Skip to main content

Brain Tumors

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

CNS tumors occurred in approximately 22,000 patients in the USA in 2010 (about 1.5% of all tumors). Gliomas are the most common form of brain tumor. Five-year survival rates are less than 5% for glioblastoma, 30% for astrocytomas, but up to 100% for benign neoplasms as meningiomas. Symptoms depend on location, size, and rate of growth and can be either focal or generalized. Gliomas are divided into low-grade (grade I and II) and high-grade (grade III and IV) tumors. The SUV of [18F]FDG PET has been correlated to tumor malignancy. The mean survival time of patients with gliomas exhibiting high glucose utilization was shorter than in patients with low glucose utilization. Moreover, PET can increase the diagnostic yield of brain biopsy by selecting the areas that display highest tracer uptake. Differentiation of tumor recurrence from radiation injury is currently the most common indication for a PET study in glioma patients. To minimize the chance for a false-positive scan due to residual inflammation from radiotherapy, the scan should be performed >12 weeks after therapy. Meningiomas are the most common benign intracranial tumors. Their prognosis is excellent, except when they are located in surgically inaccessible anatomical sites. The diagnosis of meningiomas is easily performed with CT. The distinction between typical (grade I) and atypical (grade II) meningiomas is not reliable on either CT or MR. [18F]FDG PET can predict grading and likelihood of recurrence. Brain metastases occur in 10–40% of cancer patients, affecting about 100,000 new patients each year. The most common neurological symptoms are headache, focal deficit, epileptic seizures, and nausea or vomiting. Conscience or awareness disorders can be observed in case of multiple metastases and/or intracranial hypertension, although this scenario occurs only in end-stage disease. Although CT with contrast is often used for screening for brain metastases, MR is the gold standard for detecting these lesions. Histological confirmation is necessary when the primary tumor is unknown or when MR is not conclusive. The role of [18F]FDG PET in identifying brain metastases is limited. However, in selected patients, undergoing [18F]FDG PET/CT for staging or restaging advanced lung cancer, melanoma, lymphoma, or breast cancer, dedicated views of the head can aid in diagnosing CNS involvement. The primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that involves the brain, the meninges, the vitreous body and nerves of the eye, and the nerve roots of the brain and spine. Early diagnosis and treatment monitoring are the keys to ­successful outcomes. PCNSL typically shows hyper- or isoattenuated lesions at unenhanced CT and CT-contrast enhancement. Unfortunately, brain biopsy sampling is often necessary, because these imaging features are nonspecific. [18F]FDG PET is helpful for the diagnosis of PCNSL and cerebral toxoplasmosis, especially in patients with AIDS and cerebral symptoms, and for monitoring the response to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin. 2008;58:71–96.

    PubMed  Google Scholar 

  2. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344:114–23.

    PubMed  CAS  Google Scholar 

  3. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.

    PubMed  CAS  Google Scholar 

  4. AJCC Cancer Staging Manual, 7th ed. Part XI: central nervous system. New York: Springer; 2010. p. 591–597

    Google Scholar 

  5. McLendon RE, Halperin EC. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer. 2003;98:1745–8.

    PubMed  Google Scholar 

  6. Kraus JA, Lamszus K, Glesmann N, et al. Molecular genetic alterations in glioblastomas with oligodendroglial component. Acta Neuropathol. 2001;101:311–20.

    PubMed  CAS  Google Scholar 

  7. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO Classification of tumours of the central nervous system. Lyon: IARC Press; 2007.

    Google Scholar 

  8. Barker 2nd FG, Davis RL, Chang SM, Prados MD. Necrosis as a prognostic factor in glioblastoma multiforme. Cancer. 1996;77:1161–6.

    PubMed  Google Scholar 

  9. Sneed PK, Prados MD, McDermott MW, et al. Large effect of age on the survival of patients with glioblastoma treated with radiotherapy and brachytherapy boost. Neurosurgery. 1995;36:898–903. discussion 903-894.

    PubMed  CAS  Google Scholar 

  10. Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol. 2005;109:93–108.

    PubMed  Google Scholar 

  11. Tanaka M, Ino Y, Nakagawa K, Tago M, Todo T. High-dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison. Lancet Oncol. 2005;6:953–60.

    PubMed  Google Scholar 

  12. Kortmann RD. Radiotherapy in low-grade gliomas: pros. Semin Oncol. 2003;30:29–33.

    PubMed  Google Scholar 

  13. Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem. 2008;312:71–80.

