Skip to main content

Lung and Mediastinal Tumors

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

Lung cancer accounts for 15% of all cancers in the USA and is the leading cause of cancer death. Non-small cell cancers (NSCLC), including squamous cell, adenocarcinoma, and large cell carcinomas account for 85% of lung cancers. Cigarette smoking is linked to the majority of lung cancers. Staging of lung cancer uses the American joint cancer committee (AJCC) TNM classification. CT is the modality of choice for lung cancer detection, and identifying adrenal involvement. Because of the low specificity of CT for characterizing lung nodules (lesions <3 cm diameter, surrounded by normal lung parenchyma) these lesions are often classified as indeterminate, and patients are enrolled in a follow-up program (measurement of doubling time) or undergo fine needle aspiration (FNA). [18F]FDG PET/CT has been used in the differential diagnosis and characterization of single pulmonary nodules. Most lung cancers >1 cm concentrate [18F]FDG. However false-positive scans can occur because inflammatory lesions such as sarcoid or tuberculosis also concentrate [18F]FDG. False-negative scans can occur due to small lesion size or malignancies such as bronchiolo-alveolar carcinoma (BAC) or carcinoid. Pretreatment [18F]FDG PET/CT provides prognostic information since there is a relationship between SUV of the tumor and outcome. CT allows accurate differentiation of potentially resectable T1–T3 lesions from unresectable T4 tumors. Contrast CT is used for N staging and the most widely used diagnostic criterion of nodal metastases is a measurement of lymph node size. [18F]FDG imaging has better sensitivity and specificity than CT, with an NPV above 90% for the detection of metastatic mediastinal nodes. In patients treated with radiation, post-radiation pneumonitis and fibrosis may be difficult to distinguish from tumor recurrence on CT. Magnetic resonance imaging (MRI) and [18F]FDG-PET/CT can be helpful to make this distinction. In small cell lung cancer (SCLC), [18F]FDG imaging is useful for detection and staging. Moreover, [18F]FDG can also assess response to chemotherapy as early as the end of the first cycle. SUV of the primary lesion is a significant prognostic factor.

Neuroendocrine tumors vary in differentiation and glucose metabolism and therefore [18F]FDG imaging alone is unable to complete the phenotyping of this disease. Ligands labeled with 68Ga such as 68Ga-DOTATATE and 68Ga-DOTATOC, which target the SSTr2, SSTr4, and SSTr5 receptor subtypes provide better and more consistent lesion visualization than [18F]FDG.

Malignant pleural mesothelioma (MPM) is an aggressive tumor of mesothelial cell origin. CT is the primary imaging modality. [18F]FDG PET can provide additional diagnostic and prognostic information since all areas of pleural thickening detected on CT do not correspond to areas of high metabolic activity, which are the most appropriate sites for biopsy.

Thymoma: Thymoma is the most common primary neoplasm located in the anterior mediastinum. Thymoma can manifest heterogeneity on CT due to cystic degeneration, hemorrhage or necrosis but has no distinctive features on MRI. [18F]FDG-PET/CT is useful in the preoperative assessment of isolated anterior mediastinal lesions, especially for planning the operative strategy (biopsy or resection). Moreover, low SUV is associated with low-grade thymoma and minimal invasive thymoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ries LAG, Melbert D, Krapcho M, Stinchcomb DG, Howlader N, Horner MJ, Mariotto A, Miller BA, Feuer EJ, Altekruse SF, Lewis DR, Clegg L, Eisner MP, Reichman M, Edwards BK, ­editors. SEER Cancer Statistics Review, 1975–2005, Bethesda, MD: National Cancer Institute; 2008. http://seer.cancer.gov/csr/1975_2005/, based on November 2007 SEER data submission, posted to the SEER web site.

  2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  3. Naidich DP, Webb RW, Muller NL, Krinsky GA, Zerhoun EA, Siegllman SS. Computed tomography and magnetic resonance of the thorax. 3rd ed. Philadelphia, PA: Lippincott-Raven Publishers; 1999. p. 343–81.

    Google Scholar 

  4. Laurent F, Montaudon M, Corneloup O. CT and MRI of lung cancer. Respiration. 2006;73:133–42.

    PubMed  Google Scholar 

  5. Henschke CI, McCauley DI, Yankelevich DF, et al. Early lung cancer action project: overall design and findings from baseline screening. Lancet. 1999;354:99–105.

    Article  PubMed  CAS  Google Scholar 

  6. Swensen SJ, Jett JR, Sloan JA, et al. Screening for lung cancer with low dose spiral computed tomography. Am J Respire Crit Care Med. 2002;165:508–13.

    Google Scholar 

  7. Pfiser DG, Jonson DM, Azzoli CG, et al. American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: update 2003. J Clin Oncol. 2004;22:330–53.

    Article  Google Scholar 

  8. Naidich DP, Rusinek H, McGuinness G, et al. Variables affecting pulmonary nodule detection with computed tomography: evaluation with three-dimensional computed simulation. J Thorac Imaging. 1993;8:291–9.

    Article  PubMed  CAS  Google Scholar 

  9. Caskey CI, Templeton PH, Zerhouni EA. Current evaluation of the solitary pulmonary nodule. Radiol Clin North Am. 1990;28:511–20.

    PubMed  CAS  Google Scholar 

  10. Shaham D, Guralnik L. The solitary pulmonary nodule: radiologic considerations. Semin Ultrasound CT MRI. 2000;21:97–115.

    Article  CAS  Google Scholar 

  11. Wormanns D, Diederich S. Characterization of small pulmonary nodules by CT. Eur Radiol. 2004;14:1380–91.

    PubMed  Google Scholar 

  12. Revel MP, Bissery A, Bienvenu M, et al. Are two dimensional CT measurement of small non-calcified pulmonary nodules reliable ? Radiology. 2004;231:453–8.

    Article  PubMed  Google Scholar 

  13. Revel MP, Letort C, Bissery A, et al. Pulmonary nodules: preliminary experience with the dimensional evaluation. Radiology. 2004;231:459–66.

    Article  PubMed  Google Scholar 

  14. Wormanns D, Kohl G, Klotz E, et al. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Radiology. 2004;14:86–92.

    Google Scholar 

  15. Antoch G, Stattaus J, Nemat AT, et al. Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology. 2003;229:526–33.

    Article  PubMed  Google Scholar 

  16. Halpern BS, Schiepers C, Weber WA, et al. Presurgical staging of non-small cell lung cancer: positron emission tomography, integrated positron emission tomography/CT, and software image fusion. Chest. 2005;128:2289–97.

    Article  PubMed  Google Scholar 

  17. De Wever W, Ceyssens S, Mortelmans L, et al. Additional value pf PET-CT in the staging of lung cancer: comparison with CT alone, PET alone, and visual correlation of PET and CT. Eur Radiol. 2007;17:23–32.

    Article  PubMed  Google Scholar 

  18. Pfannenberg AC, Aschoff P, Brechtel K, et al. Low-dose non-enhanced CT versus standard dose contrast-enhanced CT in combined PET/CT protocols for staging and therapy planning in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34:36–44.

    Article  PubMed  Google Scholar 

  19. Light RW, Erozan YS, Ball WC. Cells in pleural fluid. Their value in differential diagnosis. Arch Intern Med. 1973;132:854–60.

