Skip to main content

Development and Sensitization of N- or S-Doped TiO2 Photocatalysts

  • Chapter
  • First Online:
Environmentally Benign Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2258 Accesses

Abstract

Titanium dioxide photocatalysts are promising substrates for photodegradation of pollutants in water and air, but show photocatalytic activities only under UV light. To utilize a wider range of incident wavelengths such as solar light, development of photocatalysts active under visible light is very important. Chemically modified titanium dioxide photocatalysts containing anatase phase with S (S4+) substituted for some lattice Ti atoms or N substituted for some lattice O atoms were prepared. In addition, S, C-co-doped TiO2 having rutile phase were also prepared. These catalysts showed strong absorption of visible light and high activities for degradation of 2-propanol in aqueous solution, partial oxidation of adamantine, and 2-methylpyridine under irradiation at wavelengths longer than 440 nm. The oxidation states of the S, C, and N atoms incorporated into the TiO2 particles were determined to be mainly S4+, C4+, and N3− from XPS spectra, respectively. The photocatalytic activities of S- or N-doped TiO2 photocatalysts with adsorbed Fe3+ ions were markedly improved for oxidation of 2-propanol compared to those of S- or N-doped TiO2 without Fe3+ ions under a wide range of incident wavelengths, including UV light and visible light. The photocatalytic activity reached maximum with 0.90 wt% Fe3+ ions adsorbed on S-doped TiO2, and 0.36 wt% Fe3+ ions on N-doped TiO2. Furthermore, redox treatment of S- or N-doped TiO2 photocatalysts with adsorbed Fe3+ ions by reduction with NaBH4 followed by air oxidation resulted in further improvements in photocatalytic activities. In this case, the optimum amounts of Fe3+ were 2.81 and 0.88 wt% on the surfaces of S- and N-doped TiO2 photocatalysts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anpo M (1997) Catal Surv Jpn 1:169

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki A, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides Science 293:269

    Article  CAS  Google Scholar 

  • Blaha P, Schwarz K, Sorantin P, Trickey SB (1990) Full-potential, linearized augmented plane-wave programs for crystalline systems Comput Phys Commun 59:399

    Article  CAS  Google Scholar 

  • Breckenridge RG, Hosler WR (1953) Phys Rev 91:793

    Article  CAS  Google Scholar 

  • Cao L, Spiess F, Huang A, Suib SL, Obee TN, Hay SO, Freihaut JDJ (1999) Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films Phys Chem 103:2912

    CAS  Google Scholar 

  • Choi W, Hoffmann MR (1996) Kinetics and mechanism of CCl4 photoreductive degradation on TiO2: The role of trichloromethyl radical and dichlorocarbene J Phys Chem 100:2161

    Article  Google Scholar 

  • Cronemeyer DC (1957) Phys Rev 113:1222

    Article  Google Scholar 

  • Dusi M, Muller CA, Mallat T, Baiker A (1999) Novel amine-modified TiO2-SiO2 aerogel for the demanding epoxidation of substituted cyclohexenols Chem Commun 197

    Google Scholar 

  • Fujihira M, Satoh Y, Osa T (1981) Heterogeneous photocatalytic oxidation of aromatic-compounds on tio2 Nature 293:206

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Nature 238:5551

    Article  Google Scholar 

  • Gablenz S, Abicht H-P, Pippel E, Lichtenberger O, Woltersdorf J (2000) New evidence for an oxycarbonate phase as an intermediate step in BaTiO3 preparation J Eur Ceram Soc 20:1053

    Article  CAS  Google Scholar 

  • Ghsh AK, Maruska HP (1994) J Electrochem Soc 98:13669

    Google Scholar 

  • Hoffman MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis Chem Rev 95:69

    Article  Google Scholar 

  • Ihara T, Miyoshi M, Ando M, Sugihara S Iriyama Y (2001) Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment J Mat Sci 36:4201

    Google Scholar 

  • Ikeda S, Abe C, Torimoto T, Ohtani B (2002) Visible light-induced hydrogen evolution from aqueous suspensions of titanium(IV) oxide modified with binaphthol Electrochemistry 70:442

    CAS  Google Scholar 

  • Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst Chem Lett 32:772

    Article  CAS  Google Scholar 

  • Khaleel AA (2004) Nanostructured pure gamma-Fe2O3 via forced precipitation in an organic solvent Chem Eur J 10:925

    Article  CAS  Google Scholar 

  • Kohn W, Sham LJ (1965) Phys Rev 140:1133

    Article  Google Scholar 

  • Matthews RW (1984) Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium-dioxide suspensions J Chem Soc Faraday Trans 80:457

    Article  Google Scholar 

  • Nakanishi T, Iida H, Osaka T (2003) Preparation of iron oxide nanoparticles via successive reduction-oxidation in reverse micelles Chem Lett 32:1166