    PubMed  CAS  Google Scholar 

  14. van den Bent MJ, Taphoorn MJ, Brandes AA, et al. Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: the European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971. J Clin Oncol. 2003;21:2525–8.

    PubMed  Google Scholar 

  15. Glas M, Happold C, Rieger J, et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J Clin Oncol. 2009;27:1257–61.

    PubMed  CAS  Google Scholar 

  16. Chamberlain MC, Raizer J. Antiangiogenic therapy for high-grade gliomas. CNS Neurol Disord Drug Targets. 2009;8:184–94.

    PubMed  CAS  Google Scholar 

  17. Mariani G, Kassis AI, Adelstein SJ. Antibody internalization by tumor cells: implications for tumor diagnosis and therapy. J Nucl Med Allied Sci. 1990;34:51–4.

    PubMed  CAS  Google Scholar 

  18. Paganelli G, Magnani P, Zito F, et al. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 1991;51:5960–6.

    PubMed  CAS  Google Scholar 

  19. Grana C, Chinol M, Robertson C, et al. Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br J Cancer. 2002;86:207–12.

    PubMed  CAS  Google Scholar 

  20. Bartolomei M, Mazzetta C, Handkiewicz-Junak D, et al. Combined treatment of glioblastoma patients with locoregional pre-targeted 90Y-biotin radioimmunotherapy and temozolomide. Q J Nucl Med Mol Imaging. 2004;48:220–8.

    PubMed  CAS  Google Scholar 

  21. Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.

    PubMed  CAS  Google Scholar 

  22. Huang SC, Phelps ME, Hoffman EJ, Kuhl DE. Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose. J Cereb Blood Flow Metab. 1981;1:391–401.

    PubMed  CAS  Google Scholar 

  23. Wong TZ, Turkington TG, Hawk TC, Coleman RE. PET and brain tumor image fusion. Cancer J. 2004;10:234–42.

    PubMed  Google Scholar 

  24. Anger HO. Medical radioisotope scanning. IAEA. 1959:59–73

    Google Scholar 

  25. Strauss HW, James AE, Hurley PJ, DeLand FH, Moses DC, Wagner Jr HN. Nuclear cerebral angiography. Usefulness in the differential diagnosis of cerebrovascular disease and tumor. Arch Intern Med. 1973;131:211–6.

    PubMed  CAS  Google Scholar 

  26. Ancri D, Basset JY, Lonchampt MF, Etavard C. Diagnosis of cerebral lesions by Thallium 201. Radiology. 1978;128:417–22.

    PubMed  CAS  Google Scholar 

  27. Kaplan WD, Takvorian T, Morris JH, Rumbaugh CL, Connolly BT, Atkins HL. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med. 1987;28:47–52.

    PubMed  CAS  Google Scholar 

  28. Biersack HJ, Grunwald F, Kropp J. Single photon emission computed tomography imaging of brain tumors. Semin Nucl Med. 1991;21:2–10.

    PubMed  CAS  Google Scholar 

  29. Jinnouchi S, Hoshi H, Ohnishi T, et al. Thallium-201 SPECT for predicting histological types of meningiomas. J Nucl Med. 1993;34:2091–4.

    PubMed  CAS  Google Scholar 

  30. Ishibashi M, Taguchi A, Sugita Y, et al. Thallium-201 in brain tumors: relationship between tumor cell activity in astrocytic tumor and proliferating cell nuclear antigen. J Nucl Med. 1995;36:2201–6.

    PubMed  CAS  Google Scholar 

  31. Tie J, Gunawardana DH, Rosenthal MA. Differentiation of tumor recurrence from radiation necrosis in high-grade gliomas using 201Tl-SPECT. J Clin Neurosci. 2008;15:1327–34.

    PubMed  Google Scholar 

  32. Serrano J, Rayo JI, Infante JR, et al. Radioguided surgery in brain tumors with thallium-201. Clin Nucl Med. 2008;33:838–40.

    PubMed  Google Scholar 

  33. Ciarmiello A, Del Vecchio S, Silvestro P, et al. Tumor clearance of technetium 99m-sestamibi as a predictor of response to neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol. 1998;16:1677–83.

    PubMed  CAS  Google Scholar 

  34. Benard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med. 2003;33:148–62.

    PubMed  Google Scholar 

  35. O’Tuama LA, Treves ST, Larar JN, et al. Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of childhood brain tumors: a within-subject comparison. J Nucl Med. 1993;34:1045–51.

