Skip to main content

Modeling of Magnetic SMAs

  • Chapter
  • First Online:
Shape Memory Alloys

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley, 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga, Applied Physics Letters 77 (6) (2000) 886–888.

    Article  CAS  Google Scholar 

  2. L. E. Faidley, M. J. Dapino, G. N. Washington, T. A. Lograsso, Reversible strain in Ni-MnGa with collinear field and stress, Proceedings of SPIE, Smart Structures and Materials: Active Materials: Behavior and Mechanics, San Diego, CA, 6–10 March 2005. Vol. 5761 (2005) 501–512.

    CAS  Google Scholar 

  3. L. Hirsinger, N. Creton, C. Lexcellent, Stress-induced phase transformation in Ni-Mn-Ga alloys: Experiments and modelling, Material Science & Engineering A 378 (2004) 365–369.

    Article  CAS  Google Scholar 

  4. K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, V. V. Kokorin, Large magnetic-field-induced strains in Ni_2MnGa single crystals, Applied Physics Letters 69 (13) (1996) 1966–1968.

    Article  CAS  Google Scholar 

  5. R. A. Kellogg, A. B. Flatau, A. E. Clark, M. Wun-Fogle, T. A. Lograsso, Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe_0.81Ga_0.19, Journal of Applied Physics 91 (10) (2002) 7821–7823.

    Article  CAS  Google Scholar 

  6. I. Chopra, Review of state of art of smart structures and integrated systems, AIA Journal 40 (11) (2002) 2145–2187.

    Article  CAS  Google Scholar 

  7. V. A. Chernenko, V. V. Kokorin, O. M. Babii, I. K. Zasimchuk, Phase diagrams in the Ni-Mn-Ga system under compression, Intermetallics 6 (1) (1998) 29–34.

    Article  CAS  Google Scholar 

  8. J. Pons, V. A. Chernenko, E. Cesari, V. A. L’vov, Stress-strain-temperature behaviour for martensitic transformation in Ni-Mn-Ga single crystals compressed along 〈001〉 and 〈110〉 axes, Journal de Physique IV France 112 (2003) 939–942.

    Article  CAS  Google Scholar 

  9. V. V. Martynov, V. V. Kokorin, The crystal structure of thermally- and stress-induced martensites in Ni_2MnGa single crystals, Journal de Physique III France 2 (1992) 739–749.

    Article  CAS  Google Scholar 

  10. H. E. Karaca, I. Karaman, D. C. Lagoudas, H. J. Maier, Y. I. Chumlyakov, Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy, Scripta Materialia 49 (2003) 831–836.

    Article  CAS  Google Scholar 

  11. J. Tellinen, I. Suorsa, I. Jääskeläinen, Aaltio, K. Ullakko, Basic properties of magnetic shape memory actuators, Proceedings of the 8th International Conference ACTUATOR 2002, Bremen, Germany, 10-12 June 2002 (2002) 566–569.

    Google Scholar 

  12. A. Bhattacharyya, D. C. Lagoudas, Y. Wang, V. K. Kinra, On the role of thermoelectric heat transfer in the design of SMA actuators: Theoretical modeling and experiment, Smart Materials and Structures 4 (1995) 252–263.

    Article  Google Scholar 

  13. O. Heczko, A. Sozinov, K. Ullakko, Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy, IEEE Transactions on Magnetics 36 (5) (2000) 3266–3268.

    Article  CAS  Google Scholar 

  14. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Reading, MA, 1972.

    Google Scholar 

  15. R. C. O’Handley, Modern Magnetic Materials, John Wiley & Sons, New York, 2000.

    Google Scholar 

  16. C. Kittel, Introduction to Solid State Physics, 7th Edition, John Wiley & Sons, New York, 1996.

    Google Scholar 

  17. M. Pasquale, Mechanical sensors and actuators, Sensors and Actuators A 106 (2003) 142–148.

    Article  CAS  Google Scholar 

  18. N. Sarawate, M. Dapino, Experimental characterization of the sensor effect in ferromagnetic shape memory Ni-Mn-Ga, Applied Physics Letters 88 (2006) 121923–1–3.