    Article  PubMed  CAS  Google Scholar 

  20. Gupta NC, Rogers JS, Graeber GM, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography imaging in patients with lung cancer and suspected malignant pleural effusion. Chest. 2002;122:1918–24.

    Article  PubMed  CAS  Google Scholar 

  21. Eramus JJ, Mcadams HP, Rossi SE, et al. FDG PET of pleural effusions in patients with non small cell lung cancer. AJR Am J Roentgenol. 2000;175:245–9.

    Google Scholar 

  22. http://guidance.nice.org.uk/CG24.

  23. Rami-Porta R, Crowley J, Goldstraw P. The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg. 2009;15:4–9.

    PubMed  Google Scholar 

  24. Goldstraw P, Crowley J, Chansky K, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the fourth coming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2:706–14.

    Article  PubMed  Google Scholar 

  25. Shephard FA, Crowley J, van Houtte P, et al. The international association for the study of lung cancer staging project: proposals regarding the clinical staging of small cell lung cancer in the fourth coming (seventh) edition of the tumour, node, metastasis classification for lung cancer. J Thorac Oncol. 2007;2:1067–77.

    Article  Google Scholar 

  26. Storto ML, Ciccotosto C, Guidotti A, et al. Neoplastic extension across pulmonary fissures: value of spiral computed tomography and multi-planar reformations. J Thorac Imaging. 1998;13:204–10.

    Article  PubMed  CAS  Google Scholar 

  27. Pearlberg JL, Sandler MA, Beute GH, et al. Limitations of CT in evaluation of neoplasms involving the chest wall. J Comput Assist Tomogr. 1987;11:290–3.

    Article  PubMed  CAS  Google Scholar 

  28. Lifshitz MI. Computed tomography in bronchogenic carcinoma. Semin Roentgenol. 1990;25:64–72.

    Article  Google Scholar 

  29. Ratto GB, Piacenza G, Frola C, et al. Chest wall involvement by lung cancer: computed tomographic detection and results of operation. Ann Thorac Surg. 1991;51:182–8.

    Article  PubMed  CAS  Google Scholar 

  30. Glazer MS, Duncan-Meyer J, Aronberg DJ, et al. Pleural and chest wall invasion in bronchogenic carcinoma: CT evaluation. Radiology. 1985;157:191–4.

    PubMed  CAS  Google Scholar 

  31. Padovani B, Mouroux J, Seksik L, et al. Chest wall invasion by bronchogenic carcinoma; evaluation with MRI imaging. Radiology. 1993;187:33–8.

    PubMed  CAS  Google Scholar 

  32. Webb WR, Gatsonis C, Zerhouni ET, et al. CT and MR imaging in staging non-small bronchogenic carcinoma: report of the Radio­logic Diagnostic Oncology Group. Radiology. 1991;178:705–13.

    PubMed  CAS  Google Scholar 

  33. Akata S, Kaiiwara N, Park J, et al. Evaluation of chest wall invasion by lung cancer using respiratory dynamic MRI. J Med Imaging Radiat Oncol. 2008;52:36–9.

    Article  PubMed  CAS  Google Scholar 

  34. McLoud TC, Swenson SJ. Lung carcinoma. Clin Chest Med. 1999;20:697–713.

    Article  PubMed  CAS  Google Scholar 

  35. Dartevelle P, Macchiarini P. Surgical management of superior sulcus tumors. Oncologist. 1999;4:398–407.

    PubMed  CAS  Google Scholar 

  36. Mori K, Hirose T, Machida S, et al. Helical computed tomography diagnosis of pleural dissemination of lung cancer: comparison of thick-section and thin section helical computed tomography. J Thorac Imaging. 1998;13:211–8.

    Article  PubMed  CAS  Google Scholar 

  37. Toloza EM, Harpole L, Detterbeck F, McCrory DC. Invasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 2003;123:147s–56.

    Article  Google Scholar 

  38. Martini N, Heelan R, Westcott J, et al. Comparative merits of conventional, computed tomographic and magnetic resonance imaging in assessing mediastinal involvement in surgically confirmed lung carcinoma. J Thorac Cardiovasc Surg. 1985;90:639–48.

    PubMed  CAS  Google Scholar 

  39. Musset D, Grenier P, Carette MF, et al. Primary lung cancer ­staging: prospective comparative study of MR imaging with CT. J Comput Assist Tomogr. 1990;14:340–4.

    Article  Google Scholar 

  40. Silvestri GA, Littenberg B, Colice GL. The clinical evaluation for detecting metastatic lung cancer. A meta-analysis. Am J Respire Crit Care Med. 1995;152:225–30.

    CAS  Google Scholar 

  41. Wong J, Haramati LB, Rosenshtein A, Yane M, Austin JH. Non-small cell lung cancer: practice patterns of extrathoracic imaging. Acad Radiol. 1999;6:211–5.

    Article  PubMed  CAS  Google Scholar 

  42. Mayo-Smith WW, Boland GW, Noto RB, Lee MJ. State-of-the-art adrenal imaging. Radiographics. 2001;21:995–1012.

    PubMed  CAS  Google Scholar 

  43. Suzuki K, Yamamoto M, Hasegawa Y, et al. Magnetic resonance imaging and computed tomography in the diagnoses of brain metastases of lung cancer. Lung Cancer. 2004;46:357–60.

    Article  PubMed  CAS  Google Scholar 

  44. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  45. Glaser MS, Lee JK, Levitt RG, et al. Radiation fibrosis: differentiation from recurrent lung tumor by MR imaging. Radiology. 1985;156:721–6.

    Google Scholar 

  46. Wychulis AR, Payne WS, Clagett OT, Woolner LB. Surgical treatment of mediastinal tumors. A 40-year experience. J Thorac Cardiovasc Surg. 1971;62:379–92.

    PubMed  CAS  Google Scholar 

  47. Armstrong P, Wilson AG, Dee P, Hancell DM. Imaging of diseases of the chest. London: Mosby; 2000. p. 789–892.

    Google Scholar 

  48. Kohman IJ. Approach to the diagnosis and staging of mediastinal masses. Chest. 1993;103:328S–30.

    Article  PubMed  CAS  Google Scholar 

  49. Naidich DP, Webb RW, Mϋller NL, Krinsky GA, Zerhoun EA, Siegllman SS. Computed tomography and magnetic resonance of the thorax. 3rd ed. Philadelphia: Lippincott-Raven; 1999. p. 37–159.

    Google Scholar 

  50. Tecce PM, Fishmann EK, Kuhlman JE. CT evaluation of the anterior mediastinum: spectrum of disease. Radiographics. 1994;14:973–90.

    PubMed  CAS  Google Scholar 

  51. Brown LR, Aughenbaugh GL. Masses of the anterior mediastinum: CT and MR imaging. AJR Am J Roentegenol. 1991;157:1171–80.

    CAS  Google Scholar 

  52. Giron J, Fajadet P, Sans N, et al. Diagnostic approach to mediastinal masses. Eur J Radiol. 1998;27:21–42.

    Article  PubMed  CAS  Google Scholar 

  53. Ho VB, Prince HR. Thoracic MR aortography: imaging techniques and strategies. Radiographics. 1998;18:287–309.

    PubMed  CAS  Google Scholar 

  54. Shaham D, Skilakaki MG, Goitein O. Imaging of the mediastinum: applications for thoracic surgery. Thorac Surg Clin. 2004;14:25–42.