    PubMed  Google Scholar 

  36. Nishiyama Y, Yamamoto Y, Monden T, et al. Diagnostic value of kinetic analysis using dynamic FDG PET in immunocompetent patients with primary CNS lymphoma. Eur J Nucl Med Mol Imaging. 2007;34:78–86.

    PubMed  Google Scholar 

  37. Yokogami K, Kawano H, Moriyama T, et al. Application of SPET using technetium-99m sestamibi in brain tumours and comparison with expression of the MDR-1 gene: is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-sestamibi SPET? Eur J Nucl Med. 1998;25:401–9.

    PubMed  CAS  Google Scholar 

  38. Nishiyama Y, Yamamoto Y, Fukunaga K, Satoh K, Kunishio K, Ohkawa M. Comparison of 99mTc-MIBI with 201Tl chloride SPET in patients with malignant brain tumours. Nucl Med Commun. 2001;22:631–9.

    PubMed  CAS  Google Scholar 

  39. Le Jeune FP, Dubois F, Blond S, Steinling M. Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J Neurooncol. 2006;77:177–83.

    PubMed  Google Scholar 

  40. LaFrance ND, Wagner Jr HN, Whitehouse P, Corley E, Duelfer T. Decreased accumulation of isopropyl-lodoamphetamine (I-123) in brain tumors. J Nucl Med. 1981;22:1081–3.

    PubMed  CAS  Google Scholar 

  41. Jacquier-Sarlin MR, Polla BS, Slosman DO. Oxido-reductive state: the major determinant for cellular retention of technetium-99m-HMPAO. J Nucl Med. 1996;37:1413–6.

    PubMed  CAS  Google Scholar 

  42. Jacquier-Sarlin MR, Polla BS, Slosman DO. Cellular basis of ECD brain retention. J Nucl Med. 1996;37:1694–7.

    PubMed  CAS  Google Scholar 

  43. Langen KJ, Herzog H, Kuwert T, et al. Tomographic studies of rCBF with [99mTc]-HM-PAO SPECT in patients with brain tumors: comparison with C15O2 continuous inhalation technique and PET. J Cereb Blood Flow Metab. 1988;8:S90–4.

    PubMed  CAS  Google Scholar 

  44. Suess E, Malessa S, Ungersbock K, et al. Technetium-99m-d,1-hexamethylpropyleneamine oxime (HMPAO) uptake and glutathione content in brain tumors. J Nucl Med. 1991;32:1675–81.

    PubMed  CAS  Google Scholar 

  45. Papazyan JP, Delavelle J, Burkhard P, et al. Discrepancies between HMPAO and ECD SPECT imaging in brain tumors. J Nucl Med. 1997;38:592–6.

    PubMed  CAS  Google Scholar 

  46. Creutzig H, Schober O, Gielow P, et al. Cerebral dynamics of N-isopropyl-(123I)p-iodoamphetamine. J Nucl Med. 1986;27:178–83.

    PubMed  CAS  Google Scholar 

  47. Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32:1323–9.

    PubMed  Google Scholar 

  48. Di Chiro G. Brain imaging of glucose utilization in cerebral tumors. Res Publ Assoc Res Nerv Ment Dis. 1985;63:185–97.

    PubMed  Google Scholar 

  49. Patronas NJ, Brooks RA, DeLaPaz RL, Smith BH, Kornblith PL, Di Chiro G. Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR Am J Neuroradiol. 1983;4:533–5.

    PubMed  CAS  Google Scholar 

  50. DeLaPaz RL, Patronas NJ, Brooks RA, et al. Positron emission tomographic study of suppression of gray-matter glucose utilization by brain tumors. AJNR Am J Neuroradiol. 1983;4:826–9.

    PubMed  CAS  Google Scholar 

  51. Patronas NJ, Di Chiro G, Smith BH, et al. Depressed cerebellar glucose metabolism in supratentorial tumors. Brain Res. 1984;291:93–101.

    PubMed  CAS  Google Scholar 

  52. Di Chiro G, Brooks RA. PET quantitation: blessing and curse. J Nucl Med. 1988;29:1603–4.

    PubMed  Google Scholar 

  53. Tyler JL, Diksic M, Villemure JG, et al. Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med. 1987;28:1123–33.

    PubMed  CAS  Google Scholar 

  54. Piert M, Koeppe RA, Giordani B, Berent S, Kuhl DE. Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET. J Nucl Med. 1996;37:201–8.

