Skip to main content

UV Raman Spectroscopic Studies on Titania: Phase Transformation and Significance of Surface Phase in Photocatalysis

  • Chapter
  • First Online:
Environmentally Benign Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Phase transformation of TiO2 from anatase to rutile was studied by UV Raman spectroscopy with the excitation lines at 325 and 244 nm, visible Raman spectroscopy with the excitation line at 532 nm, X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is found that UV Raman spectroscopy is more sensitive to the surface region of TiO2 than visible Raman spectroscopy and XRD because TiO2 strongly absorbs UV light. The anatase phase can be detected by UV Raman spectroscopy for the sample calcined at higher temperatures compared with that detected by visible Raman spectroscopy and XRD. It is suggested that the rutile phase nucleates at the interfaces of the contacting anatase particles; namely, for the agglomerated TiO2 particles, the anatase phase in the inner region is easier to change into the rutile phase than that in the outer surface region. When the anatase particles are covered with highly dispersed La2O3, the anatase phase can be stabilized both in the bulk and at the surface region even calcination at 900°C, owing to avoiding the direct contact of the anatase particles and occupying the surface defect sites of the anatase particles by La2O3. Additionally, the La2O3 impregnation could effectively inhibit the growth of TiO2 particles. The photocatalytic performance of TiO2 samples with different surface phase structures was investigated. The surface-phase junction formed between the anatase nanoparticles and rutile particles can greatly enhance the photocatalytic activity for H2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahonen PP, Kauppinen EI, Joubert JC, Deschanvres JL, Van Tendeloo G (1999) Preparation of nanocrystalline titania powder via aerosol pyrolysis of titanium tetrabutoxide. J Mater Res 14:3938–3948

    Article  CAS  Google Scholar 

  • Banfield JF, Bischoff BL, Anderson MA (1993) TiO2 accessory minerals: coarsening, and transformation kinetics in pure and doped synthetic nanocrystalline materials. Chem Geol 110:211–231

    Article  CAS  Google Scholar 

  • Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92:178–190

    Article  CAS  Google Scholar 

  • Brown FR, Maskovsky LE (1977) Raman spectra of a cobalt oxide-molybdenum oxide supported catalyst. Appl Spectrosc 31:44–46

    Article  CAS  Google Scholar 

  • Brown FR, Maskovsky LE, Rhee KH (1977a) Raman spectra of supported molybdena catalysts. I. Oxide catalysts. J Catal 50:162–171

    Article  CAS  Google Scholar 

  • Brown FR, Maskovsky LE, Rhee KH (1977b) Raman spectra of supported molybdena catalysts: II. sulfided, used, and regenerated catalysts. J Catal 50:385–389

    Article  CAS  Google Scholar 

  • Busca G, Saussey H, Saur O, Lavalley JC, Lorenzelli V (1985) FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations. Appl Catal 14:245–260

    Article  CAS  Google Scholar 

  • Busca G, Ramis G, Amores JMG, Escribano VS, Piaggio P (1994) FT Raman and FT-IR studies of titanias and metatitanate powders. J Chem Soc Faraday Trans 90:3181–3190

    Article  CAS  Google Scholar 

  • Chaves A, Katiyan KS, Porto SPS (1974) Coupled modes with asymmetry in tetragonal BaTiO3. Phys Rev B 10:3522–3533

    Article  CAS  Google Scholar 

  • Ding Z, Liu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104:4815–4820

    Article  CAS  Google Scholar 

  • Foger K, Anderson JR (1986) Thremally stable SMSI supports: iridume supported on TiO2-Al2O3 and on Ce-tablized anatase. Appl Catal 23:139–155

    Article  CAS  Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Gopalan R, Lin YS (1995) Evolution of pore and phase structure of sol-gel derived lanthana doped titania at high temperatures. Ind Eng Chem Res 34:1189–1195

    Article  CAS  Google Scholar 

  • Gouma PI, Mills MJ (2001) Anaste to rutile transformation in titania powders. J Am Ceram Soc 84:619–622

    Article  CAS  Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  • Gribb AA, Banfield JF (1997) Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am Mineral 82:717–728

    CAS  Google Scholar 

  • Hague DC, Mayo M (1993) Effect of crystallization and phase transformation in nanocrystalline TiO2. Nanostruct Mater 3:61–67

    Article  CAS  Google Scholar 

  • Hwu Y, Yao YD, Cheng NF, Tung CY, Lin HM (1997) X-ray absorption of. nanocrystal TiO2. Nanostruct Mater 9:355–358

    Article  CAS  Google Scholar 

  • Jing LQ, Sun XJ, Xin BF, Wang BQ, Cai WM, Fu HG (2004) The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J Solid State Chem 177:3375–3382

    Article  CAS  Google Scholar 

  • Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  • Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J Phys Chem 97:1184–1189