    Article  PubMed  Google Scholar 

  55. Tomiyama N, Honda O, Tsubamoto M, et al. Anterior mediastinal tumors: diagnostic accuracy of CT and MRI. Eur J Radiol. 2009;69:280–8.

    Article  PubMed  Google Scholar 

  56. Landwehr P, Shulte O, Lackner K. MR imaging of the chest: mediastinum and chest wall. Eur Radiol. 1999;9:1737–44.

    Article  PubMed  CAS  Google Scholar 

  57. Whiten C, Khan S, Munneke G, Grubnik S. A diagnostic approach to mediastinal abnormalities. Radiographics. 2007;27:657–71.

    Article  Google Scholar 

  58. Sadohara J, Fujimoto K, Mϋller NL, et al. Thymic epithelial tumors: comparison of CT and MR imaging findings of low-risk thymomas, high-risk thymomas and thymic carcinomas. Eur J Radiol. 2006;60:70–9.

    Article  PubMed  Google Scholar 

  59. Razek AA, Elmorsy A, Elshafey M, et al. Assessment of mediastinal tumors with diffusion weighted single-shot echo-planar MRI. J Magn Reson Imaging. 2009;30:535–40.

    Article  PubMed  Google Scholar 

  60. Bacha EA, Chaplier AR, Mcchiarini P, et al. Surgery for invasive primary mediastinal tumors. Ann Thorac Surg. 1998;66:234–9.

    Article  PubMed  CAS  Google Scholar 

  61. Roviaro G, Rebuffat C, Varoli F, et al. Videothoracoscopic excision of mediastinal masses: indications and technique. Ann Thorac Surg. 1994;58:1679–84.

    Article  PubMed  CAS  Google Scholar 

  62. Kantoff P. Surgical and medical management of germ cell tumors of the chest. Chest. 1993;103:313S–33.

    Article  Google Scholar 

  63. Gawrychowsky J, Rokicki M, Gabriel A. Thymoma. The usefulness of some prognostic factors for diagnosis and treatment. Eur J Surg Oncol. 2000;26:203–8.

    Article  Google Scholar 

  64. Wrigh CD, Mathisen DJ. Mediastinal tumors: diagnosis and treatment. World J Surg. 2001;25:204–9.

    Article  Google Scholar 

  65. Strollo DC, Rosado-de-Christenson ML, Jett JR. Primary mediastinal tumors. Part 1: tumors of the anterior mediastinum. Chest. 1997;112:511–22.

    Article  PubMed  CAS  Google Scholar 

  66. Strollo DC, Rosado-de-Christenson ML. Tumors of the thymus. J Thorac Imaging. 1999;14:152–72.

    Article  PubMed  CAS  Google Scholar 

  67. Verstandig AG, Epstein DM, Miller Jr WT, et al. Thymoma. Report of 71 cases and a review. Crit Rev Diagn Imaging. 1992;33:201–30.

    PubMed  CAS  Google Scholar 

  68. Rosado-de-Christenson ML, Strollo DC, Marom EM. Imaging of thymic epithelial neoplasms. Hematol Oncol Clin North Am. 2008;22:409–31.

    Article  PubMed  Google Scholar 

  69. Masaoka A, Monden Y, Nakahara K, et al. Follow-up study of thymomas with special reference to their clinical stages. Cancer. 1981;48:2485–92.

    Article  PubMed  CAS  Google Scholar 

  70. Okumura M, Ohta M, Taleyama H, et al. The World Health Organization histological classification system reflects the oncologic behavior of thymoma. A clinical study of 273 patients. Cancer. 2002;94:624–32.

    Article  PubMed  Google Scholar 

  71. Huang T-W, Cheng Y-I, Tzoo C, et al. Middle mediastinal thymoma. Respirology. 2007;12:934–6.

    Article  PubMed  Google Scholar 

  72. Minniti S, Valentini M, Pinali L, et al. Thymic masses of the middle mediastinum. Report of two cases and review of the literature. J Thorac Imaging. 2004;19:192–5.

    Article  PubMed  Google Scholar 

  73. Jeong YJ, Lee KS, Kim J, et al. Does the thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis ? AJR Am J Roentgenol. 2004;183:283–9.

    PubMed  Google Scholar 

  74. Tamiyama N, Mϋller NL, Elis SJ, et al. Invasive and noninvasive thymoma: distinctive CT features. J Comput Assist Tomogr. 2001;25:388–93.

    Article  Google Scholar 

  75. Rosado-de-Christenson ML, Galobardes J, Moran CA. Thymoma: radiologic-pathologic correlation. Radiographics. 1992;12:151–68.

    PubMed  CAS  Google Scholar 

  76. Santana L, Givica A, Camacho C. Best cases from AFIP: thymoma. Radiographics. 2002;22:S95–102.

    PubMed  Google Scholar 

  77. Zerhouni EA, Scott Jr WW, Baker RR, et al. Invasive thymomas: diagnosis and evaluation by computed tomography. J Comput Assist Tomogr. 1982;6:92–100.

    Article  PubMed  CAS  Google Scholar 

  78. Maher MM, Shepard JA. Imaging of thymoma. Semin Thorac Cardiovasc Surg. 2005;17:12–9.

    Article  PubMed  Google Scholar 

  79. Sakai F, Sone S, Kiyono K, et al. MR imaging of thymoma: radiologic-pathologic correlation. AJR Am J Roentgenol. 1992;158:751–6.

    PubMed  CAS  Google Scholar 

  80. Sakai S, Muriyama S, Saeda H, et al. Differential diagnosis between thymoma and non-thymoma by dynamic MR imaging. Acta Radiol. 2002;43:262–8.

    Article  PubMed  CAS  Google Scholar 

  81. Inaka T, Takahashi K, Mineta M, et al. Thymic hyperplasia and thymic gland tumors: differentiation with chemical shift MR imaging. Radiology. 2007;243:869–76.

    Article  Google Scholar 

  82. Nohl-Oser HC. An investigation of the anatomy of the lymphatic drainage of the lungs. Ann R Coll Surg Engl. 1972;51:157–76.

    PubMed  CAS  Google Scholar 

  83. Libshitz HI, McKeenna RJ, Mountain CF. Patterns of mediastinal metastasis in bronchogenic carcinoma. Chest. 1986;90:229–32.

    Article  PubMed  CAS  Google Scholar 

  84. Glazer HS, Semenkovich JW, Gutierrez FR. Mediastinum. In: Lee JKT, Sagel SS, Stanley RJ, Heiken JP, editors. Computed body tomography with MRI correlation. 3rd ed. Philadelphia: Lippincot-Raven; 1998. p. 261–349.

    Google Scholar 

  85. Castellino RA, Blank N, Hoppe RT, Cho C. Hodgkin disease: contributions of chest CT in the initial staging evaluation. Radiology. 1986;160:603–5.

    PubMed  CAS  Google Scholar 

  86. Filly R, Blank N, Castellino R. Radiographic distribution of intrathoracic disease in previously untreated patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Radiology. 1976;120:277–81.