    PubMed  CAS  Google Scholar 

  55. Schmidt K, Lucignani G, Moresco RM, et al. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1992;12:823–34.

    PubMed  CAS  Google Scholar 

  56. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE. Quantitation in positron emission computed tomography: 5. Physical–anatomical effects. J Comput Assist Tomogr. 1981;5:734–43.

    PubMed  CAS  Google Scholar 

  57. Ishizu K, Nishizawa S, Yonekura Y, et al. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med. 1994;35:1104–9.

    PubMed  CAS  Google Scholar 

  58. Spence AM, Muzi M, Mankoff DA, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45:1653–9.

    PubMed  Google Scholar 

  59. Henze M, Mohammed A, Schlemmer H, et al. Detection of tumour progression in the follow-up of irradiated low-grade astrocytomas: comparison of 3-[123I]iodo-alpha-methyl-l-tyrosine and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging. 2002;29:1455–61.

    PubMed  Google Scholar 

  60. Patronas NJ, Di Chiro G, Brooks RA, et al. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology. 1982;144:885–9.

    PubMed  CAS  Google Scholar 

  61. Rozental JM, Levine RL, Mehta MP, et al. Early changes in tumor metabolism after treatment: the effects of stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1991;20:1053–60.

    PubMed  CAS  Google Scholar 

  62. Pirotte B, Goldman S, Brucher JM, et al. PET in stereotactic conditions increases the diagnostic yield of brain biopsy. Stereotact Funct Neurosurg. 1994;63:144–9.

    PubMed  CAS  Google Scholar 

  63. Tralins KS, Douglas JG, Stelzer KJ, et al. Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J Nucl Med. 2002;43:1667–73.

    PubMed  Google Scholar 

  64. Patronas NJ, Di Chiro G, Kufta C, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg. 1985;62:816–22.

    PubMed  CAS  Google Scholar 

  65. Alavi JB, Alavi A, Chawluk J, et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer. 1988;62:1074–8.

    PubMed  CAS  Google Scholar 

  66. Fulham MJ, Brunetti A, Aloj L, Raman R, Dwyer AJ, Di Chiro G. Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids. J Neurosurg. 1995;83:657–64.

    PubMed  CAS  Google Scholar 

  67. Leenders KL, Gibbs JM, Frackowiak RS, Lammertsma AA, Jones T. Positron emission tomography of the brain: new possibilities for the investigation of human cerebral pathophysiology. Prog Neurobiol. 1984;23:1–38.

    PubMed  CAS  Google Scholar 

  68. Brock CS, Young H, O’Reilly SM, et al. Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer. 2000;82:608–15.

    PubMed  CAS  Google Scholar 

  69. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-Methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol. 2008;10:1–18.

    PubMed  Google Scholar 

  70. van Waarde A, Jager PL, Ishiwata K, Dierckx RA, Elsinga PH. Comparison of sigma-ligands and metabolic PET tracers for ­differentiating tumor from inflammation. J Nucl Med. 2006;47:150–4.

    PubMed  Google Scholar 

  71. Kubota R, Kubota K, Yamada S, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med. 1995;36:484–92.

    PubMed  CAS  Google Scholar 

  72. Utriainen M, Komu M, Vuorinen V, et al. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol. 2003;62:329–38.

    PubMed  CAS  Google Scholar 

  73. De Witte O, Goldberg I, Wikler D, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95:746–50.

    PubMed  Google Scholar 

  74. Kim S, Chung JK, Im SH, et al. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2005;32:52–9.

    PubMed  CAS  Google Scholar 

  75. Pirotte B, Goldman S, Van Bogaert P, et al. Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery. 2005;57:128–39.

    PubMed  Google Scholar 

  76. Pirotte BJ, Levivier M, Goldman S, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery. 2009;64:471–81.

    PubMed  Google Scholar 

  77. Grosu AL, Lachner R, Wiedenmann N, et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys. 2003;56:1450–63.

    PubMed  Google Scholar 

  78. Nariai T, Tanaka Y, Wakimoto H, et al. Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg. 2005;103:498–507.

    PubMed  Google Scholar 

  79. Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49:694–9.

