Skip to main content

The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides

  • Chapter
Nanostructured Coatings

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Zhang, D. Sun, Y. Fu, and H. Du, Recent advances of superhard nanocomposite coatings: A review, Surf. Coat. Technol. 167, 113–119 (2003).

    Article  CAS  Google Scholar 

  2. J. Schiotz, Simulation of nanocrystalline metals at the atomic scale, what can we do? What can we trust? in Proceedings of the 22th Riso lnternational Symposium on Materiais Science, Vol. 127, edited by A.R. Dinesen et al. (Rokilde, Denmark, 2001).

    Google Scholar 

  3. J. Schiotz, T. Vegge, F. D. Di Tolla, and K.W. Jacobsen, Atomic scale simulations of the mechanical deformation of nanocrystalline metals, Phys. Rev. B 60, 11971–11983 (1999).

    Article  CAS  Google Scholar 

  4. S. Veprek, The search for novel, superhard materials, J. Vac. Sci. Technol. A 17, 2401–2420 (1999).

    Article  CAS  Google Scholar 

  5. S. Christiansen, M. Albrecht, H. P. Strunk, and S. Veprek, Microstructure of novel superhard nanocrystalline amorphous composites as analyzed by high resolution transmission electron microscopy, J. Vac. Sci. Technol. B 16, 19–22 (1998).

    Article  CAS  Google Scholar 

  6. J. Patscheider, Nanocomposite hard coating for wear protection, MRS Bull. 28, 180–183 (2003).

    CAS  Google Scholar 

  7. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Mannling, P. Nesladek, G. Dollinger, and A. Bergmaier, Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a and nc-TiSi2 nanocomposites with Hv = 80 to ≤ 105 GPa, Surf. Coat. Technol. 113, 152–159 (2000).

    Article  Google Scholar 

  8. S. Carvalho, L. Rebouta, A. Cavaleiro, L. A. Rocha, J. Gomes, E. Alves, Microstructure and mechanical properties of nanocomposite (Ti,Si,AI)N coatings, Thin Solid Films 398, 391–396 (2001).

    Article  Google Scholar 

  9. C. Mitterer, P. H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, and J. Vlcek, Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings, Surf. Coat. Technol. 121, 405–411 (1999).

    Article  Google Scholar 

  10. J. S. Yoon, H. Y. Lee, J. G. Han, S. H. Yang, and J. Musil, The effect of Al composition on the microstructure and mechanical properties of WC-TiAlN superhard composite coating, Surf. Coat. Technol. 142, 596–602 (2001).

    Article  Google Scholar 

  11. A. A. Voevodin, J. P. O’Neill, and J. S. Zabinski, Nanocomposite tribological coatings for aerospace applications, Surf. Coat. Technol. 116, 36–45 (1999).

    Article  Google Scholar 

  12. S. Zhang, Y. Q. Fu, H. J. Du, X. T. Zeng, and Y. C. Liu, Magnetron sputtering of nanocomposite (Ti,Cr)CN/DLC coatings, Surf. Coat. Technol. 162, 42–48 (2003).

    Article  CAS  Google Scholar 

  13. T. Zehnder, J. Mattey, P. Schwaller, A. Klein, P.-A. Steinmann, and J. Patsheider, Wear protective coatings consisting of TiC SiC-a-C:H deposited by magnetron sputtering, Surf. Coat. Technol. 163, 238–244 (2003).

    Article  Google Scholar 

  14. B. Trindade, M. T. Vieira, and E. Bauer-Grosse, Amorphous phase forming ability in (W-C)-based sputtered films, Acta Mater. 46, 1731–1739 (1998).

    Article  CAS  Google Scholar 

  15. L. E. Toth, Transition Metal Carbides and Nitrides (Nova Science, New York, 1971).

    Google Scholar 

  16. A. Cavaleiro, M. T. Vieira, and G. Lemperiere, The structure of thin films deposited from a sintered tungsten carbide with a high cobalt content (15 wt%), Thin Solid Films 185, 199–217 (1990).

    Article  CAS  Google Scholar 

  17. A. Cavaleiro, M. T. Vieira, and G. Lemperiere, Structure and chemica1 composition of W-C-(Co) sputtered films, Thin Solid Films 197, 237–255 (1991).

    Article  CAS  Google Scholar 

  18. A. Cavaleiro and M. T. Vieira, Evaluation of the hardness of sputtered W-C-Co thin films, Surf. Eng. 10, 147–151 (1994).

    CAS  Google Scholar 

  19. A. Cavaleiro, M. T. Vieira, and G. Lemperiere, Influence of deposition conditions on the morphology of sputtered W-C-(Co) films, Thin Solid Films 213, 6–12 (1992).

    Article  CAS  Google Scholar 

  20. K. Jia, T. E. Fisher, and B. Gallois, Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites, Nanostruct. Mater. 10, 875–891 (1998).