    PubMed  CAS  Google Scholar 

  87. Castellino RA. Hodgkin disease: practical concepts for the diagnostic radiologist. Radiology. 1986;157:305–10.

    Google Scholar 

  88. Kaplan HS. Hodgkin’s disease: unfolding concepts concerning its nature, management and prognosis. Cancer. 1980;45:2439–74.

    Article  PubMed  CAS  Google Scholar 

  89. Heron CW, Husband JE, Williams MP. Hodgkin disease: CT of the thymus. Radiology. 1988;167:647–51.

    PubMed  CAS  Google Scholar 

  90. Castellino RA. The non-Hodgkin lymphomas: practical concepts for the diagnostic radiologist. Radiology. 1991;178:315–21.

    PubMed  CAS  Google Scholar 

  91. Castellino RA, Hilton S, O’Brien JP, Portlock CS. Non-Hodgkin lymphoma: contribution of chest CT in the initial staging evaluation. Radiology. 1996;199:129–32.

    PubMed  CAS  Google Scholar 

  92. McLeod TC, Epler GR, Gaensler EA, et al. A radiographic classification for sarcoidosis: physiologic correlation. Invest Radiol. 1982;17:129–38.

    Article  Google Scholar 

  93. Scadding JG, Mitchell DN, editors. Sarcoidosis. London: Chapman and Hall; 1985.

    Google Scholar 

  94. Hillerdal G, Neu E, Osterman K, Schmekel B. Sarcoidosis: epidemiology and prognosis, a 15-year European study. Am Rev Respire Dis. 1984;130:29–32.

    CAS  Google Scholar 

  95. Patil SN, Levin DL. Distribution of thoracic lymphadenopathy in sarcoidosis using computed tomography. J Thorac Imaging. 1999;14:114–7.

    Article  PubMed  CAS  Google Scholar 

  96. Clarke D, Mitchell AW, Dick R, James GD. The radiology of sarcoidosis. Sarcoidosis. 1994;11:90–9.

    PubMed  CAS  Google Scholar 

  97. Brauner MW, Grenier P, Mompoint D, et al. Pulmonary sarcoidosis: evaluation with high-resolution CT. Radiology. 1989;172:467–71.

    PubMed  CAS  Google Scholar 

  98. Muller NL, Kullnig P, Miller RR. The CT findings of pulmonary sarcoidosis: analysis of 25 patients. AJR Am J Roentgenol. 1989;152:1179–82.

    PubMed  CAS  Google Scholar 

  99. Johkoh T, Ikezoe J, Takeuchi N, et al. CT findings in “pseudoalveolar” sarcoidosis. J Comput Assist Tomogr. 1992;16:904–7.

    Article  PubMed  CAS  Google Scholar 

  100. Sider L, Horton Jr ES. Hilar and mediastinal adenopathy in sarcoidosis as detected by computed tomography. J Thorac Imaging. 1990;5:77–80.

    Article  PubMed  CAS  Google Scholar 

  101. Gotway MB, Tchao NK, Leung JW, et al. Sarcoidosis presenting as an enlarging solitary pulmonary nodule. J Thorac Imaging. 2001;16:117–22.

    Article  PubMed  CAS  Google Scholar 

  102. Conces DJ. Histoplasmosis. Semin Roentgenol. 1996;31:14–27.

    Article  PubMed  Google Scholar 

  103. McGuinness G, Naidich DP, Jagirdar J, et al. High resolution CT findings in miliary lung disease. J Comput Assist Tomogr. 1992;16:384–90.

    Article  PubMed  CAS  Google Scholar 

  104. Sherrick AD, Brown LR, Harms GF, Myers JL. The radiographic findings of fibrosing mediastinitis. Chest. 1994;106:484–9.

    Article  PubMed  CAS  Google Scholar 

  105. Einstein HE, Catanzaro A, Johnson R, et al. Pulmonary coccidioidomycosis. J Thorac Imaging. 1992;7:29–38.

    Article  Google Scholar 

  106. Kim KI, Leung AN, Flint JD. Chronic pulmonary coccidioidomycosis: computed tomographic and pathologic findings in 18 patients. Can Assoc Radiol J. 1998;49:401–7.

    PubMed  CAS  Google Scholar 

  107. Freudlich IM, Bragg DG. Granulomatous infections of the lung. In: Freudlich IM, Bragg DG, editors. A radiologic approach to diseases of the chest. Philadelphia: Williams & Wilkins; 1992. p. 263–87.

    Google Scholar 

  108. Harisinghani MG, McLoud TC, Shepard JA, et al. Tuberculosis from head to toe. Radiographics. 2000;20:449–70.

    PubMed  CAS  Google Scholar 

  109. Lee KS, Song KS, Lim TH, et al. Adult-onset pulmonary tuberculosis: findings on chest radiographs and CT scans. Am J Roentgenol. 1993;160:753–8.

    CAS  Google Scholar 

  110. Eisenhuber E, Mostbeck G, Bankier A, Stadler A, Rumetshofer R. Radiologic diagnosis of lung tuberculosis. Radiologe. 2007;47:393–400.

    Article  PubMed  CAS  Google Scholar 

  111. Lee KM, Choe KH, Kim SJ. Clinical investigation of cavitary tuberculosis and tuberculous pneumonia. Korean J Intern Med. 2006;21:230–5.

    Article  PubMed  Google Scholar 

  112. Linh NN, Marks GB, Crawford AB. Radiographic predictors of subsequent reactivation of tuberculosis. Int J Tuberc Lung Dis. 2007;11:1136–42.

    PubMed  CAS  Google Scholar 

  113. Fischer B, Mortenses J. The future in diagnosis and staging of lung cancer: positron emission tomography. Respiration. 2006;73:267–76.

    Article  PubMed  Google Scholar 

  114. Bunyarovich T, Coleman E. PET evaluation of lung cancer. J Nucl Med. 2006;47:451–69.

    Google Scholar 

  115. Lee KS, Kim Y, Han J, Ko EJ, Park CK, Primack SL. Bronchioalveolar carcinoma: clinical, histopathologic, and radiologic findings. Radiographics. 1997;17:1345–57.

    PubMed  CAS  Google Scholar 

  116. Weber WA, Petersen V, Schmidt B, et al. Positron emission ­tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol. 2003;21:2651–7.

    Article  PubMed  CAS  Google Scholar 

  117. Eschmann SM, Friedel G, Paulsen F, et al. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34:463–71.

    Article  PubMed  Google Scholar 

  118. Pillot G, Siegel BA, Govindan R. Prognostic value of fluorodeoxy-glucose positron emission tomography in non-small cell lung cancer: a review. J Thorac Oncol. 2006;1:152–9.

    Article  PubMed  Google Scholar 

  119. Goodgame B, Pillot GA, Yang Z, et al. Prognostic value of preoperative positron emission tomography in resected stage I non-small cell lung cancer. J Thorac Oncol. 2008;3:130–4.

    Article  PubMed  Google Scholar 

  120. Tann M, Sandrasegaran S, Winer-Muram HT, Jennings SG, Welling ME, Fletcher JW. Can [18F]FDG-PET be used to predict growth of stage I lung cancer? Clin Radiol. 2008;63:856–63.

    Article  PubMed  CAS  Google Scholar 

  121. Sobin LH, Wittekind C, editors. TNM classification of malignant tumours. 5th ed. New York: Wiley-Liss; 1997. p. 93–7.

    Google Scholar 

  122. Swensen S, Jett J, Hartman T, Midthun D, Mandrekar S, Hillman S, Sykes AM, Aughenbaugh G, Bungum A, Allen K. CT screening for lung cancer. Radiology. 2005;235:259–65.

    Article  PubMed  Google Scholar 

  123. Gould MK, Maclean CC, Kuschne WG, et al. Accuracy of ­positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta analysis. JAMA. 2001;285:914–24.

    Article  PubMed  CAS  Google Scholar 

  124. Hellwig D, Ukena D, Paulsen F, Bamberg M, Kirsh CM. [Meta-analysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German Consensus Conference on PET in Oncology 2000]. Pneumologie. 2001;55:367–77 [in German].

    Article  PubMed  CAS  Google Scholar 

  125. Yi CA, Lee KS, Kim BT, et al. Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT. J Nucl Med. 2006;47:443–50.

    PubMed  Google Scholar 

  126. Duhaylongsod FG, Lowe VJ, Patz Jr EF, Vaughn AL, Coleman RE, Wolfe WG. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg. 1995;110:130–9.

    Article  PubMed  CAS  Google Scholar 

  127. Herder GJ, Golding RP, Gobar L, et al. The performance of 18-F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2004;31:1231–6.

    Article  PubMed  Google Scholar 

  128. Lowe VJ, Fletcher JW, et al. Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol. 1998;16:1075–84.

    PubMed  CAS  Google Scholar 

  129. Bryant AS, Cerfolio RJ. The maximum standardized uptake values on integrated [18F]FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg. 2006;82:1016–20.

    Article  PubMed  Google Scholar 

  130. Hashimoto Y, Tsujikawa T, Kondo C, et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med. 2006;47:426–31.

    PubMed  Google Scholar 

  131. Baum RP, Prasad V, Weber WA. Lung cancer. In: Bombardieri E, Buscombe J, Lucignani G, Schober O, editors. Advances in nuclear oncology: diagnosis and therapy. 1st ed. London: Informa Healthcare; 2007. p. 61–87.

    Google Scholar 

  132. Henschke CI, Yankelevitz DF, Naidich DP, et al. CT screening for lung cancer: suspiciousness of nodules according to size on baseline scans. Radiology. 2004;231:164–8.

    Article  PubMed  Google Scholar 

  133. Bastarrica G, Garcia-Velloso MJ, Lozano MD, et al. Early lung cancer detection using spiral computed tomography and positron emission tomography. Am J Respire Crit Care Med. 2005;171:1378–83.

    Article  Google Scholar 

  134. Raz DJ, Odisho AY, Franc BL, Jablons DM. Tumor fluoro-2-deoxy-d-glucose avidity on positron emission tomographic scan predicts mortality in patients with early-stage pure and mixed bronchioalveolar carcinoma. J Thorac Cardiovasc Surg. 2006;132:1189–95.

    Article  PubMed  Google Scholar 

  135. Vansteeenkiste JF, Stroobants SG, De Leyn PR, et al. Prognostic importance of the standardized uptake value on [18F]FDG PET scan in non small cell lung cancer: an analysis of 125 cases. J Clin Oncol. 1999;10:3201–6.

    Google Scholar 

  136. Ahuja V, Coleman RE, Herndon J, Patz EF. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with non small cell lung carcinoma. Cancer. 1998;83:918–24.

    Article  PubMed  CAS  Google Scholar 

  137. Higashi K, Ueda Y, Arisaka Y, et al. [18F]FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med. 2002;43:39–45.

    PubMed  Google Scholar 

  138. Jeong HJ, Min JJ, Park JM, et al. Determination of the prognostic value of 18F-fluorodexoyglucose uptake by using positron emission tomography in patients with non small cell lung cancer. Nucl Med Commun. 2002;23:865–70.

    Article  PubMed  CAS  Google Scholar 

  139. Downey RJ, Akhurst T, Gonen M, et al. Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol. 2004;22:3255–60.

    Article  PubMed  Google Scholar 

  140. Cerfolio R, Bryant A, Ohja B. The maximum standardised uptake values on positron emission tomography of non-small cell lung cancer predicts stage, recurrence and survival. J Thorac Cardiovasc Surg. 2005;130:151–9.

    Article  PubMed  Google Scholar 

  141. Demura Y, Tsuchida T, Uesaka D, Umeda Y, Morikawa M, Ameshima S, Ishizaki T, Fujibayashi Y, Okazawa H. Usefulness of 18F-fluorodeoxyglucose positron emission tomography for diagnosing disease activity and monitoring therapeutic response in patients with pulmonary mycobacteriosis. Eur J Nucl Med Mol Imaging. 2009;36:632–9.

    Article  PubMed  Google Scholar 

  142. Hofmeyer A, Lau WFE, Slavin MA. Mycobacterium tuberculosis infection in patients with cancer, the role of 18-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring treatment response. Tuberculosis. 2007;87:459–63.

    Article  Google Scholar 

  143. Croft DR, Trapp J, Kernstine K, Kirchner P, Mullan B, Galvin J, Peterson MW, Gross T, McLennan G, Kern JA. [18F]FDG-PET imaging and the diagnosis of non-small cell lung cancer in a region of high histoplasmosis prevalence. Lung Cancer. 2002;36:297–301.

    Article  PubMed  Google Scholar 

  144. Keijsers RG, Grutters JC, van Velzen-Blad H, van den Bosch JM, Oyen WJ, Verzijlbergen FJ. 18F-FDG PET patterns and BAL cell profiles in pulmonary sarcoidosis. Eur J Nucl Med Mol Imaging. 2010;37:1181–8.

    Article  PubMed  Google Scholar 

  145. Aide N, Allouache D, Ollivier Y, de Raucourt S, Switsters O, Bardet S. Early 2′-deoxy-2′[18F]fluoro-d-glucose PET metabolic response after corticosteroid therapy to differentiate cancer from sarcoidosis and sarcoid-like lesions. Mol Imaging Biol. 2009;11:224–8.

    Article  PubMed  Google Scholar 

  146. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG Pet for the evaluation of pulmonary nodules. J Nucl Med. 2002;43:871–5.

    PubMed  Google Scholar 

  147. Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42:1412–7.

    PubMed  CAS  Google Scholar 

  148. Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348:2500–7.

    Article  PubMed  Google Scholar 

  149. Cerfolio RJ, Ohja B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA. The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg. 2004;78:1017–23.

    Article  PubMed  Google Scholar 

  150. Shim SS, Lee KS, Kim BT, et al. Non-small cell lung cancer: prospective comparison of integrated [18F]FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236:1011–9.

    Article  PubMed  Google Scholar 

  151. De Wever W, Stroobants S, Coolen J, Verschakelen JA. Integrated PET/CT in the staging of nonsmall cell lung cancer: technical aspects and clinical integration. Eur Respire J. 2009;33:201–12.

    Article  Google Scholar 

  152. Dillemans B, Deneffe G, Verschakelen J, Decramer M. Value of computed tomography and mediastinoscopy in preoperative evaluation of mediastinal nodes in non-small cell lung cancer. A study of 569 patients. Eur J Cardiothorac Surg. 1994;8:37–42.

