Skip to main content

Thermomechanical Constitutive Modeling of SMAs

  • Chapter
  • First Online:
Shape Memory Alloys

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Archive for Rational Mechanics and Analysis 13 (1963) 167–178.

    Article  Google Scholar 

  2. B. D. Coleman, M. E. Gurtin, Thermodynamics with internal state variables, The Journal of Chemical Physics 47 (2) (1967) 597–613.

    Article  CAS  Google Scholar 

  3. C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, Springer, 1965.

    Google Scholar 

  4. L. E. Malvern, Introduction to the Mechanics of a Continuous Medium, Series in Engineering of the Physical Sciences, Prentice Hall, Upper Saddle River, NJ, 1969.

    Google Scholar 

  5. M. E. Gurtin, An Introduction to Continuum Mechanics, Vol. 158 of Mathematics in Science and Engineering, Academic Press, San Diego, 1981.

    Google Scholar 

  6. W. M. Lai, D. Rubin, E. Krempl, Introduction to Continuum Mechanics, 3rd Edition, Butterworth-Heinemann, Woburn, MA, 1993.

    Google Scholar 

  7. W. S. Slaughter, The Linearized Theory of Elasticity, Birkhäuser, Boston, 2002.

    Google Scholar 

  8. R. Batra, Elements of Continuum Mechancis, AIAA, Reston, VA, 2006.

    Google Scholar 

  9. G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley Chichester, UK, 2000.

    Google Scholar 

  10. B. D. Coleman, W. Noll, Material symmetry and thermostatic inequalities in finite elastic deformations, Archive for Rational Mechanics and Analysis 15 (1964) 87–111.

    Article  Google Scholar 

  11. B. D. Coleman, Thermodynamics of materials with memory, Archive for Rational Mechanics and Analysis 17 (1964) 1–46.

    Google Scholar 

  12. J. G. Boyd, D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part I . The monolithic shape memory alloy, International Journal of Plasticity 12 (6) (1996) 805–842.

    Article  CAS  Google Scholar 

  13. M. A. Qidwai, D. C. Lagoudas, Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms, International Journal for Numerical Methods in Engineering 47 (2000) 1123–1168.

    Article  Google Scholar 

  14. E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, X. Gao, Shape memory alloys, Part I : General properties and modeling of single crystals, Mechanics of Materials 38 (5–6) (2006) 391–429.

    Article  Google Scholar 

  15. D. C. Lagoudas, P. B. Entchev, P. Popov, E. Patoor, L. C. Brinson, X. Gao, Shape memory alloys, Part II : Modeling of polycrystals, Mechanics of Materials 38 (5–6) (2006) 430–462.

    Article  Google Scholar 

  16. M. A. Qidwai, D. C. Lagoudas, On the thermodynamics and transformation surfaces of polycrystalline NiTi shape memory alloy material, International Journal of Plasticity 16 (2000) 1309–1343.

    Article  CAS  Google Scholar 

  17. J. C. Simo, T. J. R. Hughes, Computational Inelasticity, Vol. 7 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 1998.

    Google Scholar 

  18. K. Tanaka, A thermomechanical sketch of shape memory effect: O ne-dimensional tensile behavior, Res Mechanica 18 (1986) 251–263.

    Google Scholar 

  19. K. Tanaka, S. Kobayashi, Y. Sato, Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, International Journal of Plasticity 2 (1986) 59–72.

    Article  CAS  Google Scholar 

  20. C. Liang, C. A. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials, Journal of Intelligent Material Systems and Structures 1 (1990) 207–234.

    Article  Google Scholar 

  21. D. C. Lagoudas, Z. Bo, M. A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites, Mechanics of Composite Materials and Structures 3 (1996) 153–179.

    Article  CAS  Google Scholar 

  22. L. Machado, Shape memory alloys for vibration isolation and damping, Ph.D. thesis, Texas A&M University, College Station, TX (2007).

    Google Scholar 

  23. V. Birman, Review of mechanics of shape memory alloy structures, Applied Mechanics Reviews 50 (11) (1997) 629–645.

    Article  Google Scholar 

  24. B. Raniecki, C. Lexcellent, Thermodynamics of isotropic pseudoelasticity in shape memory alloys, European Journal of Mechanics - A/Solids 17 (2) (1998) 185–205.

    Article  Google Scholar 

  25. B. Raniecki, J. Rejzner, C. Lexcellent, Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams, International Journal of Mechanical Sciences 43 (5) (2001) 1339–1368.

    Article  Google Scholar 

  26. J. Rejzner, C. Lexcellent, B. Raniecki, Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling, International Journal of Mechanical Sciences 44 (4) (2002) 665–686.

    Article  Google Scholar 

  27. C. Lexcellent, A. Vivet, C. Bouvet, S. Calloch, P. Blanc, Experimental and numerical determinations of the initial surface of phase transformations under biaxial loading in some polycrystalline shape-memory alloys, Journal of the Mechanics and Physics of Solids 50 (2002) 2717–2735.

    Article  CAS  Google Scholar 

  28. L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable, Journal of Intelligent Material Systems and Structures 4 (1993) 229–242.

    Article  Google Scholar 

  29. S. Leclercq, C. Lexcellent, A general macroscopic description of the thermomechanical behavior of shape memory alloys, JMPS 44 (6) (1996) 953–980.

    Article  CAS  Google Scholar 

  30. D. C. Lagoudas, S. G. Shu, Residual deformation of active structures with SMA actuators, International Journal of Mechanical Sciences 41 (1999) 595–619.

    Article  Google Scholar 

  31. P. Popov, D. C. Lagoudas, A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International Journal of Plasticity 23 (10–11) (2007) 1679–1720.

    Article  CAS  Google Scholar 

  32. C. Lexcellent, G. Bourbon, Thermodynamical model of cyclic behavior of Ti-Ni and Cu-Zn-A| shape memory alloys under isothermal undulated tensile tests, Mechanics of Materials 24 (1996) 59–73.

    Article  Google Scholar 

  33. F. Fischer, E. Oberaigner, K. Tanaka, F. Nishimura, Transformation induced plasticity revised an updated formulation, International Journal of Solids and Structures 35 (18) (1998) 2209–2227.

    Article  Google Scholar 

  34. C. Lexcellent, S. Leclerq, B. Gabry, G. Bourbon, The two way shape memory effect of shape memory alloys: An experimental study and a phenomenological model, International Journal of Plasticity 16 (2000) 1155–1168.

    Article  CAS  Google Scholar 

  35. R. Abeyaratne, S. Kim, Cyclic effects in shape-memory alloys: a one-dimensional continuum model, International Journal of Solids and Structures 34 (25) (1997) 3273–3289.

    Article  Google Scholar 

  36. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: Theoretical Derivations, International Journal of Engineering Science 37 (1999) 1089–1140.

    Article  CAS  Google Scholar 

  37. D. Lagoudas, Z. Bo, Thermomechanical modeling of polycrystalline SMA s under cyclic loading, part II: Material characterization and experimental results for a stable transformation cycle, International Journal of Engineering Science 37 (9) (1999) 1141–1173.

    Article  CAS  Google Scholar 

  38. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: Evolution of plastic strains and two-way shape memory effect, International Journal of Engineering Science 37 (1999) 1175–1203.

    Article  CAS  Google Scholar 

  39. Z. Bo, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: Modeling of minor hysteresis loops, International Journal of Engineering Science 37 (1999) 1205–1249.

    Article  CAS  Google Scholar 

  40. D. C. Lagoudas, P. B. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: Constitutive model for fully dense SMAs, Mechanics of Materials 36 (9) (2004) 865–892.

    Google Scholar 

  41. K. Tanaka, F. Nishimura, T. Hayashi, H. Tobushi, C. Lexcellent, Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads, Mechanics of Materials 19 (1995) 281–292.

    Article  CAS  Google Scholar 

  42. M. Brocca, L. Brinson, Z. Bažant, Three-dimensional constitutive model for shape memory alloys based on microplane model, Journal of the Mechanics and Physics of Solids 50 (5) (2002) 1051–1077.

    Article  CAS  Google Scholar 

  43. Z. Bazant, Microplane model for strain controlled inelastic behavior, Mechanics of engineering materials (1984) 45–59.

    Google Scholar 

  44. A. Bekker, L. C. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta Materialia 46 (10) (1998) 3649–3665.

    Article  CAS  Google Scholar 

  45. L. Anand, M. E. Gurtin, Thermal effects in the superelasticity of crystalline shape-memory materials, Journal of the Mechanics and Physics of Solids 51 (2003) 1015–1058.

    Article  CAS  Google Scholar 

  46. J. Shaw, A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities, International Journal of Solids and Structures 39 (5) (2002) 1275–1305.

    Article  Google Scholar 

  47. A. Paiva, M. A. Savi, A. M. B. Bragra, P. M. C. L. Pacheco, A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity, International Journal of Solids and Structures 42 (11–12) (2005) 3439–3457.

    Article  Google Scholar 

  48. S. Govindjee, E. P. Kasper, Computational aspects of one-dimensional shape memory alloy modeling with phase diagrams, Computer Methods in Applied Mechanics and Engineering 171 (1999) 309–326.

    Article  Google Scholar 

  49. S. Govindjee, C. Miehe, A multi-variant martensitic phase transformation model: formulation and numerical implementation, Computer Methods in Applied Mechanics and Engineering 191 (2001) 215–238.

    Article  Google Scholar 

  50. G. Hall, S. Govindjee, Application of a partially relaxed shape memory free energy function to estimate the phase diagram and predict global microstructure evolution, Journal of the Mechanics and Physics of Solids 50 (3) (2002) 501–530.

    Article  CAS  Google Scholar 

  51. A. Bekker, L. C. Brinson, Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach, Journal of the Mechanics and Physics of Solids 45 (6) (1997) 949–988.

    Article  CAS  Google Scholar 

  52. S. Govindjee, G. J. Hall, A computational model for shape memory alloys, International Journal of Solids and Structures 37 (5) (2000) 735–760.

    Article  Google Scholar 

  53. M. A. Savi, A. Paiva, Describing internal subloops due to incomplete phase trasnformations in shape memory alloys, Archive of Applied Mechanics 74 (9) (2005) 637–647.

    Article  Google Scholar 

  54. C. Liang, C. A. Rogers, A multi-dimensional constitutive model for shape memory alloys, Journal of Engineering Mathematics 26 (1992) 429–443.

    Google Scholar 

  55. J. G. Boyd, D. C. Lagoudas, A constitutive model for simultaneous transformation and reorientation in shape memory materials, in: Mechanics of Phase Transformations and Shape Memory Alloys, Vol. AMD 189/PVP 292, ASME, 1994, pp. 159–172.

    Google Scholar 

  56. L. Juh´sz, E. Schnack, O. Hesebeck, H. Andrä, Macroscopic modeling of shape memory alloys under non-proportional themo-mechanical loadings, Journal of Intelligent Material Systems and Structures 13 (2002) 825–836.

    Article  Google Scholar 

  57. I. Ivshin, T. J. Pence, A thermodynamical model for one-variant shape memory alloy material, Journal of Intelligent Material Systems and Structures 5 (1994) 455–473.

    Article  Google Scholar 

  58. F. Auricchio, E. Sacco, A one-dimensional model for superelastic shapememory alloys with different elastic properties between austenite and martensite, International Journal of Non-Linear Mechanics 32 (6) (1997) 1101–1114.

    Google Scholar 

  59. K. Rajagopal, A. R. Srinivasa, On the thermomechanics of shape memory wires, Z. angew. Math. Phys. 50 (1999) 459–496.

    Google Scholar 

  60. S. Seelecke, I. Müller, Shape memory alloy actuators in smart structures: Modeling and simulation, Applied Mechanics Reviews 57 (1) (2004) 23–46.

    Google Scholar 

  61. E. Patoor, A. Eberhardt, M. Berveiller, Potential pseudoelastique et plasticité de transformation martensitique dans les mono- et polycristaux metalliques, Acta Materialia 35 (11) (1987) 2779–2789.

    Google Scholar 

  62. C. Liang, C. A. Rogers, A multi-dimensional constitutive model for shape memory alloys, Journal of Engineering Mathematics 26 (1992) 429–443.

    Google Scholar 

  63. Q. P. Sun, K. C. Hwang, Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys — I. Derivation of general relations, Journal of the Mechanics and Physics of Solids 41(1) (1983) 1–17.

    Google Scholar 

  64. Q. P. Sun, K.C. Hwang, Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys — II. Study of individual phenomena, Journal of the Mechanics and Physics of Solids 41 (1) (1983) 19–33.

    Google Scholar 

  65. J. Lubliner, F. Auricchio, Generalized plasticity and shape memory alloys, International Journal of Solids and Structures 33 (7) (1996) 991–1003.

    Google Scholar 

  66. F. Auriccho, R. L. Taylor, Shape-memory alloys:Modelling and numerical simulation of the finite-strain superelastic behavior., Computer Methods in Applied Mechanics and Engineering 143 (1–2) (1997) 175–194.

    Google Scholar 

  67. F. Auricchio, R. L. Taylor, J. Lubliner, Shape-memory alloys: Macromodelling and numerical simulations of the superelastic behavior, Computer Methods in Applied Mechanics and Engineering 146 (1997) 281–312.

    Google Scholar 

  68. L. Juhász, E. Schnack, O. Hesebeck, H. Andrä, Macroscopic modeling of shape memory alloys under non-proportional themo-mechanical loadings, Journal of Intelligent Material Systems and Structures 13 (2002) 825–836.

    Google Scholar 

  69. D. Helm, P. Haupt, Shape memory behavior: Modelling within continuum thermomechanics, International Journal of Solids and Structures 40 (2003) 827–849.

    Google Scholar 

  70. D. C. Lagoudas, S. G. Shu, Residual deformation of active structures with SMA actuators, International Journal of Mechanical Sciences 41 (1999) 595–619.

    Google Scholar 

  71. S. Reese, D. Christ, Finite deformation pseudo-elasticity of shape memory alloys – Constitutive modelling and finite element implementation, International Journal of Plasticity 24 (2008) 455–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag US

About this chapter

Cite this chapter

Machado, L., Lagoudas, D. (2008). Thermomechanical Constitutive Modeling of SMAs. In: Shape Memory Alloys., vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47685-8_3

Download citation

Publish with us

Policies and ethics