    Article  CAS  Google Scholar 

  21. Y. C. Zhu, C. X. Ding, K. Yukimura, T. D. Xiao, and P. R. Strutt, Deposition and characterization of nanostructured WC-Co coating, Ceram. Int. 27, 669–674 (2001).

    Article  CAS  Google Scholar 

  22. B. Trindade and M. T. Vieira, Structural characterization of cosputtered W-C-Fe films, Thin Solid Films 206, 318–322 (1991).

    Article  CAS  Google Scholar 

  23. B. Trindade, M. T. Vieira, and E. Bauer-Grosse, In situ high temperature crystallization study of sputter deposited arnorphous W-Fe-C films, Acta Metall. Mater. 43, 93–99 (1995).

    CAS  Google Scholar 

  24. A. Cavaleiro, B. Trindade, and M. T. Vieira, Structural analysis of sputtered (W-C)1−x Mx (M = Fe, Co) films with 0 ≤ x ≤ 0.20, Surf. Coat. Technol. 60, 411–415 (1993).

    Article  CAS  Google Scholar 

  25. B. Trindade, M. T. Vieira, and E. Bauer-Grosse, Characterization of W-Me-C (Me = Fe, Co) films and their structural behaviour with temperature, Mater. Sci. Eng. A 174, 165–171 (1994).

    Article  Google Scholar 

  26. B. Trindade, M. T. Vieira, and E. Bauer-Grosse, Structural stability and crystallization studies of metastable sputtered W-Ni-C films, Thin Solid Films 252, 82–88 (1994).

    Article  CAS  Google Scholar 

  27. A. Cavaleiro, B. Trindade, and M. T. Vieira, Deposition and characterization of fine-grained W-Ni-C/N temary films, Surf. Coat. Technol. 116, 944–948 (1999).

    Article  Google Scholar 

  28. S. H. Koutzaki, J. E. Krzanowski, and J. J. Nainaparampil, Phase formation and microstructure in sputter-deposited Ti-Mo-C and Ti-W-C thin films, Metal. Mater. Trans. A 33, 1579–1588 (2002).

    Google Scholar 

  29. A. Cavaleiro, B. Trindade, and M. T. Vieira, Influence of Ti addition on the properties of W-Ti-C/N sputtered films, Surf. Coat. Technol. 174, 68–75 (2003).

    Article  Google Scholar 

  30. A. Cavaleiro, M. T. Vieira, F. Ramos, and J. P. Dias, The ultimate vacuum pressure and the characteristics of sputtered coatings, Thin Solid Films 290, 238–242 (2002).

    Article  Google Scholar 

  31. K. Abourayak, S. Feyeulle, L. Vincent, C. Ribeiro, A. Cavaleiro, and M. T. Vieira, Tribological behaviour at elevated temperatures of thin physical vapour deposited coatings, Surf Coat. Technol. 80, 171–175 (1996).

    Article  CAS  Google Scholar 

  32. M. T. Vieira, A. Cavaleiro, and B. Trindade, The effects of a third element on structure and properties of W-C/N, Surf. Coat. Technol. 151, 495–504 (2002).

    Article  Google Scholar 

  33. H. A. Davies, Butterworths monographs in materials, in Amorphous Metallie Alloys, edited by F. E. Luborsky (Butterworths, London, 1983).

    Google Scholar 

  34. C. E. Wickersham, E. Foster, and G. Stickford, Reactively sputter-deposited high-emissivity tungsten carbide-carbon coatings, J. Vac. Sci. Technol. 18, 223–225 (1981).

    Article  CAS  Google Scholar 

  35. K. Fuchs, P. Rodhammer, E. Bertel, F. P. Netzer, and E. Gomik, Reactive and non-reactive high rate sputter deposition of tungsten carbide, Thin Solid Films 151, 383–395 (1987).

    Article  CAS  Google Scholar 

  36. K. Machida, M. Enyo, and I. Toyoshima, Preparation of W-C thin-films by reactive r.f. sputtering and auger-electron spectroscopy surface characterization, Thin Solid Films 161, L91–L95 (1988).

    Article  CAS  Google Scholar 

  37. F. Kustas, B. Mishra, and J. Zhou, Metal/carbide co-sputtered wear coatings, Surf Coat. Technol. 121, 489–494 (1999).

    Article  Google Scholar 

  38. S. Groudeva-Zotova, R. G. Vitchev, and B. Blanpain, Phase composition of Cr-C thin films deposited by a double magnetron sputtering system, Surf. Interface Anal. 30, 544–548 (2000).

    Article  CAS  Google Scholar 

  39. G. Tomé, B. Trindade, and M. T. Vieira, Synthesis and characterisation of newsputtered metastable carbides, Vacuum 64, 205–210 (2002).