    PubMed  Google Scholar 

  80. Biersack HJ, Coenen HH, Stocklin G, et al. Imaging of brain tumors with L-3-[123I]iodo-alpha-methyl tyrosine and SPECT. J Nucl Med. 1989;30:110–2.

    PubMed  CAS  Google Scholar 

  81. Langen KJ, Coenen HH, Roosen N, et al. SPECT studies of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med. 1990;31:281–6.

    PubMed  CAS  Google Scholar 

  82. Kuwert T, Morgenroth C, Woesler B, et al. Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med. 1996;23:1345–53.

    PubMed  CAS  Google Scholar 

  83. Weber W, Bartenstein P, Gross MW, et al. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med. 1997;38:802–8.

    PubMed  CAS  Google Scholar 

  84. Schmidt D, Gottwald U, Langen KJ, et al. 3-[123I]Iodo-alpha-methyl-l-tyrosine uptake in cerebral gliomas: relationship to histological grading and prognosis. Eur J Nucl Med. 2001;28:855–61.

    PubMed  CAS  Google Scholar 

  85. Weber WA, Dick S, Reidl G, et al. Correlation between postoperative 3-[123I]iodo-l-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med. 2001;42:1144–50.

    PubMed  CAS  Google Scholar 

  86. Pauleit D, Floeth F, Tellmann L, et al. Comparison of O-(2-18F-fluoroethyl)-l-tyrosine PET and 3-123I-iodo-alpha-methyl-l-tyrosine SPECT in brain tumors. J Nucl Med. 2004;45:374–81.

    PubMed  CAS  Google Scholar 

  87. Grosu AL, Feldmann H, Dick S, et al. Implications of IMT-SPECT for postoperative radiotherapy planning in patients with gliomas. Int J Radiat Oncol Biol Phys. 2002;54:842–54.

    PubMed  Google Scholar 

  88. Shields AF, Coonrod DV, Quackenbush RC, Crowley JJ. Cellular sources of thymidine nucleotides: studies for PET. J Nucl Med. 1987;28:1435–40.

    PubMed  CAS  Google Scholar 

  89. Mankoff DA, Shields AF, Graham MM, Link JM, Eary JF, Krohn KA. Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med. 1998;39:1043–55.

    PubMed  CAS  Google Scholar 

  90. Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol. 2004;31:829–37.

    PubMed  CAS  Google Scholar 

  91. Muzi M, Spence AM, O’Sullivan F, et al. Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med. 2006;47:1612–21.

    PubMed  CAS  Google Scholar 

  92. Ullrich R, Backes H, Li H, et al. Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-l-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res. 2008;14:2049–55.

    PubMed  CAS  Google Scholar 

  93. Chen W, Delaloye S, Silverman DH, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol. 2007;25:4714–21.

    PubMed  CAS  Google Scholar 

  94. Hatakeyama T, Kawai N, Nishiyama Y, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008;35:2009–17.

    PubMed  CAS  Google Scholar 

  95. Hara T, Kondo T, Hara T, Kosaka N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg. 2003;99:474–9.

    PubMed  Google Scholar 

  96. Giovacchini G, Fallanca F, Landoni C, et al. C-11 choline versus F-18 fluorodeoxyglucose for imaging meningiomas: an initial experience. Clin Nucl Med. 2009;34:7–10.

    PubMed  Google Scholar 

  97. Grosu AL, Piert M, Weber WA, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol. 2005;181:483–99.

    PubMed  Google Scholar 

  98. Huang Z, Zuo C, Guan Y, et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun. 2008;29:354–8.

    PubMed  CAS  Google Scholar 

  99. Markus R, Donnan GA, Kazui S, et al. Statistical parametric mapping of hypoxic tissue identified by [18F]fluoromisonidazole and positron emission tomography following acute ischemic stroke. Neuroimage. 2002;16:425–33.

    PubMed  CAS  Google Scholar 

  100. Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med. 1992;33:2133–7.

    PubMed  CAS  Google Scholar 

  101. Bruehlmeier M, Roelcke U, Schubiger PA, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med. 2004;45:1851–9.

    PubMed  Google Scholar 

  102. Swanson KR, Chakraborty G, Wang CH, et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med. 2009;50:36–44.

    PubMed  Google Scholar 

  103. Sekhar LN, Levine ZT, Sarma S. Grading of meningiomas. J Clin Neurosci. 2001;8 Suppl 1:1–7.

    PubMed  Google Scholar 

  104. Johnson MD, Sade B, Milano MT, Lee JH, Toms SA. New prospects for management and treatment of inoperable and recurrent skull base meningiomas. J Neurooncol. 2008;86:109–22.

    PubMed  CAS  Google Scholar 

  105. Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology. 1987;164:521–6.

    PubMed  Google Scholar 

  106. Lippitz B, Cremerius U, Mayfrank L, et al. PET-study of ­intracranial meningiomas: correlation with histopathology, ­cellularity and proliferation rate. Acta Neurochir Suppl. 1996;65:108–11.

    PubMed  CAS  Google Scholar 

  107. Iuchi T, Iwadate Y, Namba H, et al. Glucose and methionine uptake and proliferative activity in meningiomas. Neurol Res. 1999;21:640–4.

    PubMed  CAS  Google Scholar 

  108. Muhr C, Gudjonsson O, Lilja A, Hartman M, Zhang ZJ, Langstrom B. Meningioma treated with interferon-alpha, evaluated with [11C]-l-methionine positron emission tomography. Clin Cancer Res. 2001;7:2269–76.

    PubMed  CAS  Google Scholar 

  109. Grosu AL, Weber WA, Astner ST, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66:339–44.

    PubMed  CAS  Google Scholar 

  110. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, et al. Characterization of 68G-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med. 2005;46:763–9.

    PubMed  CAS  Google Scholar 

  111. Moresco RM, Scheithauer BW, Lucignani G, et al. Oestrogen receptors in meningiomas: a correlative PET and immunohistochemical study. Nucl Med Commun. 1997;18:606–15.

    PubMed  CAS  Google Scholar 

  112. Rohren EM, Provenzale JM, Barboriak DP, Coleman RE. Screening for cerebral metastases with FDG PET in patients undergoing whole-body staging of non-central nervous system malignancy. Radiology. 2003;226:181–7.

    PubMed  Google Scholar 

  113. Patchell RA, Tibbs PA, Regine WF, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280:1485–9.

    PubMed  CAS  Google Scholar 

  114. Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007;48:1468–81.

    PubMed  Google Scholar 

  115. Soffietti R, Ruda R, Trevisan E. Brain metastases: current ­management and new developments. Curr Opin Oncol. 2008;20:676–84.

    PubMed  Google Scholar 

  116. Melisko ME, Moore DH, Sneed PK, De Franco J, Rugo HS. Brain metastases in breast cancer: clinical and pathologic characteristics associated with improvements in survival. J Neurooncol. 2008;88:359–65.

    PubMed  Google Scholar 

  117. Larcos G, Maisey MN. FDG-PET screening for cerebral metastases in patients with suspected malignancy. Nucl Med Commun. 1996;17:197–8.

    PubMed  CAS  Google Scholar 

  118. Stubbs E, Kraas J, Morton KA, Clark PB. Brain abnormalities detected on whole-body 18F-FDG PET in cancer patients: spectrum of findings. AJR Am J Roentgenol. 2007;188:866–73.

    PubMed  Google Scholar 

  119. Ludwig V, Komori T, Kolb D, Martin WH, Sandler MP, Delbeke D. Cerebral lesions incidentally detected on 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography images of patients evaluated for body malignancies. Mol Imaging Biol. 2002;4:359–62.

    PubMed  Google Scholar 

  120. Lee HY, Chung JK, Jeong JM, et al. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer. Ann Nucl Med. 2008;22:281–6.

    PubMed  Google Scholar 

  121. Belohlavek O, Simonova G, Kantorova I, Novotny Jr J, Liscak R. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging. 2003;30:96–100.

    PubMed  CAS  Google Scholar 

  122. Hochberg FH, Baehring JM, Hochberg EP. Primary CNS lymphoma. Nat Clin Pract Neurol. 2007;3:24–35.

    PubMed  CAS  Google Scholar 

  123. Palmedo H, Urbach H, Bender H, et al. FDG-PET in immunocompetent patients with primary central nervous system lymphoma: correlation with MRI and clinical follow-up. Eur J Nucl Med Mol Imaging. 2006;33:164–8.

    PubMed  CAS  Google Scholar 

  124. Mohile NA, Deangelis LM, Abrey LE. Utility of brain FDG-PET in primary CNS lymphoma. Clin Adv Hematol Oncol. 2008;6:818–20. 840.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Giovacchini MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giovacchini, G., Bruselli, L., Ciarmiello, A. (2013). Brain Tumors. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics