H. A. Bruck, A. J. Rosakis, and W. L. Johnson, The dynamic compressive behavior of beryllium bearing bulk metallic glasses, J. Mater. Res. 11(2), 503-511 (1996).

    Article  CAS  ADS  Google Scholar 

  104. Z. Bian, G. He, and G. L. Chen, Microstructure and mechanical properties of as-cast Zr52.5Cu17.9Ni14.6Al10Ti5 bulky glass alloy, Scripta Mater. 43(11), 1003-1008 (2000).

    Article  CAS  Google Scholar 

  105. J. Basu and S. Ranganathan, Bulk metallic glasses: A new class of engineering materials, Sadhana-Acad. Proc. Eng. Sci. 28, 783-798 (2003).

    CAS  Google Scholar 

  106. A. Inoue, Bulk amorphous and nanocrystalline alloys with high functional properties, Mater. Sci. Eng. A 304-306, 1-10 (2001).

    Article  Google Scholar 

  107. . B. A. Green, R. A. Buchanan, Y. Yokoyama, and P. K. Liaw, Unpublished.

    Google Scholar 

  108. A. Inoue and T. Masumoto, Mg-based amorphous alloys, Mater. Sci. Eng. A 173(1-2), 1-8 (1993).

    Article  Google Scholar 

  109. M. Naka, K. Hashimoto, and T. Masumoto, Corrosion behavior of amorphous and crystalline Cu50Ti50 and Cu50Zr50 alloys, J. Non-Cryst. Solids 30(1), 29-36 (1978).

    Article  CAS  ADS  Google Scholar 

  110. J. E. Sweitzer, G. J. Shiflet, and J. R. Scully, Localized corrosion of Al90Fe5Gd5 and Al87Ni8.7Y4.3 alloys in the amorphous, nanocrystalline and crystalline states: Resistance to micrometer-scale pit formation, Electrochim. Acta 48(9), 1223-1234 (2003).

    CAS  Google Scholar 

  111. K. Buchholz, A. Gebert, K. Mummert, J. Eckert, and L. Schultz, Corrosion behaviour of bulk amorphous and crystalline Zr55Al10Cu30Ni5 alloys at ambient and elevated temperature, Mater. Sci. Forum 343-346, 213-218 (2000).

    Article  CAS  Google Scholar 

  112. H. J. Lee, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto, The corrosion behavior of amorphous and crystalline Ni-10Ta-20P alloys in 12 M HCl, Corros. Sci. 38(8), 1269-1279 (1996).

    Article  CAS  Google Scholar 

  113. H. Bala and S. Szymura, Acid corrosion of amorphous and crystalline Cu-Zr alloys, Appl. Surf. Sci. 35(1), 41-51 (1988).

    Article  CAS  ADS  Google Scholar 

  114. H. Bala and S. Szymura, Acid corrosion behavior of amorphous and crystalline Ti75Ni20Si5 alloys, Thin Solid Films 149(2), 171-176 (1987).

    Article  CAS  ADS  Google Scholar 

  115. U. Köster, D. Zander, Triwikantoro, A. Rüdiger, and L. Jastrow, Environmental properties of Zr-based metallic glasses and nanocrystalline alloys, Scripta Mater. 44(8-9), 1649-1654 (2001).

    Article  Google Scholar 

  116. M. D. Archer, C. C. Corke, and B. H. Harji, The electrochemical properties of metallic glasses, Electrochim. Acta 32(1), 13-26 (1987).

    Article  CAS  Google Scholar 

  117. B. Elsener and A. Rossi, XPS investigation of passive films on amorphous Fe-Cr alloys, Electrochim. Acta 37(12), 2269-2276 (1992).

    Article  CAS  Google Scholar 

  118. U. K. Mudali, U. Kuhn, J. Eckert, I. Schultz, and A. Gebert, Corrosion behaviour of zirconium based bulk metallic glasses, Trans. Indian Inst. Metals 59(1), 123-138 (2006).

    CAS  Google Scholar 

  119. S. Baunack, U. K. Mudali, A. Gebert, and J. Eckert, Characterization of oxide layers on amorphous Zr-based alloys by Auger electron spectroscopy with sputter depth profiling, Appl. Surf. Sci. 252(1), 162-166 (2005).

    Article  CAS  ADS  Google Scholar 

  120. Z. Szklarska-Smialowska, Pitting Corrosion of Metals (NACE, Houston, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Green, B.A., Liaw, P., Buchanan, R.A. (2008). Corrosion Behavior. In: Miller, M., Liaw, P. (eds) Bulk Metallic Glasses. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48921-6_8

Download citation

Publish with us

Policies and ethics