Skip to main content

Modeling of Transformation-Induced Plasticity in SMAs

  • Chapter
  • First Online:
Shape Memory Alloys

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Lagoudas, P. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys: Part I: Constitutive model for fully dense SMAs, Mechanics of Materials 36 (2004) 865–892.

    Google Scholar 

  2. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: Theoretical Derivations, International Journal of Engineering Science 37 (1999) 1089–1140.

    Article  CAS  Google Scholar 

  3. D. C. Lagoudas, Z. Bo, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: Material characterization and experimental results for a stable transformation cycle, International Journal of Engineering Science 37 (1999) 1141–1173.

    Article  CAS  Google Scholar 

  4. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: Evolution of plastic strains and two-way shape memory effect, International Journal of Engineering Science 37 (1999) 1175–1203.

    Article  CAS  Google Scholar 

  5. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: Modeling of minor hysteresis loops, International Journal of Engineering Science 37 (1999) 1205–1249.

    Article  CAS  Google Scholar 

  6. B. Strnadel, S. Ohashi, H. Ohtsuka, S. Miyazaki, T. Ishihara, Effect of mechanical cycling on the pseudoelasticity characteristics of Ti-Ni and Ti-Ni-Cu alloys, Material Science & Engineering A 203 (1995) 187–196.

    Article  Google Scholar 

  7. P. G. McCormick, Y. Liu, Thermodynamic analysis of the martensitic transformation in TiNi—II. Effect of transformation cycling, Acta Metallurgica et Materialia 42 (7) (1994) 2407–2413.

    Article  CAS  Google Scholar 

  8. B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, S. Miyazaki, Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape memory alloys, Material Science & Engineering A 202 (1995) 148–156.

    Article  Google Scholar 

  9. T. J. Lim, D. L. McDowell, Degradation of an NiTi alloy during cyclic loading, in: Proceedings of the 1994 North American Conference on Smart Structures and Materials, SPIE, 1994, pp. 153–165.

    Google Scholar 

  10. H. Kato, T. Ozu, S. Hashimoto, S. Miura, Cyclic stress-strain response of superelastic Cu-Al-Mn alloy single crystals, Material Science and Engineering A 264 (1999) 245–253.

    Article  Google Scholar 

  11. H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y. Chumlyakov, Cyclic deformation behavior of single crystal NiTi, Material Science & Engineering A 314 (1–2) (2001) 67–74.

    Article  Google Scholar 

  12. A. S. Khan, S. Huang, Continuum Theory of Plasticity, John Wiley & Sons, New York, 1995.

    Google Scholar 

  13. T. Saburi, Ti-Ni shape memory alloys, in: K. Otsuka, C. M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1999, Ch. 3, pp. 49–96.

    Google Scholar 

  14. D. G. B. Edelen, On the characterization of fluxes in nonlinear irreversible thermodynamics, International Journal of Engineering Science 12 (1974) 397–411.

    Article  Google Scholar 

  15. Z. Bo, D. C. Lagoudas, D. Miller, Material characterization of SMA actuators under nonproportional thermomechanical loading, Journal of Engineering Materials and Technology 121 (1999) 75–85.

    Article  CAS  Google Scholar 

  16. D. C. Lagoudas, Z. Bo, M. A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites, Mechanics of Composite Materials and Structures 3 (1996) 153–179.

    Article  CAS  Google Scholar 

  17. Dassault Systémes of America Corp., Woodlands Hills, CA, ABAQUS/Standard User’s Manual (2006).

    Google Scholar 

  18. M. A. Qidwai, Thermomechanical constitutive modeling and numerical implementation of polycrystalline shape memory alloy materials, Ph.D. thesis, Texas A&M University, Department of Aerospace Engineering (1999).

    Google Scholar 

  19. J. T. Lim, D. L. McDowell, Mechanical behavior of a Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading, Journal of Engineering Materials and Technology 121 (1999) 9’18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag US

About this chapter

Cite this chapter

Entchev, P., Lagoudas, D. (2008). Modeling of Transformation-Induced Plasticity in SMAs. In: Shape Memory Alloys., vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47685-8_5

Download citation

Publish with us

Policies and ethics