    Article  Google Scholar 

  40. J. D. Martin, S. J. Goettler, N. Fossé, and L. Iton, Designing intermediate range order in amorphous materiaIs, Nature 419, 381–384 (2002).

    Article  CAS  Google Scholar 

  41. A. Inoue, Bulk amorphous alloys, in Amorphous and Nanocrystalline Materiais Advances in Materiais Research, edited by A. Iooue and K. Hashimoto (Springer, Berlin, 2001).

    Google Scholar 

  42. P. H. Gaskell, A new structural model for amorphous transition metal silicides, borides, phosphides and carbides, J. Non-Cryst. Solids 32, 207–224 (1979).

    Article  CAS  Google Scholar 

  43. B. C. Giessen, in Proceedings of the 4th International Conference on Rapidly Quenched Metals, edited by T. Matsumoto and K. Suzuki (Japan Institute of Metals, Sendai, 1982), p. 213.

    Google Scholar 

  44. T. B. Massalski, in Proceedings of the 4th International Conference on Rapidly Quenched Metais, edited by T. Matsumoto and K. Suzuki (Japan Institute of Metals, Sendai, 1982), p. 203.

    Google Scholar 

  45. S. H. Whang, Glass forming ability for binary alloys systems by modified T-C map in relation to phase diagram, J. Non-Cryst. Solids 61, 841–846 (1984).

    Article  Google Scholar 

  46. S. H. Whang, New prediction of glass-forming ability in binary alloys using a temperature-composition map, Mater. Sci. Eng. 57, 87–95 (1983).

    Article  CAS  Google Scholar 

  47. T. Egami and Y. Waseda, Atomic size effect on the formability of metallic glasses, J. Non-Cryst. Solids 64, 113–134 (1984).

    Article  CAS  Google Scholar 

  48. S. H. Liou and C. L. Chen, Composition range of binary amorphous-alloys, Phys. Rev. B 35, 2443–2446 (1987).

    Article  CAS  Google Scholar 

  49. G. J. Van der Kolk, A. R. Miedema, and A. K. Niessen, On the composition range of amorphous binary transition metal alloys, J. Less-Common Met. 145, 1–17 (1988).

    Article  Google Scholar 

  50. P. I. Loeff, A. W. Weeber, and A. R. Miedema, Diagrams of formation enthalpies of amorphousalloys in comparison with the crystalline solid-solution, J. Less-Common Met. 140, 299–305 (1988).

    Article  CAS  Google Scholar 

  51. B. M. Clements and R. Sinclair, Metastable phase formation in thin films and multilayers, MRS Bull. 15, 19–28 (1990).

    Google Scholar 

  52. S.-G. Zhang and Y. Yu, Structure and density of transition metal-metalloid amorphous alloys, Mater. Sci. Eng. A 134, 1008–1011 (1991).

    Article  Google Scholar 

  53. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46, 1–184 (2001).

    Article  CAS  Google Scholar 

  54. D. Turnbull, Metastable structures in metallurgy, Metall. Trans. A 12, 695–708 (1981).

    CAS  Google Scholar 

  55. P. H. Shingu, in Processing Materials for Properties, edited by H. Henein and T. Oki (TMS, Warrendale, PA, 1993).

    Google Scholar 

  56. F. H. Froes, C. Suryanarayana, K. Russell, and C. M. Ward-Close, Far from equilibrium processing of light metals, in Novel Techniques in Synthesis and Processing of Advance Materiais, edited by J. Singh and S. M. Copley (TMS, Warrendale PA, 1994).

    Google Scholar 

  57. F. H. Froes, C. Suryanarayana, K. Russell, and C.-G. Li, Synthesis of intermetallics by mechanical alloying, Mater. Sci. Eng. A 192, 612–623 (1995).

    Article  Google Scholar 

  58. O. N. Senkov and D. B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys, Mater. Res. Bull. 36, 2183–2198 (2001).

    Article  CAS  Google Scholar 

  59. B. Trindade and M. T. Vieira, Modification of the structural order of transition metal-carbon systems by the addition of a group VIII element, Mater. Sci. Eng. A 52, 195–201 (2003).

    Google Scholar 

  60. A. Cottrell, The affinity of transition metals for carbon, in Chemical Bonding in Transition Metal Carbides, edited by Institute of Materials (Institute of Materials, London, 1995).

    Google Scholar 

  61. A. Aouni and E. Bauer-Grosse, New periodic and aperiodic triangular prismatic sheet carbides obtained by crystallization of Mn1−x Cx amorphous films and described by the chemical twinning model, J. Alloys Compd. 335, 157–164 (2002).

    Article  CAS  Google Scholar 

  62. G. Lecaer and E. Bauer-Grosse, Aperiodic carbides formed by crystallization of amorphous Fe-C alloys, Hyperfine Interact. 47, 55–67 (1987).

    Google Scholar 

  63. A.V. Granato, Interstitially model for condensed matter states of face-centered-cubic metals, Phys. Rev. Lett. 68, 974–977 (1992).

    Article  CAS  Google Scholar 

  64. G. Lecaer and J. M. Dubois, Evaluation of hyperfine parameter distributions from overlapped mossbauer-spectra of amorphous alloys, J. Phys. E Sci. Instrum. 12, 1083–1090 (1979).

    Article  CAS  Google Scholar 

  65. J. E. Krzanowski, J. L. Endrino, and S. H. Koutzaki, Determining the limit of hardness in ternary carbide thin films, Mater. Res. Soc. Symp. Proc. 697, P1.4.1–P1.4.6 (2002).

    Google Scholar 

  66. ASM Handbook of Ternary Alloy Phase Diagrams (ASM Intemational, MateriaIs Park, OH, 1995).

    Google Scholar 

  67. J. S. Yoon, H. S. Myung, J. G. Han, and J. Musil, A study on the synthesis and microstructure of WC-TiN superlattice coating, Surf. Coat. Technol. 131, 372–377 (2000).

    Article  CAS  Google Scholar 

  68. S. H. Koutzaki, J. E. Krzanowski, and J. J. Nainaparampil, Phase formation and microstructure in sputter-deposited Ti-Mo-C and Ti-W-C thin films, Metall. Mater. Trans. A 33, 1579–1588 (2002).

    Google Scholar 

  69. A. Cavaleiro, B. Trindade, and M. T. Vieira, Influence of Ti addition on the properties ofW-Ti-C/N sputtered films, Surf. Coat. Technol. 174, 68–75 (2003).

    Article  Google Scholar 

  70. H. O. Pierson, Handbook of Refractory Carbides and Nitrides (Noyes Publications, New Jersey, 1996).

    Google Scholar 

  71. J. M. Castanho and M. T. Vieira, The influence of the interstitial element on tribological behaviour of tungsten coatings, Surf. Coat. Technol. 102, 50–62 (1998).

    Article  CAS  Google Scholar 

  72. G. Keller, I. Barzen, R. Erz, W. Dotter, S. Ulrich, K. Jung, and H. Ehrhardt, Crystal-structure, morphology and composition of magnetron sputtered tungsten carbide films, Fresenius J. Anal. Chem. 341, 349–352 (1991).

    Article  CAS  Google Scholar 

  73. Y. Pauleau and Ph. Gouy-Pailler, Very hard solid-solution-type tungsten-carbon coatings deposited by reactive magnetron sputtering, Mater. Lett. 13, 157–160 (1992).

    Article  CAS  Google Scholar 

  74. D. Garg, P. N. Dyer, D. B. Dirnos, S. Sunder, H. E. Hintermann, and M. Maillat, Low-temperature chemical vapor-deposition tungsten carbide coatings for wear erosion resistance, J. Am. Ceram. Soc. 75, 1008–1011 (1992).

    Article  CAS  Google Scholar 

  75. E. Quesnel, Y. Pauleau, P. Monge-Cadet, and M. Brun, Tungsten and tungsten-carbon PVD multilayered structures as erosion-resistant coatings, Surf. Coat. Technol. 62, 474–479 (1993).

    Article  CAS  Google Scholar 

  76. A. Cavaleiro and M. T. Vieira, Evaluation of the hardness of sputtered W-C-Co thin films, Surf. Eng. 10, 147–151 (1994).

    CAS  Google Scholar 

  77. I. N. Mihailescu, E. Gyorgy, G. Marin, M. Popescu, V. S. Teodorescu, J. Van Landuyt, C. Grivas, and A. Hatziapostolou, Crystalline structure of very hard tungsten carbide thin films obtained by reactive pulsed laser deposition, J. Vac. Sci. Technol. A 17, 249–255 (1999).

    Article  CAS  Google Scholar 

  78. Fundamentals of Nanoindentation and Nanotribology, Vol. 522 (Materials Research Society, Warrendale, PA, 1998).

    Google Scholar 

  79. B. Trindade, M. T. Vieira, and E. Bauer-Grosse, In situ high temperatme crystallization study of sputter deposited amorphous W-Fe-C films, Acta Metal. Mater. 43, 93–99 (1995).

    CAS  Google Scholar 

  80. B. Trindade and M. T. Vieira, Crystallisation kinetics of amorphousW-Co-C sputtered films, Thin Solid Films 322, 68–73 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Trindade, B., Cavaleiro, A., Vieira, M.T. (2006). The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides. In: Cavaleiro, A., De Hosson, J.T.M. (eds) Nanostructured Coatings. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48756-4_8

Download citation

Publish with us

Policies and ethics