    Article  PubMed  CAS  Google Scholar 

  153. Shields TW. The significance of ipsilateral mediastinal lymph node metastatsis (N2 disease) in non-small cell carcinoma of the lung. A commentary. J Thorac Cardiovasc Surg. 1990;99:48–53.

    PubMed  CAS  Google Scholar 

  154. Berlangieri SU, Scott AM, Knight SR, et al. F-18 fluorodeoxyglucose positron emission tomography in the non-invasive staging of non-small cell lung cancer. Eur J Cardiothorac Surg. 1999;16(suppl1):S25–30.

    Article  PubMed  Google Scholar 

  155. Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL. Metastases from non-small cell lung cancer: mediastinal staging in the 1990’s—meta-analytic comparison of PET and CT. Radiology. 1999;213:530–6.

    PubMed  CAS  Google Scholar 

  156. Birim O, Kappetein AP, Stijnen T, Borges AJ. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg. 2005;79:375–82.

    Article  PubMed  Google Scholar 

  157. Schrevens L, Lorent N, Dooms C, VAnsteenkiste J. The role of PET scan in diagnosis, staging, and management of non-small cell lung cancer. Oncologist. 2004;9:633–43.

    Article  PubMed  Google Scholar 

  158. Vansteenkiste JF, Stroobants SG, De Leyn PR, et al. Lymph node staging in non-small-cell lung cancer with [18F]FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol. 1998;16:2142–9.

    PubMed  CAS  Google Scholar 

  159. Pieterman RM, van Putten JWG, Meuzelaar JJ, et al. Preoperative staging of non-small cell lung cancer with positron emission tomography. N Engl J Med. 2000;343:254–61.

    Article  PubMed  CAS  Google Scholar 

  160. Gonzalez-Stawinski GV, Lemaire A, Merchant F, et al. A comparative analysis of positron emission tomography and mediastinoscopy in staging non-small cell lung cancer. J Thorac Cardiovasc Surg. 2003;126:1900–5.

    Article  PubMed  Google Scholar 

  161. Sider L, Horejs D. Frequency of extrathoracic metastases from bronchogenic carcinoma in patients with normal-sized hilar and mediastinal lymph nodes on CT. Am J Roentgenol. 1988;151:893–5.

    CAS  Google Scholar 

  162. Quint LE, Tummala S, Brisson LJ, et al. Distribution of distant metastases from newly diagnosed non-small cell lung cancer. Ann Thorac Surg. 1996;62:246–50.

    Article  PubMed  CAS  Google Scholar 

  163. Sandler MA, Pearlberg J, MAdrazo B, Gitschlag K, Gross S. Computed tomography evaluation of the adrenal gland in the preoperative assessment of bronchogenic carcinoma. Radiology. 1982;145:733–6.

    PubMed  CAS  Google Scholar 

  164. Remer EM, Obuchowski N, Ellis JD, et al. Adrenal mass evaluation i patients with lung carcinoma: a cost-effectiveness analysis. Am J Roentgenol. 2000;174:1033–9.

    CAS  Google Scholar 

  165. Kumar R, Xiu Y, Yu JQ, et al. 18F-FDG PET in evaluation of adrenal lesions in patients with lung cancer. J Nucl Med. 2004;45:2058–62.

    PubMed  Google Scholar 

  166. Jana S, Zhang T, Milstein DM, ISasi CR, Blaufox MD. [18F]FDG-PET and CT characterization of adrenal lesions in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2006;33:29–35.

    Article  PubMed  Google Scholar 

  167. Marom EM, McAdams HP, Erasmus JJ, et al. Staging non-small cell lung cancer with whole-body PET. Radiology. 1999;212:803–9.

    PubMed  CAS  Google Scholar 

  168. Peterson JJ, Kransdorf MJ, O’Connor MI. Diagnosis of occult bone metastases: positron emission tomography. Clin Orthop Relat Res. 2003;415:S120–8.

    Article  PubMed  Google Scholar 

  169. Min JW, Um SW, Yim JJ, et al. The role of whole-body [18F]FDG PET/CT, Tc 99m MDP bone scintigraphy, and serum alkaline phosphatase in detecting bone metastasis in patients with newly diagnosed lung cancer. J Korean Med Sci. 2009;24:275–80.

    Article  PubMed  Google Scholar 

  170. Erturan S, Yaman M, Aydin G, et al. The role of whole-body bone scanning and clinical factors in detecting bone metastases in patients with non-small cell lung cancer. Chest. 2005;127:449–54.

    Article  PubMed  Google Scholar 

  171. Hetzel M, Arslandemir C, Konig HH, et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost effectiveness, and impact on patient management. J Bone Miner Res. 2003;18:206–14.

    Article  Google Scholar 

  172. Song JW, Oh Y-M, Shim T-S, Kim WS, Ryu J-S, Choi C-M. Efficacy comparison between 18F-FDG PET/CT and bone scintigraphy in detecting bony metastases of non-small-cell lung cancer. Lung Cancer. 2009;65:333–8.

    Article  PubMed  Google Scholar 

  173. Krüger S, Buck AK, Mottaghy FM, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36:1807–12.

    Article  PubMed  Google Scholar 

  174. Vansteenkiste JF, Stroobants SG. The role of positron emission tomography with 18F-fluoro-2-deoxy-d-glucose in respiratory oncology. Eur Respire J. 2001;17:802–20.

    Article  CAS  Google Scholar 

  175. Fischer B, Lassen U, Mortensen J, et al. Preoperative staging of lung cancer with combined Pet-CT. N Engl J Med. 2009;361:32–9.

    Article  PubMed  CAS  Google Scholar 

  176. Van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomized trial. Lancet. 2002;359:1388–93.

    Article  PubMed  Google Scholar 

  177. Subedi N, Scarsbrook A, Darby M, Korde K, Mc Shane P, Muers MF. The clinical impact of integrated [18F]FDG PET-CT on management decisions in patients with lung cancer. Lung Cancer. 2009;64:301–7.

    Article  PubMed  CAS  Google Scholar 

  178. Delbeke D, Shöder H, Martin WH, Wahl RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med. 2009;39:308–40.

    Article  PubMed  Google Scholar 

  179. Nestle U, Kremp S. Grosu Anca-Ligia. Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): The technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol. 2006;81:209–25.

    Article  PubMed  CAS  Google Scholar 

  180. Bradley J, Thorstad WL, Mutic S, et al. Impact of [18F]FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.

    Article  PubMed  Google Scholar 

  181. Deniaud-Alexandre E, Touboul E, Lerouge D, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1432–41.

    Article  PubMed  Google Scholar 

  182. Gondi V, Bradley K, Mehta M, et al. Clinical impact of 18F fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2007;67:187–95.

    Article  PubMed  Google Scholar 

  183. Kolodziejczyk M, Kepka L, Dziuk M, et al. Impact of [18F] fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2010;80:1008–14.

    Article  PubMed  Google Scholar 

  184. Mcmanus M, Nestle U, Rosenzweig KE, et al. Use of PET and PET-CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol. 2009;91:85–94.

    Article  Google Scholar 

  185. Pommier P, Touboul E, Chabaud S, Dussart S, Le Pechoux C, Giammarile F, Carrie C. Impact of 18F-FDG PET on treatment strategy and 3D radiotherapy planning in non-small cell lung cancer: a prospective multicenter study. AJR Am J Roentgenol. 2010;195:350–5.

    Article  PubMed  Google Scholar 

  186. Vila A, Sanchez-Reyes A, Conill C, et al. Comparison of positron emission tomography (PET) and computed tomography (CT) for better target volume definition in radiation therapy planning. Clin Transl Oncol. 2010;12:367–73.

    Article  PubMed  Google Scholar 

  187. De Ruysscher D, Kirsh C-M. PET scans in radiotherapy planning of lung cancer. Radiother Oncol. 2010;96:335–8.

    Article  PubMed  Google Scholar 

  188. Caldwell CB, MAh K, Ung YC, et al. Observer variation in ­contouring gross tumor volume in patients with poorly defined non-small-cell lunf tumors on CT: The impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys. 2001;51:923–31.

    Article  PubMed  CAS  Google Scholar 

  189. Ciernik IF, Dizendorf E, Ciernik IF, et al. Radiation treatment planning with an integrated positron emission and computed tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys. 2003;57:853–63.

    Article  PubMed  Google Scholar 

  190. Ashamalla H, Rafla S, Parikh K, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1016–23.

    Article  PubMed  Google Scholar 

  191. Fox JL, Rengan R, O’Meara W, et al. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys. 2005;62:70–5.

    Article  PubMed  Google Scholar 

  192. Steenbakkers RJ, Duppen JC, Fitton I, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: A three-dimensional analysis. Int J Radiat Oncol Biol Phys. 2006;64:435–48.

    Article  PubMed  Google Scholar 

  193. Hanna GG, McAleese J, Carson KJ, et al. 18F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT. Int J Radiat Oncol Biol Phys. 2010;77:24–30.

    Article  PubMed  Google Scholar 

  194. De Ruysscher D, Wanders S, van Haren E, et al. Selective mediastinal node irradiation based on [18F]FDG-PET scan data in patients with non-small cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys. 2005;62:988–94.

    Article  PubMed  Google Scholar 

  195. Klopp AH, Chang JY, Tucker SL, et al. Intra-thoracic patterns of failure for non-small-cell lung cancer with positron-emission tomography/computed tomography-defined target delineation. Int J Radiat Oncol Biol Phys. 2007;69:1409–16.

    Article  PubMed  Google Scholar 

  196. Hoekstra CJ, Stroobants SG, Smit EF, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-d-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23:8362–70.

    Article  PubMed  Google Scholar 

  197. Hellwig D, Graeter TP, Ukena D, et al. Value of F-18-fluorodeoxyglucose positron emission tomography after induction therapy of locally advanced bronchogenic carcinoma. J Thorac Cardiovasc Surg. 2004;128:892–9.

    PubMed  Google Scholar 

  198. Nahmias C, Hanna WT, Wahl LM, et al. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48:744–51.

    Article  PubMed  CAS  Google Scholar 

  199. Cerfolio RJ, Bryant AS, Winokur TS, Ohja B, Bartolucci AA. Repeat [18F]FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg. 2004;78:1903–9.

    Article  PubMed  Google Scholar 

  200. Kong FM, Frey KA, Quint LE, et al. A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non-small-cell lung cancer. J Clin Oncol. 2007;25:3116–23.

    Article  PubMed  Google Scholar 

  201. Hicks RJ, Lau E, Alam NZ, Chen RY. Imaging in the diagnosis and treatment of non-small cell lung cancer. Respirology. 2007;12:165–72.

    Article  PubMed  Google Scholar 

  202. Keidar Z, Haim N, Guralnik L, Wollner M, Bar-Shalom R, Ben-Nun A, Israel O. PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med. 2004;45:1640–6.

    PubMed  Google Scholar 

  203. Nestle U, Hellwig D, Schmidt S, et al. 2-deoxy-2-[18F]-fluoro-d-glucose positron emission tomography in target volume definition for radiotherapy of patients with non-small-cell lung cancer. Mol Imaging Biol. 2002;4:257–63.

    Article  PubMed  Google Scholar 

  204. Gilman MD, Aquino SL. State-of-the-art [18F]FDG-PET imaging of lung cancer. Semin Roentgenol. 2005;40:143–53.

    Article  PubMed  Google Scholar 

  205. Gorenberg M, Bar-Shalom R, Israel O. Patterns of [18F]FDG uptake in post-thoracotomy surgical scars in patients with lung cancer. Br J Radiol. 2008;81:821–5.

    Article  PubMed  CAS  Google Scholar 

  206. Pearlberg JL, Sandler MA, Lewis Jr JW, Beute GH, Alpern MB. Small-cell bronchogenic carcinoma: CT evaluation. Am J Roentgenol. 1988;150:265–8.

    CAS  Google Scholar 

  207. Elias AD. Small cell lung cancer: state-of-the-art therapy in 1996. Chest. 1997;112(suppl):251S–8.

    Article  PubMed  CAS  Google Scholar 

  208. Abrams J, Doyle LA, Aisner J. Staging, prognostic factors, and special considerations in small cell lung cancer. Semin Oncol. 1988;15:261–77.

    PubMed  CAS  Google Scholar 

  209. Fischer BM, Mortensen J, Langer SW, et al. A prospective study of PET/CT in initial staging of small-cell lung cancer: comparison with CT, bone scintigraphy and bone marrow analysis. Ann Oncol. 2007;18:338–45.

    Article  PubMed  CAS  Google Scholar 

  210. VanLoon J, De Ruysscher D, Wanders R, et al. Selective nodal irradiation on basis of 18FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2010;77:329–36.

    Article  Google Scholar 

  211. Lee YJ, Cho A, Cho BC, et al. High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancer. Clin Cancer Res. 2009;15:2426–32.

    Article  PubMed  CAS  Google Scholar 

  212. Groves AM, Win T, Haim SB, et al. Non-[18F]FDG PET in clinical oncology. Lancet Oncol. 2007;8:822–30.

    Article  PubMed  Google Scholar 

  213. Erasmus JJ, McAdams HP, Patz Jr EF, et al. Evaluation of primary pulmonary carcinoid tumors using [18F]FDG PET. Am J Roentgenol. 1998;170:1369–73.

    CAS  Google Scholar 

  214. Groves AM, Mohan HK, Wegner EA, et al. Positron emission tomography using 18F fluorodeoxyglucose to show thymic carcinoid. Am J Roentgenol. 2004;182:511–4.

    Google Scholar 

  215. Ginj M, Zhang H, Waser B, et al. Somatostatin receptor ­antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA. 2006;103:16436–41.

    Article  PubMed  CAS  Google Scholar 

  216. Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30:781–93.

    Article  PubMed  CAS  Google Scholar 

  217. Koukouraki S, Strauss LG, Georgoulias V, et al. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90YDOTATOC therapy. Eur J Nucl Med Mol Imaging. 2006;33:1115–22.

    Article  PubMed  CAS  Google Scholar 

  218. Kayani I, Conry BG, Groves AM, Win T, Dickson J, Caplin M, Bomanji JB. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med. 2009;50:1927–32.

    Article  PubMed  Google Scholar 

  219. Shim SS, Lee KS, Kim BT, et al. Integrated PET/CT and the dry pleural dissemination of peripheral adenocarcinoma of the lung: diagnostic implications. J Comput Assist Tomogr. 2006;30:70–6.

