Skip to main content

Extended SMA Modeling

  • Chapter
  • First Online:
Shape Memory Alloys
  • 10k Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. C. Brinson, One-dimensional constitutive behavior of shape memoryalloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. of Intell. Mater. Syst. and Struct. 4 (1993) 229–242.

    Article  Google Scholar 

  2. L. C. Brinson, R. Lammering, Finite element analysis of the behavior of shape memory alloys and their applications, International Journal of Solids and Structures 30 (23) (1993) 3261–3280.

    Article  Google Scholar 

  3. J. G. Boyd, D. C. Lagoudas, Thermomechanical response of shape memory composites, in: N. W. Hagood, G. J. Knowles (Eds.), Proc. 1993 Smart Structures and Materials Conf., Smart Structures and Intelligent systems, Vol. 1917, SPIE, 1993, pp. 774–790.

    Google Scholar 

  4. A. Bekker, L. C. Brinson, Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach, Journal of the Mechanics and Physics of Solids 45 (6) (1997) 949–988.

    Article  CAS  Google Scholar 

  5. A. Bekker, L. C. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta Materialia 46 (10) (1998) 3649–3665.

    Article  CAS  Google Scholar 

  6. S. Leclercq, C. Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids 44 (6) (1996) 953–980.

    Article  CAS  Google Scholar 

  7. D. Lagoudas, S. Shu, Residual deformations of active structures with SMA actuators, International Journal of Mechanical Sciences 41 (1999) 595–619.

    Article  Google Scholar 

  8. L. Juhasz, E. Schnack, O. Hesebeck, H. Andra, Macroscopic modeling of shape memory alloys under non-proportional thermo-mechanical loadings, Journal of Intelligent Material Systems and Structures 13 (2002) 825–836.

    Article  CAS  Google Scholar 

  9. P. Popov, D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International Journal of Plasticity 23 (10–11) (2007) 1679–1720.

    Article  CAS  Google Scholar 

  10. K. Otsuka, C. M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1999, Ch. Introduction, pp. 1–26.

    Google Scholar 

  11. H. Sakamoto, Distinction between thermal and stress-induced martensitic transformations and inhomogeneity in internal stress, Materials Transactions 43 (9) (2002) 2249–2255.

    Article  CAS  Google Scholar 

  12. P. Popov, Constitutive modelling of shape memory alloys andupscaling of deformable porous media, Ph.D. thesis, Texas A&M University (2005).

    Google Scholar 

  13. W. B. Cross, A. H. Kariotis, F. J. Stimler, Nitinol characterization study, Tech. Rep. CR-1433, NASA (1969).

    Google Scholar 

  14. C. M. Jackson, H. J. Wagner, R. J. Wasilewski, 55-nitinol—The alloy with a memory: Its physical metallurgy, properties and applications, Tech. Rep. NASA SP-5110, NASA, Technology Utilization Office, Washington, D.C. (1972).

    Google Scholar 

  15. P. Wollants, M. De Bonte, J. Roos, A thermodynamic analysis of the stress-induced martensitic transformation in a single crystal, Z. Metallkd. 70 (1979) 113–117.

    Google Scholar 

  16. P. Šittner, D. Vokoun, G. Dayananda, R. Stalmans, Recovery stress generation in shape memory Ti50Ni45Cu5 thin wires, Material Science and Engineering A 286 (2000) 298–311.

    Article  Google Scholar 

  17. T. Kotil, H. Sehitoglu, H. Maier, Y. Chumlyakov, Transformation and detwinning induced electrical resistance variations in NiTiCu, Materials and Engineering A359 (2003) 280–289.

    Article  CAS  Google Scholar 

  18. P. Šittner, P. Lukàš, D. Neov, D. Lugovyy, Martensitic tranformations in NiTi polycryctals investigated by in-situ neutron diffraction, Materials Science Forum 426-432 (2003) 2315–2320.

    Article  Google Scholar 

  19. K. Tsoi, R. Stlmans, J. Schrooten, Transformational behavior of constrained shape memory alloys, Acta Materialia 50 (2003) 3535–3544.

    Article  Google Scholar 

  20. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: Theoretical derivations, International Journal of Engineering Science 37 (1999) 1089–1140.

    Article  CAS  Google Scholar 

  21. D. Miller, Thermomechanical characterization of plastic deformation and transformation fatigue in shape memory alloys, Ph.D. thesis, Texas A&M University (2000).

    Google Scholar 

  22. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: Evolution of plastic strains and two-way memory effect, International Journal of Engineering Science 37 (1999) 1175–1204.

    Article  CAS  Google Scholar 

  23. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: Modeling of minor hysteresis loops, International Journal of Engineering Science 37 (1999) 1205–1249.

    Article  CAS  Google Scholar 

  24. D. C. Lagoudas, Z. Bo, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: Material characterization and experimental results for a stable transformation cycle, International Journal of Engineering Science 37 (1999) 1205–1249.

    Article  Google Scholar 

  25. F. Auricchio, R. L. Taylor, J. Lubliner, Shape-memory alloys: Modelling and numerical simulations of the finite-strain superelastic behavior, Computer Methods in Applied Mechanics and Engineering 143 (1997) 175–194.

    Article  Google Scholar 

  26. M. A. Qidwai, D. C. Lagoudas, On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material, International Journal of Plasticity 16 (2000) 1309–1343.

    Article  CAS  Google Scholar 

  27. L. Anand, M. Gurtin, Thermal effects in the superelasticity of crystalline shape-memory materials, Journal of the Mechanics and Physics of Solids 51 (6) (2003) 1015–1058.

    Article  CAS  Google Scholar 

  28. D. C. Lagoudas, Z. Bo, M. A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites, Mechanics of Composite Materials and Structures 3 (1996) 153–179.

    Article  CAS  Google Scholar 

  29. B. Coleman, M. Gurtin, Thermodynamics with internal state variables, The Journal of Chemical Physics 47 (1967) 597–613.

    Article  CAS  Google Scholar 

  30. D. C. Lagoudas, P. B. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: Constitutive model for fully dense SMAs, Mech. Mater. 36 (9) (2004) 865–892.

    Google Scholar 

  31. J. G. Boyd, D. C. Lagoudas, Thermomechanical response of shape memory composites, Journal of Intelligent Material Systems and Structures 5 (1994) 333–346.

    Article  CAS  Google Scholar 

  32. M. A. Qidwai, D. C. Lagoudas, Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms, International Journal for Numerical Methods in Engineering 47 (2000) 1123–1168.

    Article  Google Scholar 

  33. F. Auricchio, R. L. Taylor, J. Lubliner, Shape-memory alloys: Macromodelling and numerical simulations of the superelastic behavior, Computer Methods in Applied Mechanics and Engineering 146 (1997) 281–312.

    Article  Google Scholar 

  34. Y. Gillet, E. Patoor, M. Berveiller, Calculation of pseudoelastic elements using a non symmetrical thermomechanical transformation criterion and associated rule, Journal of Intelligent Materials and Technology 9 (1998) 366–378.

    CAS  Google Scholar 

  35. W. Huang, Yield surfaces of shape memory alloys and their applications, Acta Materialia 47 (9) (1999) 2769–2776.

    Article  CAS  Google Scholar 

  36. C. Lexcellent, A. Vivet, C. Bouvet, S. Calloch, P. Blanc, Experimental and numerical determinations of the initial surface of phase transformations under biaxial loading in some polycrystalline shape-memory alloys, Journal of the Mechanics and Physics of Solids (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag US

About this chapter

Cite this chapter

Popov, P., Lagoudas, D. (2008). Extended SMA Modeling. In: Shape Memory Alloys., vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47685-8_6

Download citation

Publish with us

Policies and ethics