    Article  CAS  Google Scholar 

  19. P. Müllner, V. A. Chernenko, G. Kostorz, Stress-induced twin rearrangement resulting in change of magnetization in a Ni–Mn–Ga ferromagnetic martensite, Scripta Materialia 49 (2003) 129–133.

    Article  CAS  Google Scholar 

  20. I. Suorsa, J. Tellinen, K. Ullakko, E. Pagounis, Voltage generation induced by mechanical straining in magnetic shape memory materials, Journal of Applied Physics 95 (12) (2004) 8054–8058.

    Article  CAS  Google Scholar 

  21. P. Müllner, V. A. Chernenko, M. Wollgarten, Kostorz, Large cyclic deformations of a Ni-Mn-Ga shape memory alloy induced by magnetic fields, Journal of Applied Physics 92 (11) (2002) 6708–6713.

    Article  CAS  Google Scholar 

  22. P. J. Webster, K. R. A. Ziebeck, S. L. Town, M. S. Peak, Magnetic order and phase transformation in Ni_2MnGa, Philosophical Magazine B 49 (3) (1984) 295–310.

    Article  CAS  Google Scholar 

  23. I. K. Zasimchuk, V. V. Kokorin, V. V. Martynov, A. V. Tkachenko, V. A. Chernenko, Crystal structure of martensite in Heusler alloy Ni_2MnGa, Physics of Metals and Metallography 69 (6) (1990) 104–108.

    Google Scholar 

  24. A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Applied Physics Letters 80 (10) (2002) 1746–1748.

    Article  CAS  Google Scholar 

  25. J. Cui, T. W. Shield, R. D. James, Phase transformation and magnetic anisotropy of an iron-palladium ferromagnetic shape-memory alloy, Acta Materialia 52 (2004) 35–47.

    Article  CAS  Google Scholar 

  26. R. D. James, M. Wuttig, Magnetostriction of martensite, Philosophical Magazine A 77 (5) (1998) 1273–1299.

    Article  CAS  Google Scholar 

  27. T. W. Shield, Magnetomechanical testing machine for ferromagnetic shape-memory alloys, Review of Scientific Instruments 74 (9) (2003) 4077–4088.

    Article  CAS  Google Scholar 

  28. T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, L. Sorensen, Magnetic field-induced reversible variant rearrangement in Fe-Pd single crystals, Acta Materialia 52 (17) (2004) 5083–5091.

    Article  CAS  Google Scholar 

  29. S. J. Murray, R. Hayashi, M. Marioni, S. M. Allen, R. C. O’Handley, Magnetic and mechanical properties of FeNiCoTi and NiMnGa magnetic shape memory alloys, Proceedings of SPIE 3675 (1999) 204–211.

    Article  CAS  Google Scholar 

  30. A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, K. Ishida, Magnetic properties and large magnetic-field-induced strains in off-stoichiometric Ni-Mn-Al heusler alloys, Applied Physics Letters 77 (19) (2000) 3054–3056.

    Article  CAS  Google Scholar 

  31. T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima, S. Muto, Giant magnetostriction in an ordered Fe_3Pt single crystalexhibiting a martensitic transformation, Applied Physics Letters 77 (10) (2000) 1502–1504.

    Article  CAS  Google Scholar 

  32. M. Wuttig, L. Liu, K. Tsuchiya, R. D. James, Occurrence of ferromagnetic shape memory alloys (invited), Journal of Applied Physics 87 (9) (2000) 4707–4711.

    Article  CAS  Google Scholar 

  33. M. Wuttig, J. Li, C. Craciunescu, A new ferromagnetic shape memory alloy system, Scripta Materialia 44 (2001) 2393–2397.

    Article  CAS  Google Scholar 

  34. A. Sozinov, A. A. Likhachev, N. Lanska, O. Söderberg, K. Ullakko, V. K. Lindroos, Effect of crystal structure on magnetic-field-induced strain in Ni-Mn-Ga, Proceedings of SPIE, Symposium on Smart Structures and Materials 5053 (2003) 586–594.