    Article  CAS  Google Scholar 

  • Nosaka Y, Matsushita M, Nishino J, Nosaka AY (2005) Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds Sci Technol Adv Mater 6:1468

    Article  Google Scholar 

  • Ohno T, Kigoshi T, Nakabeta K, Matsumura M (1998a) Stereospecific epoxidation of 2-hexene with molecular oxygen on photoirradiated titanium dioxide powder Chem Lett 877

    Google Scholar 

  • Ohno T, Nakabeya K, Matsumura M (1998b) Epoxidation of olefins on photoirradiated titanium dioxide powder using molecular oxygen as an oxidant J Catal 176:76

    Article  CAS  Google Scholar 

  • Ohno T, Tanigawa F, Fujihara K, Izumi S, Matsumura M (1999) Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder J Photochem Photobiol A 127:107

    Article  CAS  Google Scholar 

  • Ohno T, Masaki Y, Hirayama S, Matsumura M (2001) TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light J Catal 204:163

    Article  CAS  Google Scholar 

  • Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light Chem Lett 32:364

    Article  CAS  Google Scholar 

  • Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004a) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light Appl Catal A Gen 265:115

    Article  CAS  Google Scholar 

  • Ohno T, Tsubota T, Nishijima K, Miyamoto Z (2004b) Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light Chem Lett 33:750

    Article  CAS  Google Scholar 

  • Ohno T, Tsubota T, Toyofuku M, Inaba R (2004c) Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light Catal Lett 98:255

    Article  CAS  Google Scholar 

  • Ohtani B, Kawaguchi J, Kozawa M, Nishimoto S, Inui T (1995) Photocatalytic racemization of amino-acids in aqueous polycrystalline cadmium(ii) sulfide dispersions J Chem Soc Faraday Trans 91:1103

    Article  CAS  Google Scholar 

  • Paprer E, Lacroix R, Donnet J-B, Nanse G, Fioux P (1995) Xps study of the halogenation of carbon-black.2. Chlorination Carbon 33:63

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  • Sakatani Y, Ando H, Okusato K, Koike H, Nunoshige J, Takata T, Kondo JN, Hara M, Domen (2004) Metal ion and N co-doped TiO2 as a visible-light photocatalyst J Mat Res 19:2100

    Google Scholar 

  • Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide Angew Chem Int Ed 42:4908

    Article  CAS  Google Scholar 

  • Sayago DI, Serrano P, Bonme O, Goldoni A, Paolucci G, Roman E, Martin-Gago JA (2001) Adsorption and desorption of SO2 on the TiO2(110)-(1X1) surface: A photoemission study Phys Rev B 64:205402

    Article  Google Scholar 

  • Soana F, Sturini M, Cermenati L, Albini A (2000) Titanium dioxide photocatalyzed oxygenation of naphthalene and some of its derivatives J Chem Soc Perkin Trans 2:699

    Google Scholar 

  • Stanjek H (2002) XRD peak migration and apparent shift of cell-edge lengths of nano-sized hematite, goethite and lepidocrocite Clay Miner 37:629

    Article  CAS  Google Scholar 

  • Theurich J, Bahnemann DW, Vogel R, Dhamed FE, Alhakimi G, Rajab I (1997) Photocatalytic degradation of naphthalene and anthracene: GC-MS analysis of the degradation pathway Res Chem Intermed 23:247

    Article  CAS  Google Scholar 

  • Umebayashi T, Yamaki T, Ito H, Asai K (2002a) Band gap narrowing of titanium dioxide by sulfur doping Appl Phys Lett 81:454

    Article  CAS  Google Scholar 

  • Umebayashi T, Yamaki T, Itoh H, Asai K (2002b) Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations J Phys Chem Solids 63:1909

    Article  CAS  Google Scholar 

  • Umebayashi T, Yamaki T, Yamamoto S, Miyashita A, Tanaka S, Sumita T, Asai K (2003) Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies J Appl Phys 93:5156

    Article  CAS  Google Scholar 

  • Wolfrum EJ, Huang J, Blake DM, Maness PC, Huang Z, Fiest J, Jacoby WA (2002) Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces Environ Sci Technol 36:3412

    Article  CAS  Google Scholar 

  • Yanagida S, Ishimaru Y, Miyake Y, Shiragami T, Pac C, Hashimoto K, Sakata T (1989) Semiconductor photocatalysis.7. Zns-catalyzed photoreduction of aldehydes and related derivatives - 2-electron-transfer reduction and relationship with spectroscopic properties J Phys Chem 93:2576

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (417) from the Ministry of Education, Culture, Science, and Technology (MEXT), Japan and Nissan Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhisa Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Ohno, T., Tsubota, T. (2010). Development and Sensitization of N- or S-Doped TiO2 Photocatalysts. In: Anpo, M., Kamat, P. (eds) Environmentally Benign Photocatalysts. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48444-0_11

Download citation

Publish with us

Policies and ethics