    Article  CAS  Google Scholar 

  • Knopps-Gerrits PP, De Vos DE, Feijen EJP, Jacobs PA (1997) Raman spectroscopy on zeolites. Microporous Mater 8:3–17

    Article  Google Scholar 

  • Kumar KNP (1995) Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites. Scripta Metall Mater 32:873–877

    Article  CAS  Google Scholar 

  • Kumar K-NP, Keizer K, Burggraaf AJ, Okubo T, Nagamoto H, Morooka S (1992) Densification of nanostructured titania assisted by a phase transformation. Nature 358:48–51

    Article  CAS  Google Scholar 

  • Lee GH, Zuo HM (2004) Growth and phase transformation of nanometer-sized titanium oxide powders produced by the precipitation method. J Am Chem Soc 87:473–479

    CAS  Google Scholar 

  • Li C (2003) Identifying the Highly Isolated Transition Metal Ions/Oxides in Molecular Sieves and on Oxide Supports by UV Resonance Raman Spectroscopy. J Catal 216:203–212

    Article  CAS  Google Scholar 

  • Li C, Li MJ (2002) UV Raman spectroscopic study on the phase transformation of ZrO2, Y2O3-ZrO2 and SO 2−4 /ZrO2. J Raman spectrosc 33:301–308

    Article  CAS  Google Scholar 

  • Li C, Stair PC (1996a) An advance in Raman studies of catalysts: ultraviolet resonance Raman Spectroscopy. Stud Surf Sci Catal 101:881–890

    Article  CAS  Google Scholar 

  • Li C, Stair PC (1996b) Ultraviolet Raman spectroscopy characterization of sulfated ziconia catalysts; fresh, deactivated and regenerated. Catal Lett 36:119–123

    Article  CAS  Google Scholar 

  • Li C, Stair PC (1997) Coke formation in zeolites studied by a new technique: ultraviolet resonance Raman spectroscopy. Stud Surf Sci Catal 105:599–606

    Article  Google Scholar 

  • Li C, Xiong G, Xin Q, Liu JK, Ying PL, Feng ZC, Li J, Yang WB, Wang YZ, Wang GR, Liu XY, Lin M, Wang XQ, Min EZ (1999) UV resonance Raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite. Angew Chem Int Ed 38:2220–2222

    Article  CAS  Google Scholar 

  • Li J, Xiong G, Feng ZC, Liu ZM, Xin Q, Li C (2000) Coke formation during the methanol conversion to olefins in zeolites by UV Raman spectroscopy. Micro Meso Mater 39:275–280

    Article  Google Scholar 

  • Li MJ, Feng ZC, Xiong G, Ying PL, Xin Q, Li C (2001) Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy. J Phys Chem B 105:8107–8111

    Article  CAS  Google Scholar 

  • Li MJ, Feng ZC, Ying PL, Xin Q, Li C (2003) Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy. Phys Chem Chem Phys 5:5326–5332

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu GQ, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Loddo V, Marcì G, Martí C, Palmisano L, Rives V, Sclafani A (1999) Preparation and characterisation of TiO2 (anatase) supported on TiO2 (rutile) catalysts employed for 4-nitrophenol photodegradation in aqueous medium and comparison with TiO2 (anatase) supported on Al2O3. Appl Catal B 20:29–45

    Article  CAS  Google Scholar 

  • Ma W, Lu Z, Zhang M (1998) Investigation of structural transformation in nanophase titanium dioxide by Raman spectroscopy. Appl Phys A 66:621–627

    Article  CAS  Google Scholar 

  • Mackenzie KJD (1975) The calcinations of titania: the effect of additive on the anatase-rutile transformation. Trans J Br Ceram 74:29–34

    CAS  Google Scholar 

  • Muscat J, Swamy V, Harrison NM (2002) First-principles calculations of the phase stability of TiO2. Phys Rev B 65:224112-1–224112-15

    Google Scholar 

  • Navrotsky A, Kleppa OJ (1967) Enthalpy of the anatase-rutile transformation. J Am Ceram Soc 50:626–630

    Article  CAS  Google Scholar 

  • O’Regan B, Graetzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Ohsaka T, Izumi F, Fujiki Y (1978) Raman Spectrum of Anatase, TiO2. J Raman Spectrosc 7:321–324

    Article  Google Scholar 

  • Okada K, Yamamoto N, Kameshima Y, Yasumori A (2001) Effect of silica additive on the anatase-to-rutile phase transition. J Am Ceram Soc 84:1591–1596

    Article  CAS  Google Scholar 

  • Ovenstone J, Yanagisawa K (1999) Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcinations. Chem Mater 11:2770–2774

    Article  CAS  Google Scholar 

  • Ozaki S, Iida Y (1961) Grain growth and phase transformation of titanium oxide during calcination. J Am Ceram Soc 44:120–127

    Article  Google Scholar 

  • Penn RL, Banfield JF (1999) Formation of rutile nuclei at anatase 112 twin interfaces and the phase transformation mechanism in nanocrystalline titania. Am Mineral 84:871–876

    CAS  Google Scholar 

  • Ranade MR, Navrotsky A, Zhang HZ, Banfield JF, Elder SH, Zaban A, Borse PH, Kulkarni SK, Doran GS, Whitfield HJ (2002) Energetics of nanocrystalline TiO2. Proc Natl Acad Sci USA 99(suppl 2):6476–6481

    Article  CAS  Google Scholar 

  • Sakthivel S, Hidalgo MC, Bahnermann DW, Geissen S-U, Murugesan V, Vogelpohl A (2006) A fine route to tune the photocatalytic activity of TiO2. Appl Catal B 63:31–40

    Article  CAS  Google Scholar 

  • Shannon RD, Pask JA (1965) Kinetics of anatase-rutile transformation. J Am Ceram Soc 48:391–398

    Article  CAS  Google Scholar 

  • Sreethawong T, Suzuki Y, Yoshikawa S (2005) Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol–gel process. J Solid State Chem 178:329–338

    Article  CAS  Google Scholar 

  • Stair PC, Li C (1997) Ultraviolet Raman spectroscopy of catalysts and other solids. J Vac Sci Technol A 15:1679–1684

    Article  CAS  Google Scholar 

  • Tsai S-J, Cheng S (1997) Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catal Today 33:227–237

    Article  CAS  Google Scholar 

  • Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Article  CAS  Google Scholar 

  • West AR (1984) Solid state chemistry and its applications. Wiley, New York, p 174

    Google Scholar 

  • Xie YC, Tang YQ (1990) Spontaneous Monolayer Dispersion of Oxides and Salts onto surfaces of Supports: Application to Heterogeneous Catalysis. Adv Catal 37:1–43

    Article  CAS  Google Scholar 

  • Xiong G, Li C, Feng ZC, Ying PL, Xin Q, Liu J (1999) Surface coordination structure of molybdate with extremely low loading on gamma-alumina characterized by UV resonance Raman spectroscopy. J Catal 186:234–237

    Article  CAS  Google Scholar 

  • Xiong G, Li C, Li HY, Xin Q, Feng ZC (2000a) Direct spectroscopic evidence for vanadium species in V-MCM-41 molecular sieve characterized by UV resonance Raman spectroscopy. J Chem Soc Chem Commun 677–678.

    Google Scholar 

  • Xiong G, Feng ZC, Li J, Yang H, Ying PL, Xin Q, Li C (2000b) UV resonance Raman spectroscopic studies on the genesis of highly dispersed surface molybdate species on γ-alumina. J Phys Chem B 104:3581–3588

    Article  CAS  Google Scholar 

  • Yan MC, Chen F, Zhang JL, Anpo M (2005) Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B 109:8673–8678

    Article  CAS  Google Scholar 

  • Yang J, Mei S, Ferreira JMF (2000) Hydrothermal synthesis of nanosized titania powders: Influence of peptization and peptizing agents on the crystalline phases and phase transitions. J Am Ceram Soc 83:1361–1368

    Article  CAS  Google Scholar 

  • Yoshinaka M, Hirota K, Yamaguchi O (1997) Formation and sintering of TiO2 (anatase) solid solution in the system TiO2-SiO2. J Am Ceram Soc 80:2749–2753

    Article  CAS  Google Scholar 

  • Zhang HZ, Banfield JF (2000a) Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J Mater Res 15:437–448

    Article  CAS  Google Scholar 

  • Zhang HZ, Banfield JF (2000b) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487

    Article  CAS  Google Scholar 

  • Zhang F, Zheng Z, Ding X, Mao Y, Chen Z, Yang S, Liu X (1997) Highly oriented rutile-type TiO2 films synthesized by ion beam enhanced deposition. J Vac Sci Technol A 15:1824–1827

    Article  CAS  Google Scholar 

  • Zhang YH, Chan CK, Porter JF, Guo W (1998) Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis. J Mater Res 13:2602–2609

    Article  CAS  Google Scholar 

  • Zhang J, Li MJ, Feng ZC, Chen J, Li C (2006) UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. J Phys Chem B 110:927–935

    Article  CAS  Google Scholar 

  • Zhang J, Xu Q, Feng ZC, Li MJ, Li C (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 47:1766–1769

    Article  CAS  Google Scholar 

  • Zhu J, Zheng W, He B, Zhang J, Anpo M (2004) Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A 216:35–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, Grant No. 20673112), National Basic Research Program of China (Grant No. 2009CB220010), and Program for Strategic Scientific Alliances between China and the Netherlands (2008DFB50130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Zhang, J., Xu, Q., Feng, Z., Li, C. (2010). UV Raman Spectroscopic Studies on Titania: Phase Transformation and Significance of Surface Phase in Photocatalysis. In: Anpo, M., Kamat, P. (eds) Environmentally Benign Photocatalysts. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48444-0_6

Download citation

Publish with us

Policies and ethics