    CAS  Google Scholar 

  35. H. Morito, A. Fujita, R. Kainuma, K. Ishida, K. Oikawa, Magnetocrystalline anisotropy in single-crystal Co-Ni-Al ferromagnetic shape-memory alloy, Applied Physics Letters 81 (9) (2002) 1657–1659.

    Article  CAS  Google Scholar 

  36. T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi, K. Kishio, Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys, Journal of Applied Physics 93 (10) (2003) 8647–8649.

    Article  CAS  Google Scholar 

  37. A. A. Cherechukin, I. E. Dikshtein, D. I. Ermakov, A. V. Glebov, V. V. Koledov, D. A. Kosolapov, V. G. Shavrov, A. A. Tulaikova, E. P. Krasnoperov, T. Takagi, Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni-Mn-Fe-Ga alloy, Physics Letters A 291 (2001) 175–183.

    Article  CAS  Google Scholar 

  38. S. Jeong, K. Inoue, S. Inoue, K. Koterazawa, M. Taya, K. Inoue, Effect of magnetic field on martensite transformation in a polycrystalline Ni_2MnGa, Material Science & Engineering A 359 (2003) 253–260.

    Article  CAS  Google Scholar 

  39. S. J. Murray, M. Farinelli, C. Kantner, J. K. Huang, A. M. Allen, R. C. O’Handley, Field-induced strain under load in Ni-Mn-Ga magnetic shape memory materials, Journal of Applied Physics 83 (11) (1998) 7297–7299.

    Article  CAS  Google Scholar 

  40. K. Ullakko, Y. Ezer, A. Sozinov, G. Kimmel, P. Yakovenko, V. K. Lindroos, Magnetic-field-induced strains in polycrystalline Ni-Mn-Ga at room temperature, Scripta Materialia 44 (2001) 475–480.

    Article  CAS  Google Scholar 

  41. T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya, T. Mori, Structural change and straining in Fe-Pd polycrystals by magnetic field, Material Science & Engineering A 361 (2003) 75–82.

    Article  CAS  Google Scholar 

  42. M. A. Marioni, R. C. O’Handley, S. A. Allen, Analytical model for field-induced strain in ferromagnetic shape-memory alloy polycrystals, Journal of Applied Physics 91 (10) (2002) 7807–7809.

    Article  CAS  Google Scholar 

  43. T. Kakeshita, T. Takeuchi, T. Fukuda, T. Saburi, R. Oshima, S. Muto, K. Kishio, Magnetic field-induced martensitic transformation and giant magnetostriction in Fe-Ni-Co-Ti and ordered Fe_3Pt shape memory alloys, Materials Transactions, JIM 41 (8) (2000) 882–887.

    CAS  Google Scholar 

  44. A. N. Vasil’ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi, J. Tani, Structural and magnetic phase transitions in shape-memory alloys Ni_2+xMn_1-xGa, Physical Review B 59 (2) (1999) 1113–1119.

    Article  CAS  Google Scholar 

  45. I. Karaman, H. E. Karaca, B. Basaran, D. C. Lagoudas, Y. I. Chumlyakov, H. J. Maier, Stress-assisted reversible magnetic field-induced phase transformation in Ni_2MnGa magnetic shape memory alloys, Scripta Materialia 55 (4) (2006) 403–406.

    Article  CAS  Google Scholar 

  46. O. Heczko, L. Straka, K. Ullakko, Relation between structure, magnetization process and magnetic shape memory effect of various martensites occuring in Ni-Mn-Ga alloys, Journal de Physique IV France 112 (2003) 959–962.

    Article  CAS  Google Scholar 

  47. A. A. Likhachev, A. Sozinov, K. Ullakko, Different modeling concepts of magnetic shape memory and their comparison with some experimental results obtained in Ni-Mn-Ga, Material Science & Engineering A 378 (2004) 513–518.

    Article  CAS  Google Scholar 

  48. F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra, L. Righi, Composition and temperature dependence of the magnetocrystalline anisotropy in Ni_2+xMn_1+yGa_1+z x+y+z = 0) Heusler alloys, Applied Physics Letters 81 (21) (2002) 4032–4034.

    Article  CAS  Google Scholar 

  49. F. Albertini, F. Canepa, S. Cirafici, E. A. Franceschi, M. Napoletano, A. Paoluzi, L. Pareti, M. Solzi, Composition dependence of magnetic and magnetothermal properties of Ni-Mn-Ga shape memory alloys, Journal of Magnetism and Magnetic Materials 272–276 (Part 3) (2004) 2111–2112.

    Article  CAS  Google Scholar 

  50. O. Heczko, L. Straka, Compositional dependence of structure, magnetization and magnetic anisotropy in Ni-Mn-Ga magnetic shape memory alloys, Journal of Magnetism and Magnetic Materials 272–276 (Part 3) (2004) 2045–2046.

    Article  CAS  Google Scholar 

  51. S. J. Murray, M. Marioni, A. M. Kukla, J. Robinson, R. C. O’Handley, S. M. Allen, Large field induced strain in single crystalline Ni-Mn-Ga ferromagnetic shape memory alloy, Journal of Applied Physics 87 (9) (2000) 5774–5776.

    Article  CAS  Google Scholar 

  52. S. J. Murray, Magneto-mechanical properties and applications of Ni-MnGa ferromagnetic shape memory alloy, Ph.D. thesis, Massachusetts Institute of Technology (February 2000).

    Google Scholar 

  53. L. Hirsinger, N. Creton, C. Lexcellent, From crystallographic properties to macroscopic detwinning strain and magnetisation of Ni-Mn-Ga magnetic shape memory alloys, Journal de Physique IV France 115 (2004) 111–120.

    Article  CAS  Google Scholar 

  54. O. Heczko, N. Lanska, O. Soderberg, K. Ullakko, Temperature variation of structure and magnetic properties of Ni-Mn-Ga magnetic shape memory alloys, Journal of Magnetism and Magnetic Materials 242–245 (2002) 1446–1449.

    Article  Google Scholar 

  55. A. A. Likhachev, K. Ullakko, Quantitative model of large magnetostrain effect in ferromagnetic shape memory alloys, The European Physical Journal B 14 (2) (2000) 263–267.

    Article  CAS  Google Scholar 

  56. R. Tickle, R. D. James, Magnetic and magnetomechanical properties of Ni_2 Mn Ga, Journal of Magnetism and Magnetic Materials 195 (3) (1999) 627–638.

    Article  CAS  Google Scholar 

  57. R. Tickle, Ferromagnetic shape memory materials, Ph.D. thesis, University of Minnesota (May 2000).

    Google Scholar 

  58. B. Kiefer, H. E. Karaca, D. C. Lagoudas, I. Karaman, Characterization and modeling of the magnetic field-induced strain and work output in Ni_2MnGa shape memory alloys, Journal of Magnetism and Magnetic Materials 312 (1) (2007) 164–175.

    Article  CAS  Google Scholar 

  59. H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov, H. J. Maier, Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals, Acta Materialia 54 (1) (2006) 233–245.

    Article  CAS  Google Scholar 

  60. N. A. Spaldin, Magnetic Materials: Fundamentals and Device Applications, Cambridge University Press, 2003.

    Google Scholar 

  61. C. Kittel, Physical theory of ferromagnetic domains, Reviews of Modern Physics 21 (4) (1949) 541–583.

    Article  Google Scholar 

  62. J. G. Boyd, D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, International Journal of Plasticity 12 (6) (1996) 805–842.

    Article  CAS  Google Scholar 

  63. P. Popov, D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International Journal of Plasticity 23 (10–11) (2007) 1679–1720.

    Article  CAS  Google Scholar 

  64. K. Otsuka, C. M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  65. R. C. O’Handley, S. M. Allen, D. I. Paul, C. P. Henry, M. Marioni, D. Bono, C. Jenkins, A. Banful, R. Wager, Keynote address: Magnetic field-induced strain in single crystal Ni-Mn-Ga, Proceedings of SPIE, Symposium on Smart Structures and Materials 5053 (2003) 200–206.

    CAS  Google Scholar 

  66. A. Hubert, R. Schäfer, Magnetic Domains, Springer-Verlag, New York, 2001.

    Google Scholar 

  67. A. A. Likhachev, K. Ullakko, Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni-Mn-Ga shape memory alloy, Physics Letters A 275 (2000) 142–151.

    Article  CAS  Google Scholar 

  68. O. Heczko, Determination of ordinary magnetostriction in Ni-Mn-Ga magnetic shape memory alloy, Journal of Magnetism and Magnetic Materials 290–291 (2005) 846–849.

    Article  CAS  Google Scholar 

  69. O. Heczko, Magnetic shape memory effect and magnetization reversal, Journal of Magnetism and Magnetic Materials 290–291 (2) (2005) 787–794.

    Article  CAS  Google Scholar 

  70. A. A. Likhachev, A. Sozinov, K. Ullakko, Optimizing work output in Ni-Mn-Ga and other ferromagnetic shape memory alloys, Proceedings of SPIE, Symposium on Smart Structures and Materials 4699 (2002) 553–563.

    Google Scholar 

  71. Y. Ge, O. Heczko, O. Söderberg, V. K. Lindroos, Various magnetic domain structures in Ni-Mn-Ga martensite exhibiting magnetic shape memory effect, Journal of Applied Physics 96 (4) (2004) 2159–2163.

    Article  CAS  Google Scholar 

  72. M. R. Sullivan, H. D. Chopra, Temperature- and field-dependent evolution of micromagnetic structure in ferromagnetic shape-memory-alloys, Physical Review B 70 (2004) 094427–(1–8).

    Article  CAS  Google Scholar 

  73. M. R. Sullivan, A. A. Shah, H. D. Chopra, Pathways of structural and magnetic transition in ferromagnetic shape-memory alloys, Physical Review B 70 (2004) 094428–(1–8).

    Article  CAS  Google Scholar 

  74. R. C. O’Handley, Model for strain and magnetization in magnetic shape-memory alloys, Journal of Applied Physics 83 (6) (1998) 3263–3270.

    Article  CAS  Google Scholar 

  75. S. J. Murray, R. C. O’Handley, S. M. Allen, Model for discontinuous actuation of ferromagnetic shape memory alloy under stress, Journal of Applied Physics 89 (2) (2001) 1295–1301.

    Article  CAS  Google Scholar 

  76. R. D. James, K. F. Hane, Martensitic transformations and shape-memory materials, Acta Materialia 48 (1) (2000) 197–222.

    Article  CAS  Google Scholar 

  77. L. Hirsinger, C. Lexcellent, Modelling detwinning of martensite platelets under magnetic and (or) stress actions on NiMnGa alloys, Journal of Magnetism and Magnetic Materials 254–255 (2003) 275–277.

    Article  Google Scholar 

  78. L. Hirsinger, C. Lexcellent, Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga, Journal de Physique IV France 112 (2003) 977–980.

    Article  CAS  Google Scholar 

  79. N. I. Glavatska, A. A. Rudenko, I. N. Glavatskiy, V. A. L’vov, Statistical model of magnetostrain effect in martensite, Journal of Magnetism and Magnetic Materials 265 (2) (2003) 142–151.

    Article  CAS  Google Scholar 

  80. V. D. Buchelnikov, S. I. Bosko, The kinetics of phase transformations in ferromagnetic shape memory alloys Ni-Mn-Ga, Journal of Magnetism and Magnetic Materials 258–259 (2003) 497–499.

    Article  CAS  Google Scholar 

  81. V. A. Chernenko, V. A. L’vov, P. Müllner, G. Kostorz, T. Takagi, Magnetic-field-induced superelasticity of ferromagnetic thermoelastic martensites: Experiments and modeling, Physical Review B 69 (2004) 134410–(1–8).

    Article  CAS  Google Scholar 

  82. P. Müllner, V. A. Chernenko, G. Kostorz, A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity), Journal of Magnetism and Magnetic Materials 267 (2003) 325–334.

    Article  CAS  Google Scholar 

  83. K.-L. Lee, S. Seelecke, A model for ferromagnetic shape memory thin film actuators, Proceedings of SPIE, Smart Structures and Materials: Modeling, Signal Processing, and Control 5757 (2005) 302–313.

    CAS  Google Scholar 

  84. B. Kiefer, D. C. Lagoudas, Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys, Philosophical Magazine Special Issue: Recent Advances in Theoretical Mechanics, in Honor of SES 2003 A.C. Eringen Medalist G.A. Maugin 85 (33-35) (2005) 4289–4329.

    CAS  Google Scholar 

  85. B. Kiefer, A phenomenological constitutive model for magnetic shape memory alloys, Ph.D. thesis, Texas A&M University (December 2006).

    Google Scholar 

  86. J. Kiang, L. Tong, Modelling of magneto-mechanical behavior of Ni-Mn-Ga single crystals, Journal of Magnetism and Magnetic Materials 292 (2005) 394–412.

    Article  CAS  Google Scholar 

  87. K. Hutter, A. A. F. van de Ven, Field Matter Interactions in Thermoelastic Solids, Vol. 88 of Lecture Notes in Physics, Springer-Verlag, New York, 1978.

    Google Scholar 

  88. C. Kittel, J. K. Galt, Ferromagnetic domain theory, Solid State Physics 3 (1956) 437–564.

    CAS  Google Scholar 

  89. D. C. Lagoudas, Z. Bo, M. A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites, Mechanics of Composite Materials and Structures 3 (1996) 153–179.

    Article  CAS  Google Scholar 

  90. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: Theoretical Derivations, International Journal of Engineering Science 37 (1999) 1089–1140.

    Article  CAS  Google Scholar 

  91. M. A. Qidwai, D. C. Lagoudas, Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms, International Journal for Numerical Methods in Engineering 47 (2000) 1123–1168.

    Article  Google Scholar 

  92. J. C. Simo, T. J. R. Hughes, Computational Inelasticity, Vol. 7 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 1998.

    Google Scholar 

  93. A. S. Khan, S. Huang, Continuum Theory of Plasticity, John Wiley & Sons, New York, 1995.

    Google Scholar 

  94. B. Kiefer, D. Lagoudas, Application of a magnetic sma constitutive model in the analysis of magnetomechanical boundary value problems, Proceedings of SPIE, Smart Structures and Materials: Active Materials: Behavior and Mechanics, San Diego, CA, 26 February–2 March 2006 6170 (2006) 330–341.

    Google Scholar 

  95. D. C. Lagoudas, B. Kiefer, A. J. Broederdorf, Accurate interpretation of magnetic shape memory alloy experiments utilizing coupled magnetostatic analysis, Proceedings of ASME, International Mechanical Engineering Congress and Exposition, Chicago, IL, 5–10 November 2006 IMECE2006-15296 (2006) 1–11.

    Google Scholar 

  96. C. Mueller, Thermodynamic modeling of polycrystalline shape memory alloys at finite strains, Ph.D. thesis, Ruhr-Universität Bochum (August 2003).

    Google Scholar 

  97. A. Bekker, L. C. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta Materialia 46 (10) (1998) 3649–3665.

    Article  CAS  Google Scholar 

  98. R. Tickle, R. D. James, T. Shield, P. Schumacher, M. Wuttig, V. V. Kokorin, Ferromagnetic shape memory in the NiMnGa system, IEEE Transactions on Magnetics 35 (5) (1999) 4301–4310.

    Article  CAS  Google Scholar 

  99. L. Straka, O. Heczko, Superelastic response of Ni–Mn–Ga martensite in magnetic fields and a simple model, IEEE Transactions on Magnetics 39 (5) (2003) 3402–3404.

    Article  CAS  Google Scholar 

  100. L. Straka, O. Heczko, Magnetization changes in Ni–Mn–Ga magnetic shape memory single crystal during compressive stress reorientation, Scripta Materialia 54 (2006) 1549–1552.

    Article  CAS  Google Scholar 

  101. P. Müllner, V. A. Chernenko, G. Kostorz, A microscopic approach to the magnetic-field-induced deformation of martensite (magnetoplasticity), Journal of Magnetism and Magnetic Materials 267 (2003) 325–334.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag US

About this chapter

Cite this chapter

Kiefer, B., Lagoudas, D.C. (2008). Modeling of Magnetic SMAs. In: Shape Memory Alloys., vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47685-8_7

Download citation

Publish with us

Policies and ethics