    Article  PubMed  Google Scholar 

  220. Erasmus JJ, McAdams HP, Rossi SE, et al. [18F]FDG PET of pleural effusions in patients with non-small cell lung cancer. Am J Roentgenol. 2000;175:245–9.

    CAS  Google Scholar 

  221. Schaffler GJ, Wolf G, Schoellnast H, et al. Non-small cell lung cancer: evaluation of pleural abnormalities on CT scans with 18F-FDG PET. Radiology. 2004;231:858–65.

    Article  PubMed  Google Scholar 

  222. Sahn SA. The Pleura. Am Rev Respire Dis. 1988;138:184–234.

    Article  CAS  Google Scholar 

  223. Dunn MM. Asbestos and lung. Chest. 1989;95:1304–8.

    Article  PubMed  CAS  Google Scholar 

  224. Robinson BW, Lake RA. Advances in malignant mesothelioma. N Engl J Med. 2005;353:1591–603.

    Article  PubMed  CAS  Google Scholar 

  225. Benamore RE, O’Doherty MJ, Entwisle JJ. Use of imaging in the management of malignant pleural mesothelioma. Clin Radiol. 2005;60:1237–47.

    Article  PubMed  CAS  Google Scholar 

  226. Gill RR, Gerbaudo VH, Sugarbaker DJ, et al. Current trends in radiologic management of malignant pleural mesothelioma. Semin Thorac Cardiovasc Surg. 2009;21:111–20.

    Article  PubMed  Google Scholar 

  227. Marom EM, Erasmus JJ, Oass HI, et al. The role of imaging in malignant pleural mesothelioma. Semin Oncol. 2002;29:26–35.

    Article  PubMed  Google Scholar 

  228. Yamamuro M, Gerbaudo VH, Gill RR, et al. Morphologic and functional imaging of malignant pleural mesothelioma. Eur J Radiol. 2007;64:356–66.

    Article  PubMed  Google Scholar 

  229. Wang JZ, Reddy GP, Gotway MB, et al. Malignant pleural ­mesothelioma: evaluation with CT, MR imaging, and PET. Radiographics. 2004;24:105–19.

    Article  PubMed  Google Scholar 

  230. Kawashima A, Libshitz HI. Malignant pleural mesothelioma: CT manifestations in 50 cases. Am J Roentgenol. 1990;155:965–9.

    CAS  Google Scholar 

  231. Sahin AA, Coplu L, Selcuk ZT, et al. Malignant pleural mesothelioma caused by environmental exposure to asbestos or erionite in rural Turkey: Ct findings in 84 patients. Am J Roentgenol. 1993;161:533–7.

    CAS  Google Scholar 

  232. Patz EF, Shaffer K, Piwnica-Worms DR, et al. Malignant pleural mesothelioma: value of CT and MR imaging in predicting resectability. Am J Roentgenol. 1992;159:961–6.

    Google Scholar 

  233. Heelan RT, Rusch VW, Begg CB, et al. Staging of malignant pleural mesothelioma: comparison of CT and MR imaging. Am J Roentgenol. 1999;172:1039–47.

    CAS  Google Scholar 

  234. Hierholzer J, Luo L, Bittner RC, et al. MRI and CT in the differential diagnosis of pleural disease. Chest. 2000;118:604–9.

    Article  PubMed  CAS  Google Scholar 

  235. Hatabu H, Tadamura E, Levin DL, et al. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med. 1999;42:1033–8.

    Article  PubMed  CAS  Google Scholar 

  236. Benard F, Sterman D, Smith RJ, Kaiser LR, Al-belda SM, Alavi A. Metabolic imaging of malignant pleural mesothelioma with fluorodeoxyglucose positron emission tomography. Chest. 1998;114:713–22.

    Article  PubMed  CAS  Google Scholar 

  237. Ng DC, Hain SF, O’Doherty MJ, Dussek J. Prognostic value of [18F]FDG PET imaging in malignant pleural mesothelioma. J Nucl Med. 2000;41:1443–4.

    PubMed  CAS  Google Scholar 

  238. Subramanian RM, Wilcox B, Aubry MC, Jett J, Peller PJ. 18F-fluoro-2-deoxy-d-glucose positron emission tomography and positron emission tomography/computed tomography imaging of malignant pleural mesothelioma. J Med Imaging Radiat Oncol. 2009;53:160–70.

    Article  Google Scholar 

  239. Nowak AK, Armato III SG, Ceresoli GL, Yildirim H, Francis RJ. Imaging in pleural mesothelioma: a review of imaging research presented at the 9th international meeting of the international mesothelioma interest group. Lung Cancer. 2010;70:1–6.

    Article  PubMed  Google Scholar 

  240. Ceresoli GL, Chiti A, Zucali PA, Rodari M, et al. Early response evaluation in malignant pleural mesothelioma by positron emission tomography with [18F]fluorodeoxyglucose. J Clin Oncol. 2006;24:4587–93.

    Article  PubMed  Google Scholar 

  241. Lee HY, Hyun SH, Lee KS, et al. Volume-based parameter of ­18F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implication. Ann Surg Oncol. 2010;17:2787–94.

    Article  PubMed  Google Scholar 

  242. Peng ZM, Liu Q, Liu QW, et al. The value of dual time point 11C-choline PET-CT in differentiating malignant from benign lesion of mediastinum. (in Chinese). Zhonghua Yi Xue Za Zhi. 2007;18:3317–20.

    Google Scholar 

  243. Luzzi L, Campione A, Gorla A, et al. Role of fluorine-flurodeoxyglucose positron emission tomography/computed tomography in preoperative assessment of anterior mediastinal masses. Eur J Cardiothorac Surg. 2009;36:475–9.

    Article  PubMed  Google Scholar 

  244. Kumar A, Regmi SK, Dutta R, et al. Characterization of thymic masses using 18F-FDG PET-CT. Ann Nucl Med. 2009;23:569–77.

    Article  PubMed  Google Scholar 

  245. Sung YM, Lee KS, Kim B-T, Choi JY, Shim YM, Yi CA. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. J Nucl Med. 2006;47:1628–34.

    PubMed  Google Scholar 

  246. Katakura H, Fukuse T, Shiraishi I, et al. Mediastinal synovial ­sarcoma. Thorac Cardiovasc Surg. 2009;57:183–5.

    Article  PubMed  CAS  Google Scholar 

  247. Hara T, Inagaki K, Kosaka N, Morita T. Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med. 2000;41:1507–13.

    PubMed  CAS  Google Scholar 

  248. Pieterman RM, Que TH, Elsinga PH, et al. Comparison of 11C-choline and 18F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med. 2002;43:167–72.

    PubMed  Google Scholar 

  249. DeRoose CM, De A, Loening AM. Multimodality imaging of tumor xenografts and metastases in mice with combined small animal PET, small animal CT and bioluminescence imaging. J Nucl Med. 2007;48:295–303.

    PubMed  CAS  Google Scholar 

  250. Dehdashti F, Mintun MA, Lewis JS, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30:844–50.

    Article  PubMed  CAS  Google Scholar 

  251. Eschmann SM, Paulsen F, Reimold M, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in Non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46:253–60.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Ben-Haim MD, Dsc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ben-Haim, S., Win, T., Israel, O., Guralnik, L. (2013). Lung and Mediastinal Tumors. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics